
Kybernetika

Francesco M. Malvestuto
The sum-product algorithm: algebraic independence and computational aspects

Kybernetika, Vol. 49 (2013), No. 1, 4--22

Persistent URL: http://dml.cz/dmlcz/143237

Terms of use:
© Institute of Information Theory and Automation AS CR, 2013

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/143237
http://project.dml.cz

KYB ERNET IK A — VO LUME 4 9 (2 0 1 3) , NUMBER 1 , PAGES 4 – 2 2

THE SUM-PRODUCT ALGORITHM: ALGEBRAIC
INDEPENDENCE AND COMPUTATIONAL ASPECTS

Francesco M. Malvestuto

The sum-product algorithm is a well-known procedure for marginalizing an “acyclic” product
function whose range is the ground set of a commutative semiring. The algorithm is general
enough to include as special cases several classical algorithms developed in information theory
and probability theory. We present four results. First, using the sum-product algorithm we
show that the variable sets involved in an acyclic factorization satisfy a relation that is a natural
generalization of probability-theoretic independence. Second, we show that for the Boolean
semiring the sum-product algorithm reduces to a classical algorithm of database theory. Third,
we present some methods to reduce the amount of computation required by the sum-product
algorithm. Fourth, we show that with a slight modification the sum-product algorithm can be
used to evaluate a general sum-product expression.

Keywords: sum-product algorithm, distributive law, acyclic set system, junction tree

Classification: 47A67, 62-09, 62c10, 68P15, 68W30

1. INTRODUCTION

Marginalizing a product function whose range is the ground set of a commutative semir-
ing is a ubiquitous problem with applications in information theory, probability theory
and artificial intelligence. Finding a solution algorithm with a minimum amount of com-
putation (additions and multiplications) is an unavoidable task. In two landmark papers
[1, 6], the authors proposed an algorithm, henceforth referred to as the sum-product al-
gorithm (SPA, for short) as in [6], which efficiently solves the marginalization problem
for a function defined by an acyclic product of factors and is general enough to in-
clude as special cases several classical algorithms developed in information theory (e. g.,
the Baum–Welch algorithm, the Fast Fourier transform on any finite Abelian group,
Viterbi’s algorithm, the Gallager–Tanner–Wiberg algorithm, the Bahl–Cocke–Jelinek–
Raviv algorithm, the discrete-state Kalman filtering) and in probability theory (e. g.,
Pearl’s algorithm and the Shafer–Shenoy algorithm). The SPA consists of a message-
passing procedure in a suitable graphical representation (the “junction tree” in [1], and
the “factor graph” in [6]) of the factorization. In this paper, we present four results.
First, we prove that for an acyclic factorization the variable sets that are the arguments
of factors satisfy a relation that is a natural generalization of probability-theoretic inde-
pendence. Second, we show that in the Boolean semiring the SPA reduces to a classical

The sum-product algorithm 5

algorithm developed in database theory. Third, we present some techniques to reduce
the amount of computation required by the SPA. Fourth, we show how to modify the
SPA in order to evaluate a general sum-product expression, that is, to compute any
marginal of a product function.

Here is an outline of the paper. Section 2 contains the definition of an acyclic set
system with some graph-theoretic properties. In Section 3 we review the SPA. Section
4 is devoted to the proof of independence of the variable sets involved in an acyclic
factorization. In Section 5 we deal with the Boolean version of the SPA and show the
usefulness of the notion of the “support” of a Boolean function to reduce the amount
of computation required by the SPA. The support of a general function is also used
in Section 6 to obtain an efficient implementation of the SPA, which in the best case
makes the output size equal to the input size. In Section 7 we show that the problem
of evaluating a general sum-product expression can be solved using a slightly modified
version of the SPA. Section 8 contains some closing notes.

2. PRELIMINARIES

Henceforth, (R,+, ·) stands for a commutative semiring, that is, (R,+) and (R, ·) are
both commutative semigroups whose identities are denoted by 0 and 1, respectively;
moreover, multiplication distributes over addition and multiplication by 0 annihilates
every element of R, that is,

u · (v + w) = u · v + u · w 0 · v = 0.

Let X = {x1, . . . , xk} be a finite set of variables, where xh takes values in a finite set
Ah (1 ≤ h ≤ k). Let Y be a nonempty subset of X; a Y-tuple is an assignment of values
to the variables in Y , and by AY we denote the set of Y -tuples. The set of X-tuples is
denoted simply by A; moreover, given an X-tuple a and a nonempty subset Y of X, by
aY we denote the Y -tuple obtained from a by ignoring the values of variables in X \ Y .

An R-valued function is a function with codomain R; if it takes on the value 1
everywhere, then it is called a unitary function.

Let f be an R-valued function of X; the marginal of f on a nonempty proper subset
Y of X is the R-valued function of Y defined as follows:

f [Y] =
∑

x∈X\Y

f

that is, for Y -tuple b, the corresponding value of f [Y] is

f [Y](b) =
∑

a∈A:aY =b

f(a).

A set system over X is a set of nonempty subsets of X whose union recovers X. A set
system S over X is acyclic [1] if either S is a singleton or there exists a running-
intersection ordering of S, that is, an ordering (X1, . . . , Xn) of the sets in S that enjoys
the following property:

(running-intersection property) For each i, 2 ≤ i ≤ n, there exists ji < i
such that (X1 ∪ · · · ∪Xi−1) ∩Xi ⊆ Xji .

6 F.M. MALVESTUTO

Several equivalent definitions of acyclicity exist [2]. We now recall two graph-theoretic
characterizations [2] of acyclic set systems, which will be used in the sequel.

The adjacency graph (or “2-section” or “primal graph” or “moral graph”) of a set
system S over X is a graph G on X where two vertices x and y are adjacent if and
only if there exists a set in S that contains both x and y. If every cycle (x1, . . . , xl, x1),
l ≥ 4, in G contains two non-consecutive adjacent vertices, then G is a chordal graph.
A set system S is acyclic if and only if its adjacency graph G is a chordal graph, and
every clique (that is, every nonempty set of pairwise adjacent vertices) of G is a subset
of some set in S.

