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LINEAR FRACTIONAL PROGRAM UNDER INTERVAL
AND ELLIPSOIDAL UNCERTAINTY

Maziar Salahi and Saeed Fallahi

In this paper, the robust counterpart of the linear fractional programming problem under
linear inequality constraints with the interval and ellipsoidal uncertainty sets is studied. It is
shown that the robust counterpart under interval uncertainty is equivalent to a larger linear
fractional program, however under ellipsoidal uncertainty it is equivalent to a linear fractional
program with both linear and second order cone constraints. In addition, for each case we have
studied the dual problems associated with the robust counterparts. It is shown that in both
cases, either interval or ellipsoidal uncertainty, the dual of robust counterpart is equal to the
optimistic counterpart of dual problem.
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1. INTRODUCTION

Optimization problems are widespread in real life decision making situations. However,
the data uncertainty is almost invariably present and cannot be avoided. Uncertainty in
the data means that the exact values of at least some parts of the data are not known
at the time when the solution has to be determined. Research shows that quite small
perturbations of the data can heavily affect the feasibility and/or optimality proper-
ties of the nominal optimal solution and thus make this solution meaningless, so it is
more reliable to model and deal with a practical optimization problem as a problem
that includes some uncertain data [2]. In order to handle optimization problems under
uncertainty and perturbed optimization problems, several techniques have been pro-
posed. The most common approach is the robust optimization which has received much
attention in recent years [3, 4, 7].

Among optimization problems, linear fractional programming problem (LFP) have
attracted considerable interest due to the their importance in various disciplines such as
production planning, financial and corporate planning, health care and hospital plan-
ning [5, 8, 9, 12]. In this paper, we consider LFP under linear inequality constraints.
Equivalent formulations of its robust counterpart when constraints are uncertain for,
both interval and ellipsoidal uncertainty sets are discussed. Moreover, it is shown that
in both cases, either interval or ellipsoidal uncertainty, the dual of robust counterpart is
equal to the optimistic counterpart of dual problem. It should be noted that the interval
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uncertainty case has been studied in [13] (see page 299–302), but our proofs are using
duality theorems and are simpler and shorter.

2. UNCERTAIN LFP AND ITS ROBUST COUNTERPARTS

Throughout this paper, we consider the following LFP:

min
aT x + α

bT x + β

υT
i x ≤ δi, i = 1, 2, . . . ,m, (LFP)

where a, b, υi’s are in Rnand α, β, δi’s are in R. Moreover we assume bT x + β > 0 in
the feasible region. We associate (LFP) with its robust counterpart:

min
aT x + α

bT x + β

υT
i x ≤ δi, ∀ υi ∈ εi, i = 1, 2, . . . ,m, (RLFP)

where εi’s are the so called given uncertainty sets.

Theorem 2.1. If υi’s involve interval uncertainties, namely εi = [υi, υi] for i = 1, 2, . . . ,m,
where υi, υi’s are given vectors in Rn, then (RLFP) is equivalent to

min
aT x + α

bT x + β

υi
T ri − υi

T si ≤ δi, i = 1, 2, . . . ,m, (1)
ri − si = x, i = 1, 2, . . . ,m,

ri, si ≥ 0, i = 1, 2, . . . ,m,

which is a larger (LFP).

P r o o f . For a given x ∈ Rn, to have υT
i x ≤ δi, i = 1, 2, . . . ,m for all υi ∈ εi, it is

sufficient to have
max
υi∈εi

υi
T x ≤ δi, ∀ i = 1, 2, . . . ,m. (2)

In [13] the authors use extreme points of the feasible region in (2) that are exponential, in
order to give its equivalent model. They have replaced these constraints by exponential
number of constraints. This makes the proof longer but we use duality approach which
is shorter as follow. The dual of (2) for each i = 1, 2, . . . ,m is

min υi
T ri − υi

T si

ri − si = x,

ri, si ≥ 0,

where ri, si are in Rn. On the other hand, by the weak duality for any feasible primal
and dual solution we have

υT
i x ≤ υi

T ri − υi
T si.
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Thus if we have
υi

T ri − υi
T si ≤ δi,

ri − si = x, (3)
ri, si ≥ 0,

then δi will be an upper bound for problem (2). Now by substituting (3) in (LFP) we
get (1). �

Now it would be interesting to see the relation between the dual of the robust coun-
terpart and the optimistic counterpart of the uncertain dual (LFP). Thus let us first
consider the dual of (LFP) [6, 10, 11]:

max ζ

bζ −
m∑

i=1

υiλi = a,

βζ +
m∑

i=1

δiλi ≤ α, (DLFP)

λi ≥ 0.