A set system S = {X1, . . . , Xn} over X is acyclic if and only if there exists an acyclic
(undirected) graph T on V = {1, . . . , n} with vertex i labeled with Xi, that enjoys the
following property:

(junction property) For every element x of X, the subgraph of T induced by
the set of vertices whose labels contain x is connected.

An acyclic graph such as T is called a junction forest (or “join forest”) for S if T is
not connected, and a junction tree (or “join tree”) if T is connected. Assume that T is
a junction tree for S. A rooted junction tree is obtained from T by rooting T at any
vertex; if r is the root, we denote the corresponding rooted junction tree by Tr. For
every two adjacent vertices i and j of Tr, if the unique path in Tr from r to i passes
through j, then we say that j is the parent of i or, equivalently, i is a child of j. For
each vertex i of Tr, by Ch(i) we denote the set of children of i. A vertex i is a leaf of
Tr if Ch(i) = ∅. Henceforth, we denote an edge of Tr with end vertices i and j by ij if
i is a child of j.

Remark 1. Given a running-intersection ordering (X1, . . . , Xn) of S, we can construct
a rooted junction tree by taking vertex 1 to be the root and making vertex i child of
vertex ji for each i > 1. On the other hand, given a rooted junction tree Tr for S, we can
construct a running-intersection ordering of S, by visiting vertices of Tr in a top-down
way, that is, we visit a vertex after visiting its parent.

From a computational point of view, a set system S can be tested for acyclicity in
polynomial time using the following algorithm [2].

Algorithm 1

Repeat the following two operations until neither can be longer applied:

1. Delete a variable if it occurs in exactly one member of S.

2. Delete a member of S if it is contained in another member of S.

It is well-known that the output of Algorithm 1 is defined uniquely and is independent
of the sequence of deletions chosen (see Lemma 1 in [6]), and that S is acyclic if and
only if the output of Algorithm 1 is {∅} (see Theorem 3.4 in [2]). Finally, a linear-time
test for acyclicity can be found in [11], where a very efficient procedure for constructing
a junction tree was also provided.

The sum-product algorithm 7

3. THE SUM-PRODUCT ALGORITHM

In this section we review the way in which SPA solves the following marginalization
problem which is called the all-vertices problem in [1]:

Let S = {X1, . . . , Xn} be an acyclic set system over X, and let fi be an
R-valued function of Xi (1 ≤ i ≤ n). Compute the marginals of the product
function f1 · . . . · fn on each Xi (1 ≤ i ≤ n).

As in [1], we represent S by a junction forest, say T . Without loss of generality,
henceforth we assume that T is connected. The SPA operates by “message-passing” in
T : each edge of T is traversed twice, one for each of the two directions on the edge.
When an edge with end vertices i and j is traversed from i to j, a “message” consisting
of a function of Xi ∩Xj is sent from i to j. An effective schedule makes use of a rooted
junction tree Tr for S, and consists of two phases: Phase I and Phase II. During Phase
I, Tr is traversed in a bottom-up way, that is, each edge ij of Tr is traversed in the
child-parent direction i → j and only after traversing all the edges hi for each child h
of i; the message sent from i to j is denoted by µi→j . During Phase II, Tr is traversed
in a top-down way, that is, each edge ij of Tr is traversed in the parent-child direction
j → i and only after traversing the edge jk where k is the parent of j; the message sent
from j to i is denoted by µi←j . The output of the procedure is the set of marginals
{m1, . . . ,mn} of the product function f1 · . . . · fn over S.

SPA

Phase I
During a bottom-up traversal of Tr, when edge ij is traversed (from i to j) compute

µi→j :=
(
fi ·

∏
h∈Ch(i)

µh→i

)
[Xi ∩Xj] (1)

where
∏

h∈Ch(i) µh→i is taken to be the unitary function if i is a leaf of Tr. After
traversing all the edges ir, compute

mr := fr ·
∏

i∈Ch(r)

µi→r. (2)

Phase II
During a top-down traversal of Tr, when edge ij is traversed (from j to i) compute

µi←j :=
(
µj←k · fj ·

∏
h∈Ch(j)\{i}

µh→j

)
[Xi ∩Xj] (3)

mi := µi←j · fi ·
∏

h∈Ch(i)

µh→i (4)

where k is the parent of j, µj←k is taken to be the unitary function if j = r and∏
h∈Ch(j)\{i} µh→j is taken to be the unitary function if i is the only child of j.

8 F.M. MALVESTUTO

It should be noted that only Phase I of the SPA is needed to compute mr. On the
other hand, the junction tree T can be rooted at any vertex, so that Phase I of the SPA
is by itself a solution algorithm for the following marginalization problem which is called
the single-vertex problem in [1]:

Let S = {X1, . . . , Xn} be an acyclic set system over X, and let fi be an
R-valued function of Xi (1 ≤ i ≤ n). For a given i, compute the marginal of
the product function f1 · . . . · fn on Xi.

4. ALGEBRAIC INDEPENDENCE

In this section we make use of the SPA to prove that a product of R-valued functions
enjoys a property (to be called algebraic independence) that is a natural generalization
of probability-theoretic independence with a significant difference. It is well-known [8, 9]
that, given a set M of marginals of some probability distribution of X over an acyclic
set system S over X, the extension of M under which the sets in S are independent is
uniquely determined ; moreover, this extension of M is characterized by the property
of being factorable in terms of functions of sets in S. We shall see that this is not the
general case for algebraic independence; that is, given a set M of marginals of some
R-valued function of X over an acyclic set system S over X, there may exist two or
more extensions of M under each of which the sets in S are algebraically independent.

We begin by defining algebraic independence. Let X be a set of variables, let S =
{X1, . . . , Xn} be an acyclic set system over X, let (X1, . . . , Xn) be a running-intersection
ordering of S and let Yi = (X1 ∪ · · · ∪Xi−1) ∩Xi for each i (2 ≤ i ≤ n). The sets in S
are (algebraically) independent under an R-valued function p of X if the equality

p ·
∏

i=2,...,n

p[Yi] =
∏

i=i,...,n

p[Xi]

holds everywhere; that is, for every X-tuple a one has

p(a) ·
∏

i=2,...,n

p[Yi](aYi) =
∏

i=i,...,n

p[Xi](aXi).

Given a junction tree T = (V,E) for S, by Remark 1 the independence among the
sets in S can be re-stated as follows:

p ·
∏

ij∈E

p[Xi ∩Xj] =
∏
i∈V

p[Xi]. (5)

We shall prove (see Theorem 1 below) that, if p is factorable by S (that is, p =
f1 · . . . · fn, where fi is an R-valued function of Xi), then X1, . . . , Xn are independent
under p. The proof is based on the following property of the SPA.

Lemma 1. Let S = {X1, . . . , Xn} be an acyclic set system over X, let Tr be a rooted
junction tree for S and, for every edge ij of Tr, let µi→j and µi←j be the messages
computed by SPA with input f1, . . . , fn. For every edge ij of Tr, one has

(f1 · . . . · fn)[Xi ∩Xj] = µi→j · µi←j .

The sum-product algorithm 9

P r o o f . Consider any edge ij of Tr with i ∈ Ch(j). By (4), one has

(f1 · . . . · fn)[Xi ∩Xj] = mi[Xi ∩Xj] =
∑

x∈Xi\Xj

(
µi←j · fi ·

∏
h∈Ch(i)

µh→i

)
.

Since µi←j is a function of Xi ∩Xj , we can move µi←j to the left of the summation, so
that one has

(f1 · . . . · fn)[Xi ∩Xj] = µi←j ·
∑

x∈Xi\Xj

(
fi ·

∏
h∈Ch(i)

µh→i

)
which by (1) equals the product µi→j · µi←j . �

Theorem 1. Let S = {X1, . . . , Xn} be an acyclic set system over X, let p = f1 ·. . .·fn,
where fi is an R-valued function of Xi. The sets X1, . . . , Xn are independent under p.

P r o o f . Let Tr = (V,E) be a rooted junction tree for S. By Lemma 1, the left-hand
side of (5) can be written as(∏

i∈V

fi

)
·
(∏

ij∈E

µi→j · µi←j

)
=

(
fr ·

∏
ir∈E

µi→r

)
·
(∏

ij∈E,i 6=r

fi · µi←j ·
∏

hi∈E

µh→i

)
which by (2) and (4) is equal to

∏
i∈V mi, that is, to the right-hand side of (5). �

We now address the problem of the uniqueness of the product-extension of a set of
marginals over an acyclic set system. Let S = {X1, . . . , Xn} be a set system over X,
let M = {m1, . . . ,mn} be the set of marginals over S of some R-valued function. An
R-valued function p of X is an extension of M if p[Xi] = mi for all i; if in addition for
each i there exists an R-valued function fi of Xi such that p = f1 · . . . · fn, then p is a
product-extension of M . Note that if S is acyclic then, by Theorem 1, the sets in S are
independent under any product-extension of M . The following simple example shows
that, given a set M of marginals over an acyclic set system S, there may exist two or
more product-extensions of M and, hence, there may exist two or more extensions of M
under each of which the sets in S are independent.

Example 1. Let (R,+, ·) be the commutative semiring where R = {0, 1}, + is the
addition mod 2, and · is the ordinary multiplication. Let x1 and x2 be two binary
variables, and let mi be the function of {xi} with mi(xi) = 0 everywhere, i = 1, 2.
Let p be the unitary function of {x1, x2} and let q be the function of {x1, x2} with
q(x1, x2) = 0 everywhere. It is trivial to check that both p and q are extensions of
{m1,m2}. Moreover, p is the product of the two unitary functions of {x1} and {x2},
and q is the product of m1 and m2. Therefore, since both p and q are product-extensions
of {m1,m2}, the two sets {x1} and {x2} are independent under both p and q.

We shall prove that, given a set M of marginals over an acyclic set system S, there
exists exactly one product-extension of M if the commutative semiring (R,+, ·) enjoys
the following three properties:

10 F.M. MALVESTUTO

(P1) For u, v ∈ R, if u + v = 0 then u = v = 0.

(P2) For u, v ∈ R, if u · v = 0 then u = 0 or v = 0.

(P3) (R, ·) is a group.

Note that (P2) states that there exist no zero divisors and, since one always has
0 ·v = 0 (see Section 2), by (P2) one has that u ·v = 0 if and only if u = 0 or v = 0. Also
note that, by (P3), if v 6= 0 then there exists w such that v · w = 1 so that x · v = y · v
and v 6= 0 imply x = y. An example of a commutative semiring that enjoys (P1), (P2)
and (P3) is the Boolean semiring which will be discussed in Section 5.

Theorem 2. Let (R,+, ·) be a commutative semiring that enjoys (P1), (P2) and (P3).
Let S be an acyclic set system over X, and let M be a set of marginals over S. Then,
there exists exactly one product-extension of M .

P r o o f . Let S = {X1, . . . , Xn} and let M = {m1, . . . ,mn}, and let p and q be two
product-extensions of M . By Theorem 1, the sets in S are independent both under p
and under q. Given a junction tree T = (V,E) for S, let mij = mi[Xi ∩ Xj] for each
edge ij of T . By (5) one has

p ·
∏

ij∈E

mij =
∏
i∈V

mi q ·
∏

ij∈E

mij =
∏
i∈V

mi.

Therefore, for every X-tuple a, one has

p(a) ·
∏

ij∈E

mij(aXi∩Xj
) = q(a) ·

∏
ij∈E

mij(aXi∩Xj). (6)

We now prove that p(a) = q(a) for every X-tuple a. Let us distinguish two cases
depending on whether or not mij(aXi∩Xj) = 0 for some ij.