We associate (DLFP) with its optimistic robust counterpart as follows [1]:

max ζ

bζ −
m∑

i=1

υiλi = a, for some υi ∈ εi,

βζ +
m∑

i=1

δiλi ≤ α, (ORDLFP)

λi ≥ 0.

Theorem 2.2. The dual of the robust counterpart (1) and (ORDLFP) under the in-
terval uncertainties are both given by

max ζ

bζ −
m∑

i=1

υiλi ≤ a,

bζ −
m∑

i=1

υiλi ≥ a, (4)

βζ +
m∑

i=1

δiλi ≤ α,

λi ≥ 0.
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P r o o f . It is easy to see that the dual of (1) is exactly (4). On the other hand, in
(ORDLFP) with εi = [υi, υi] ∀ i = 1, 2, . . . ,m,

bζ −
m∑

i=1

υiλi = a, for some υi ∈ εi

is equivalent to

bζ −
m∑

i=1

υiλi ≤ a,

bζ −
m∑

i=1

υiλi ≥ a. (5)

Now by substituting (5) in (ORDLFP) we get (4). �

As one can see, dual of robust (LFP), namely (4) has much less constraints and
variables compared to the robust (LFP). Thus it is reasonable to solve (4) instead of (1).

In what follows we discuss the case where problem data involve ellipsoidal uncertain-
ties, namely

υi ∈ εi = {υ0
i + Piui, ‖ui‖ ≤ 1}, ∀ i = 1, 2, . . . ,m,

where ||.|| denotes the Euclidean norm and Pi’s are matrices in Rn×n .

Theorem 2.3. The robust counterpart of (LFP) with ellipsoidal uncertainties is equiv-
alent to the following conic linear optimization problem:

min aT y + αz

bT y + βz = 1,∥∥PT
i y

∥∥ ≤ δiz − υ0
i

T
y, i = 1, 2, . . . ,m, (6)

z ≥ 0.

P r o o f . For a given x ∈ Rn, to have υi
T x ≤ δ for all υi ∈ εi, ∀ i = 1, 2, . . . ,m, it is

sufficient to have
max
υi∈εi

υT
i x ≤ δi, ∀ i = 1, 2, . . . ,m. (7)

Since υT
i x = υ0

i
T
x + (Piui)T x , thus

max
υi∈εi

υT
i x = υ0

i
T
x +

∥∥PT
i x

∥∥
.

Therefore, (7) holds if ∥∥PT
i x

∥∥ ≤ δi − υ0
i

T
x, ∀ i = 1, 2, . . . ,m. (8)
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Now by substituting (8) in (LFP), letting

y =
x

bT x + β
, z =

1
bT x + β

and using the Charnes–Cooper transformation we have (6). �

In the next theorem we discuss the relation between the dual of robust (LFP) and
the optimistic counterpart of (DLFP) under the ellipsoidal uncertainties.

Theorem 2.4. The dual of the robust counterpart (6) and (ORDLFP) under the ellip-
soidal uncertainties are both given by

max ζ

bζ +
m∑

i=1

[
Piηi − σiυ

0
i

]
= a,

βζ +
m∑

i=1

σiδi ≤ b, (9)

‖ηi‖ ≤ σi, i = 1, 2, . . . ,m.

P r o o f . The dual of (6) is exactly (9). On the other hand, in (ORDLFP) for each
i = 1, 2, . . . ,m,

bζ −
∑m

i=1 υiλi = a, for some υi ∈ εi = {υi
0 + Piui, ‖ui‖ ≤ 1}

is equivalent to

bζ − a +
m∑

i=1

(
min (Piuiλi)− υ0

i λi

)
≥ 0,

bζ − a +
m∑

i=1

(
max (Piuiλi)− υ0

i λi

)
≤ 0

or

bζ +
m∑

i=1

[
Piηi − λiυ

0
i

]
= a, (10)

where ηi = uλi. Moreover
‖ηi‖ ≤ ‖ui‖ λi ≤ λi. (11)

Thus by substituting (10) and (11) in (ORDLFP) we get (9). �

The case in which the uncertainty is considered in objective function coefficients,
can be expressed in an equivalent way as uncertain parameters appear in the inequality
constraints and thus the previous techniques can be easily applied.



186 M. SALAHI AND S. FALLAHI

3. CONCLUSIONS

In this paper, the robust counterpart of linear fractional programs for both interval and
ellipsoidal uncertainty sets are discussed. Depending on the uncertainty sets, it leads
to an equivalent linear fractional program with large number of linear constraints or
second order cone constraints. Moreover, it is shown that the dual of robust problem
is the same as the optimistic counterpart of dual problem. These results allow to solve
the robust dual problem instead of original robust version since it has smaller number
of constraints.
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