Case 1: mij(aXi∩Xj) = 0 for some ij. Let b = aXi∩Xj . Since

0 = mij(b) =
∑

a′∈A,a′Xi∩Xj
=b

p(a′),

by (P1) one has p(a′) = 0 for every X-tuple a′ with a′Xi∩Xj
= b and, hence, p(a) = 0.

Using the same arguments, we can prove that q(a) = 0.

Case 2: mij(aXi∩Xj) 6= 0 for all ij. Let

v =
∏

ij∈E

mij(aXi∩Xj).

Note that, by (P2), no factor of v is a zero divisor so that v 6= 0. At this point, we can
re-write (6) as p(a) · v = q(a) · v and, by (P3), one has p(a) = q(a).

To sum up, the equality p(a) = q(a) holds everywhere and, hence, p = q. �

The sum-product algorithm 11

5. THE BOOLEAN SEMIRING

In this section we show that, for the Boolean semiring, the SPA can be given a simpler
formulation, which reduces the amount of computation.

In the Boolean semiring (R,+, ·), R is {0, 1}, + is the Boolean addition (OR), and
· is the Boolean multiplication (AND). Note that the Boolean semiring enjoys not only
properties (P1), (P2) and (P3) but also the following property

(P4) u · (u + v) = u

which implies the following.

Lemma 2. Let f be a Boolean function of X. For every subset Y of X, one has

f · f [Y] = f.

P r o o f . Let a be any X-tuple. Then, one has

f(a) · f [Y](aY) = f(a) ·
∑

a′:a′Y =aY

f(a′) = f(a) ·
(
f(a) +

∑
a′ 6=a:a′Y =aY

f(a′)
)

which by (P4) is equal to f(a). �

Turning back to the SPA with as inputs an acyclic set system S = {X1, . . . , Xn}, a
rooted junction tree Tr and functions f1, . . . , fn, let

gi = fi ·
∏

h∈Ch(i)

µh→i (7)

for each vertex i of Tr. By (1), we can express µi→j as

µi→j = gi[Xi ∩Xj] (8)

and, by (4), we can express mi as

mi =
{

gi if i = r
gi · µi←j else. (9)

We now prove that, for each edge ij, one has

mi = gi ·mj [Xi ∩Xj]. (10)

Consider the right-hand side of (10). By Lemma 1, it can be written as

gi · µi→j · µi←j

which by (8) is equal to
gi · gi[Xi ∩Xj] · µi←j .

By Lemma 2, gi · gi[Xi ∩Xj] = gi so that

gi · gi[Xi ∩Xj] · µi←j = gi · µi←j

which by (9) is equal to the left-hand side (mi) of (10).

Using (8) and (10), we can re-formulate the SPA in the Boolean case as follows.

12 F.M. MALVESTUTO

Algorithm 2

Initialization
Set gi := fi for all i.

Phase I
During a bottom-up traversal of Tr, when edge ij is traversed (from i to j) update gj

as follows:
gj := gj · gi[Xi ∩Xj].

After traversing all the edges ir, set mr := gr.

Phase II
During a top-down traversal of Tr, when edge ij is traversed (from j to i) compute

mi := gi ·mj [Xi ∩Xj].

We can give an even simpler formulation of Algorithm 2 using the notion of a “rela-
tion” and of two operators of relational algebra [2], which are now recalled.

A relation on a set X of variables is a set of X-tuples. Let s be a relation on X and
let Y be a subset of X; the projection of s onto Y , denoted by s[Y], is the relation on
Y defined as follows:

s[Y] = {aY : a ∈ s}.

Let s and t be two relations on X and Y , respectively; the (natural) join of s and t,
denoted by s ./ t, is the relation on X ∪ Y defined as follows:

s ./ t = {a ∈ AX ∪AY : aX ∈ s and aY ∈ t}.

Note that the join is commutative.

Remark 2. Let s and t be two relations on X and Y , respectively. Then, one has

(s ./ t)[X] ⊆ s

and
(s ./ t)[Y] ⊆ t.

Consider now any Boolean function f of X. We call the support of f the set of
X-tuples a for which f(a) = 1. Note that a Boolean function is fully specified by its
support. It is easy to see that: (i) if f is a Boolean function of X with support s and Y
is a subset of X, then the support of the marginal f [Y] is equal to the projection s[Y],
and (ii) if f is a Boolean function of X with support s and g is a Boolean function of
Y with support t, then the support of f · g is equal to the join s ./ t. Therefore, if we
pre-compute the support si of each input function fi of the SPA and update them using
the following procedure, then the final values of s1, . . . , sn will be exactly the supports
of the output functions of the SPA.

The sum-product algorithm 13

Algorithm 3

Initialization
For i = 1, . . . , n, compute the support si of fi.

Phase I
During a bottom-up traversal of Tr, when edge ij is traversed (from i to j) update sj

as follows:
sj := sj ./ si[Xi ∩Xj].

Phase II
During a top-down traversal of Tr, when edge ij is traversed (from j to i) update si as
follows:

si := si ./ sj [Xi ∩Xj].

Note that Algorithm 3 coincides exactly with a classical algorithm (called the full
reducer) developed in relational database theory [2, 3].

6. COMPUTATIONAL ASPECTS

In this section we show how to reduce the amount of computation performed by the SPA,
which can be measured by the arithmetic complexity [1], that is, by the total number
of (semiring) additions and multiplications required by the SPA. To this end, we first
present a general procedure for transforming sum-product expressions of functions µi→j

and µi←j into equivalent formulas that are easier from a computational point of view.
Next, using the notion of the support of a function, we show how to reduce the number
of tuples for which such sum-product expressions are to be evaluated.

6.1. Computing µ-functions

We shall give an effective plan to evaluate the sum-product expressions of µi→j and µi←j ,
which requires fewer arithmetic operations. We begin with the sum-product expression
(3) of µi←j for each child i of j:

µi←j =
∑

x∈Xj\Xi

(
µj←k · fj ·

∏
h∈Ch(j)\{i}

µh→j

)
.

We can reduce the number of additions and multiplications needed to evaluate such a
sum-product expression if, after computing µj←k, we also compute the marginal of the
function µj←k · fj on the set

X ′j = Xj ∩
(
∪h∈Ch(j) Xh

)
.

Let χj denote this function of X ′j , that is,

χj =
∑

x∈Xj\X′
j

(µj←k · fj).

14 F.M. MALVESTUTO

The advantage is that, for each child i of j, one always has Xi ∩Xj ⊆ Xi ∩X ′j so that
each µi←j can be evaluated more simply as

µi←j =
∑

x∈X′
j\Xi

(
χj ·

∏
h∈Ch(j)\{i}

µh→j

)
.

Example 2. Consider the acyclic set system S = {X1 = {x1, x2}, X2 = {x1, x5}, X3 =
{x1, x6}, X4 = {x2, x7}, X5 = {x1, x2, x3, x4}, X6 = {x4}}. A junction tree T for S has
six vertices: 1, 2, 3, 4, 5 and 6, and vertex i is labeled by Xi (1 ≤ i ≤ 6). Suppose we
root T at the vertex 6; thus, Ch(6) = {5} and Ch(5) = {1, 2, 3, 4}. Let fi be an R-valued
function of Xi (1 ≤ i ≤ 6). After computing µ5←6(x4) = f6(x4), we also compute the
function χ5(x1, x2):

χ5(x1, x2) =
∑

x3,x4

(
µ5←6(x4) · f5(x1, x2, x3, x4)

)
.

At this point, the remaining µi←j functions can be evaluated as follows:

µ1←5(x1, x2) = χ5(x1, x2) · µ2→5(x1) · µ3→5(x1) · µ4→5(x2)

µ2←5(x1) =
∑

x2

(
χ5(x1, x2) · µ1→5(x1, x2) · µ3→5 · µ4→5(x2)

)
µ3←5(x1) =

∑
x2

(
χ5(x1, x2) · µ1→5(x1, x2) · µ2→5(x1) · µ4→5(x2)

)
µ4←5(x2) =

∑
x1

(
χ5(x1, x2) · µ1→5(x1, x2) · µ2→5(x1) · µ3→5(x1)

)
.

Observe that the above expression of µi←j contains the product function

πj,i =
∏

h∈Ch(j)\{i}

µh→j .

Consider now the sum-product expression of µj→k (see (1)):

µj→k =
∑

x∈Xj\Xk

(
fj ·

∏
h∈Ch(j)

µh→j

)
which features the product function

πj =
∏

h∈Ch(j)

µh→j .

In [1], the authors proposed an efficient method which, given the functions µh→j , h ∈
Ch(j), computes the product functions πj and πj,i for each child i of j. We now present
another method to reduce the number of arithmetic operations needed to evaluate the
functions µi→j , µi←j and χj . We begin with the sum-product expression (1) of µi→j :

µi→j =
∑

x∈Xi\Xj

(
fi ·

∏
h∈Ch(i)

µh→i

)
.

The sum-product algorithm 15

Let (x1, . . . , xk) be any ordering of the variables in Xi \Xj . First, we break the multiple
sum

∑
x∈Xi\Xj

into k sums, each over one variable. Thus, we may write the sum-product
expression of µi→j as ∑

x1

. . .
∑
xk

(
fi ·

∏
h∈Ch(i)

µh→i

)
.

At this point, each factor µh→i is moved left “as far as possible”, that is, µh→i stops
when reaching a sum

∑
xl

for which xl ∈ Xh ∩Xi. Next, for each l < k, we merge the
factors µh→i that are after

∑
xl

and before
∑

xl+1
into one function of Xi\{xl+1, . . . , xk},

denoted by ϕl, which is preliminarily computed. Finally, the k summations are evaluated
from right to left. It should be noted that the choice of a variable ordering which
minimizes the cost of evaluating a sum is conjectured to be NP-complete [4]. We propose
the following heuristic. With each variable x in Xi \ Xj we associate the number c(x)
of the children h of i for which x ∈ Xh. We then order the variables x in Xi \ Xj by
non-increasing value of c(x).

Example 2 (continued). The functions µi→5 are evaluated easily as follows:

µ1→5(x1, x2) = f1(x1, x2)

µ2→5(x1) =
∑

x5
f2(x1, x5)

µ3→5(x1) =
∑

x6
f3(x1, x6)

µ4→5(x2) =
∑

x7
f4(x2, x7).

As to µ5→6(x4), its sum-product expression is as follows:∑
x1,x2,x3

(
f5(x1, x2, x3, x4) · µ1→5(x1, x2) · µ2→5(x1) · µ3→5(x1) · µ4→5(x2)

)
.

If we order the variables in X5 \ X6 as (x1, x2, x3), then we obtain the following sum-
product expression for µ5→6(x4):∑

x1

(
µ2→5(x1) · µ3→5(x1) ·

∑
x2

(
µ1→5(x1, x2) · µ4→5(x2) ·

∑
x3

f5(x1, x2, x3, x4)
))

.

At this point, we compute the following two functions

ϕ1(x1) = µ2→5(x1) · µ3→5(x1)

ϕ2(x1, x2) = µ1→5(x1, x2) · µ4→5(x2)

and evaluate the three summations∑
x1

(
ϕ1(x1) ·

∑
x2

(
ϕ2(x1, x2) ·

∑
x3

f5(x1, x2, x3, x4)
))

from right to left.

Needless to say, the same technique above can be used to evaluate the product func-
tions µi←j and χj .

16 F.M. MALVESTUTO

Example 2 (continued). After computing µ5←6(x4) = f6(x4), the function χ5(x1, x2)
and the remaining µi←j functions can be computed as follows:

χ5(x1, x2) =
∑

x4

(
µ5←6(x4) ·

∑
x3

f5(x1, x2, x3, x4)
)

µ1←5(x1, x2) = χ5(x1, x2) · µ2→5(x1) · µ3→5(x1) · µ4→5(x2)

µ2←5(x1) = µ3→5(x1) ·
∑

x2

(
χ5(x1, x2) · µ1→5(x1, x2) · µ4→5(x2)

)
µ3←5(x1) = µ2→5(x1) ·

∑
x2

(
χ5(x1, x2) · µ1→5(x1, x2) · µ4→5(x2)

)
µ4←5(x2) =

∑
x1

(
χ5(x1, x2) · µ1→5(x1, x2) · µ2→5(x1) · µ3→5(x1)

)
.

6.2. Reduction of the input size

We now show how to reduce the number of tuples at which the above sum-product
expressions are to be evaluated. To this end, in analogy with a Boolean function, we
define the support of an R-valued function f of X as the relation containing the X-tuples
a for which f(a) 6= 0. First of all, observe that, given an R-valued function f of X and
a subset Y of X, one has f [Y](b) = 0 if b is a Y -tuple such that f(a) = 0 for every
X-tuple a with aY = b. Therefore, if s is the support of f , then

f [Y](b) =
{ ∑

a∈s:ay=b f(a) if b ∈ s[Y]
0 else

(11)

so that the support of f [Y] is a subset of s[Y]. As a consequence, we can avoid evaluating
the sum expression f [Y] at the Y -tuples that do not belong to s[Y]. Moreover, given
two R-valued functions f and g respectively of X and Y , one has (f · g)(a) = 0 if a is an
(X ∪ Y)-tuple such that f(aX) = 0 or g(aY) = 0. Therefore, if s and t are the supports
of f and g, respectively, then one has

(f · g)(a) =
{

f(aX) · g(aY) if a ∈ s ./ t
0 else (12)

so that the support of f ·g is a subset of s ./ t. As a consequence, we can avoid evaluating
the product f · g at the (X ∪ Y)-tuples that do not belong to s ./ t.

We now show that further computation savings can be gained if the commutative
semiring enjoys property (P2), that is, u · v = 0 if and only if u = 0 or v = 0 (see
Section 4).

Lemma 3. Let (R,+, ·) be a commutative semiring that enjoys property (P2). Let f
and g be two R-valued functions of X and Y , respectively. Let s and t be the supports
of f and g, respectively. Then, the support of f · g is equal to s ./ t.

P r o o f . Since the support of f ·g is always a subset of s ./ t, it is sufficient to prove that
if a ∈ s ./ t then (f ·g)(a) 6= 0. Assume that a ∈ s ./ t. By (12), (f ·g)(a) = f(aX)·g(aY).
Since a ∈ s ./ t, both aX ∈ s and aY ∈ t so that f(aX) 6= 0 and g(aY) 6= 0. By (P2),
one has (f · g)(a) 6= 0, which proves the statement. �

The sum-product algorithm 17

Corollary 1. Let (R,+, ·) be a commutative semiring that enjoys property (P2). Let
f and g be two R-valued functions of X and Y , respectively. Let s and t be the supports
of f and g, respectively. If Z is a subset of X ∪ Y , then the support of the marginal
(f · g)[Z] is a subset of (s ./ t)[Z].

P r o o f . Let b be any Z-tuple. If (f · g)[Z](b) 6= 0 then, by (11), b belongs to the
projection onto Z of the support of f · g, which by Lemma 3 is equal to s ./ t. So, the
support of (f · g)[Z] is a subset of (s ./ t)[Z]. �

Let us now consider the SPA with input f1, . . . , fn and output m1, . . . ,mn. Let si

and ti be the supports of fi and mi respectively, i = 1, . . . , n. From the foregoing it
follows that a good storage representation for fi (or mi) is given by a table which reports
the values fi(b) (mi(b), respectively) only for the Xi-tuples b in si (in ti, respectively).
Accordingly, we can measure the size of the input of the SPA by the total size of the
tables of f1, . . . , fn, and the size of the output of the SPA by the total size of the tables
of m1, . . . ,mn. By Corollary 1, one has

ti ⊆
(
s1 .// sn

)
[Xi].

On the other hand, by Remark 2 one always has(
s1 .// sn

)
[Xi] ⊆ si

so that ti ⊆ si. In other words, the size of the output of the SPA is always less than or
equal to the size of its input. The following example is illustrative.

Example 3. Let R be the set of nonnegative integers, and let + and · be the ordinary
addition and multiplication, respectively. Note that the commutative semiring (R,+, ·)
enjoys property (P2). Let X = {x1, x2, x3, x4} and assume that the four variables share
the same value set, say {a1, a2, . . . , aq} with q ≥ 8. Let f1, f2 and f3 be R-valued
functions of X1 = {x1, x2}, X2 = {x2, x3} and X3 = {x3, x4}, respectively. Assume
that the support of fi is si = {(a1, a2), (a2, a4), (a3, a6), (a4, a8)} and that

f1(a1, a2) = f2(a1, a2) = f3(a1, a2) = 1

f1(a2, a4) = f2(a2, a4) = f3(a2, a4) = 2

f1(a3, a6) = f2(a3, a6) = f3(a3, a6) = 3

f1(a4, a8) = f2(a4, a8) = f3(a4, a8) = 4.

It is easily seen that s1 ./ s2 ./ s3 = {(a1, a2, a4, a8)} and
(
f1 · f2 · f3

)
(a1, a2, a4, a8) = 8.

Therefore, the supports of the output (m1, m2 and m3) of the SPA with input f1, f2

and f3 are
t1 = {(a1, a2)} t2 = {(a2, a4)} t3 = {(a4, a8)}

and m1(a1, a2) = m2(a2, a4) = m3(a4, a8) = 8. Apparently, the size of the output of the
SPA is less than the size of the input.

18 F.M. MALVESTUTO

We now show how to reduce the input size of the SPA. To this end, we introduce the
notion of the reduction of the input function fi (with respect to f1, . . . , fn), by which
we mean the function f ′i of Xi defined as follows:

f ′(b) =
{

f(b) if b ∈
(
s1 .// sn

)
[Xi]

0 else (13)

where si is the support of fi.

Example 3 (continued). The reduction f ′1 of f1 takes on the value 1 at (a1, a2) and
0 elsewhere. The reduction f ′2 of f2 takes on the value 2 at (a2, a4) and 0 elsewhere.
The reduction f ′3 of f3 takes on the value 4 at (a4, a8) and 0 elsewhere.

Theorem 3. Let (R,+, ·) be a commutative semiring that enjoys property (P2), and
let f ′i be the reduction of fi, i = 1, . . . , n. Then f1 · . . . · fn = f ′1 · . . . · f ′n.

Proof. We need to prove that the equality

f1(aX1) · . . . · fn(aXn) = f ′1(aX1) · . . . · f ′n(aXn) (14)

holds everywhere. Let a be any X-tuple, and let v be the left-hand side of (14). Two
cases are distinguished depending on whether or not v = 0.

Case 1: v = 0. By Lemma 3, the relation s1 .// sn does not contain a and,
hence, there exists i for which aXi /∈ si. By (12), one also has aXi /∈

(
s1 .// sn

)
[Xi].

From (13) it follows that f ′i(aXi) = 0 and, hence, also the right-hand side of (14) is equal
to 0.

Case 2: v 6= 0. By Lemma 3, the relation s1 .// sn contains a and, hence,
aXi ∈ si for all i. By (13) one has that f ′i(aXi) = fi(aXi) and, hence, the right-hand
side of (14) is equal to v. �

Suppose we now apply the SPA with input f ′1, . . . , f
′
n instead of f1, . . . , fn. By The-

orem 3, the output is the same. Let s′i be the support of f ′i . By (13), one has

s′i ⊆
(
s1 .// sn

)
[Xi]

so that by (12), one has s′i ⊆ si. In other words, the size of the input of the SPA with
input f ′1, . . . , f

′
n is less than or equal to the size of the input of the SPA with input

f1, . . . , fn. It should be noted that, in order to apply the SPA with input f ′1, . . . , f
′
n, we

need to compute for each i: the support si of fi, next the relation
(
s1 .// sn

)
[Xi]

and finally the reduction f ′i of fi. Suppose we have already computed s1, . . . , sn. Then,
the relations

(
s1 .// sn

)
[Xi] (1 ≤ i ≤ n) can be obtained by solving the Boolean

all-vertices problem of Section 5, that is, by applying Algorithm 3. Finally, we can
obtain the functions f ′1, . . . , f

′
n via (13).

Let us now assume that each input function fi of the SPA is in “reduced form”
by which we mean that fi equals its reduction f ′i . We now prove that the input and
the output of the SPA have the same size if the commutative semiring enjoys not only
property (P2) but also property (P1), that is, if u+v = 0 then u = v = 0 (see Section 4).

The sum-product algorithm 19

Theorem 4. Let (R,+, ·) be a commutative semiring that enjoys properties (P1) and
(P2), and let f1, . . . , fn be R-valued functions in reduced form. Then, the output of the
SPA with input f1, . . . , fn have the same size as the input.

P r o o f . Let si be the support of fi and let ti be the support of the output function mi

(1 ≤ i ≤ n). We need to prove that ti = si for all i. Since ti ⊆ si, it is sufficient to prove
that, if an Xi-tuple b does not belong to ti, then b does not belong to si. Assume that b
does not belong to ti; thus, mi(b) = 0. By (P1), for every X-tuple a with aXi = b , one
has

(
f1 · . . . ·fn

)
(a) = 0. By Lemma 3, no X-tuple a with aXi = b belongs to the relation

s1 .// sn. It follows that b does not belong to the relation
(
s1 .// sn

)
[Xi]. By

(13), one has f ′i(b) = 0. Finally, since fi is in reduced form (that is, f ′i = fi), we obtain
fi(b) = 0, which proves that b does not belong to si. �

7. EVALUATING A SUM-PRODUCT EXPRESSION

In this section we show that the SPA can be used to solve a marginalization problem
(to be called the sum-product expression problem) which generalizes the single-vertex
problem of Section 3 to the case in which the set system S = {X1, . . . , Xn} is arbitrary
and the objective function is the marginal, say m, on an arbitrary subset Y of X. In
the following two subsections we distinguish two cases depending on whether or not S
is acyclic.

7.1. The acyclic case

If S is acyclic, then the following variant of Phase I of the SPA solves the sum-product
expression problem.

Algorithm 4

During a bottom-up traversal of Tr, when edge ij is traversed (from i to j) update the
label Xj of j as follows

Xj := Xj ∪ (Xi ∩ Y)

and compute
µi→j :=

(
fi ·

∏
h∈Ch(i)

µh→i

)
[Xi ∩Xj].

After traversing all the edges ir for each child i of the root r, compute the objective
function m as follows

m :=
(
fr ·

∏
i∈Ch(r)

µi→r

)
[Y]. (15)

The key-point of Algorithm 4 is that the label of each non-leaf vertex j is updated
in such a way that, after traversing all the edges ij, the label Xj of j also contains the
elements of Y that occur in the labels of vertices of the subtree Tj of Tr rooted at j.
Then, it is easy to show by induction that

fj ·
∏

i∈Ch(j)

µi→j =
(∏

i∈Vj

fi

)
[Xj]

20 F.M. MALVESTUTO

where Vj is the vertex set of Tj . So, after traversing all the edges ir, one has Y ⊆ Xr

and
fr ·

∏
i∈Ch(r)

µi→r =
(∏

i∈Vr

fi

)
[Xr]

from which (15) easily follows.

Example 4. Consider again the acyclic set system S and the rooted junction tree T6

of Example 2. Suppose we want the marginal m on {x4, x7}. The functions µ1→5, µ2→5,
µ3→5 are the same as in Example 2. For µ4→5 and µ5→6, we have

µ4→5(x2, x7) = f4(x2, x7)

µ5→6(x4, x7) =
∑

x1,x2,x3

f5(x1, x2, x3, x4)·µ1→5(x1, x2)·µ2→5(x1)·µ3→5(x1)·µ4→5(x2, x7).

After computing µ5→6(x4, x7) , we obtain the marginal m as follows:

m(x4, x7) := f6(x4) · µ5→6(x4, x7).

7.2. The cyclic case

If S is cyclic, then we can reduce the sum-product expression problem to the acyclic
case by adding edges to the adjacency graph G of S to obtain a chordal graph using
a triangulation algorithm (e. g., see [11]) or, better, a minimal triangulation algorithm
(e. g., see [10]). Let Ĝ be the chordal graph resulting from a triangulation of G, and let
Ŝ be the set of maximal cliques of Ĝ; thus, Ŝ is an acyclic set system over X. Let T̂ be
a junction tree for Ŝ. Of course, the set system S ′ = Ŝ ∪ S is still acyclic since every
set in S is contained in some set in Ŝ, and a junction tree T ′ for S ′ can be obtained
from T̂ by adding, for each set Xi in S \ Ŝ, a vertex which is labelled by Xi and is
made adjacent to a vertex of T̂ labelled by a set in Ŝ that contains Xi. At this point,
with each vertex of T ′ labelled by a set X ′ /∈ S we associate a unitary function of X ′.
Finally, given a subset Y of X, we can compute the objective function as in the acyclic
case. Sometimes, we can reduce the computational effort to construct the acyclic set
system S ′ by triangulating a suitable subgraph of the adjacency graph G of S, based on
a well-known result (see Corollary 3.2 in [5]) which states that, if S is cyclic, then the
union of sets in the output of Algorithm 1 is the set of least cardinality whose addition
to S makes it acyclic. Therefore, we only need to triangulate the subgraph of G being
the adjacency graph of the output of Algorithm 1. If S̃ is the set of maximal cliques of
the resulting chordal graph, then the set system S ′ = S̃ ∪ S is acyclic as the application
of Algorithm 1 to S ′ yields {∅}. It should be noted that the acyclic set system S ′
constructed by either method is independent of Y and, hence, of the specific objective
function of the sum-expression problem at hand. A different approach was followed
in [1], whose authors construct an acyclic set system which is “tailored” to Y and is
obtained by triangulating the adjacency graph of the set system S ∪ {Y }, regardless of
whether or not S is cyclic.

The sum-product algorithm 21

Example 5. Consider the cyclic set system S = {X1 = {x1, x2}, X2 = {x1, x3}, X3 =
{x2, x4, x5}, X4 = {x3, x4}}. The adjacency graph G of S is a “house”. The application
of Algorithm 1 to S yields the cyclic set system obtained from S by deleting x5, whose
adjacency graph is the 4-cycle of G. Let S̃ be the set of maximal cliques of the chordal
graph obtained from the 4-cycle of G by adding an edge joining the vertices 2 and 3;
that is, S̃ = {X5 = {x1, x2, x3}, X6 = {x2, x3, x4}}. The set system S ′ = S̃ ∪S is acyclic
and the junction tree T ′ for S ′ has six vertices which are labelled by the sets X1, . . . , X6;
moreover, the vertex of T ′ labelled by X5 is adjacent to the vertices labelled by X1, X2

and X6, and the vertex of T ′ labelled by X6 is also adjacent to the vertices labelled by
X3 and X4.

8. CONCLUSIONS

We analyzed the SPA to prove algebraic independence among factors, and an interesting
question that naturally arises is whether or not algebraic independence has the same
axiomatization as its probability-theory counterpart. We also showed that the SPA in the
Boolean semiring reduces to a classical algorithm developed in database theory. From
a computational point of view, we presented some methods to reduce the arithmetic
complexity of the SPA as well as its input size, and it is easy to see that they are also
applicable to the case in which the variables have infinite value sets provided that the
supports of functions are finite relations. Finally, we showed how to modify the SPA to
compute an arbitrary marginal of a product function, both in acyclic and cyclic cases.

9. ACKNOWLEDGEMENT

The author sincerely thanks the referees for their careful reading of the paper and their con-
structive suggestions which led to a substantial improvement of the manuscript.

(Received November 7, 2011)

R E FER E NCE S

[1] S. M. Aji and R. J. McEliece: The generalized distributive law. IEEE Trans. Inform.
Theory 46 (2000), 325–343.

[2] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis: On the desirability of acyclic database
schemes. J. Assoc. Comput. Mach. 30 (1983), 479–513.

[3] P. A. Bernstein and N. Goodman: The power of natural semijoins. SIAM J. Comput. 10
(1981), 751–771.

[4] S. A. Goldman and R. L. Rivest: Making maximum-entropy computations easier by
adding extra constraints. In: Maximum-Entropy and Bayesian Methods in Science and
Engineering 2 (G. J. Erikson and C. R. Smith, eds.), Kluwer Academic Pub. 1988, pp. 323–
340.

[5] N. Goodman, O. Shmueli, and T. Tay: GYO reductions, canonical connections, tree and
cyclic schema, and tree projections. J. Comput. and System Sci. 29 (1984), 338–358.

[6] F. R. Kschinschang, B. J. Frey, and H.-A. Loeliger: Factor graphs and the sum-product
algorithm. IEEE Trans. Inform. Theory 47 (2001), 498–519.

22 F.M. MALVESTUTO

[7] D. Maier and J. D. Ullman: Connections in acyclic hypergraphs. Theoret. Comput. Sci.
32 (1984), 185–199.

[8] F. M. Malvestuto: Existence of extensions and product extensions for discrete probability
distributions. Discrete Math. 69 (1988), 61–77.

[9] F. M. Malvestuto: From conditional independences to factorization constraints with dis-
crete random variables. Ann. Math. Artif. Intel. 35 (2002), 253–285.

[10] M. Mezzini: Fast minimal triangulation algorithm using minimum degree criterion. The-
oret. Comput. Sci. 412 (2011), 3775–3787.

[11] R. E. Tarjan and M. Yannakakis: Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM
J. Comput. 13 (1984), 566–579.

Francesco M. Malvestuto, Department of Informatics, Faculty of Information Engineering, In-

formatics and Statistics, Sapienza University of Rome, Via Salaria 113, 00198 Rome. Italy.

e-mail: malvestuto@di.uniroma1.it

		webmaster@dml.cz
	2013-07-31T10:33:29+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

