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Frame monomorphisms and a feature of the

l-group of Baire functions on a topological space

Richard N. Ball, Anthony W. Hager

Dedicated to the 120th birthday anniversary of Eduard Čech.

Abstract. The “kernel functor” W
k
−→ LFrm from the category W of archime-

dean lattice-ordered groups with distinguished weak unit onto LFrm, of Lindelöf
completely regular frames, preserves and reflects monics. In W , monics are one-
to-one, but not necessarily so in LFrm. An embedding ϕ ∈ W for which kϕ is
one-to-one is termed kernel-injective, or KI; these are the topic of this paper.
The situation is contrasted with kernel-surjective and -preserving (KS and KP).
The W -objects every embedding of which is KI are characterized; this identifies
the LFrm-objects out of which every monic is one-to-one. The issue of when

a W -map G
ϕ
−→ · is KI is reduced to when a related epicompletion of G is

KI. The poset EC(G) of epicompletions of G is reasonably well-understood; in
particular, it has the functorial maximum denoted βG, and for G = C(X), the
Baire functions B(X) ∈ EC(C(X)). The main theorem is: E ∈ EC(C(X)) is

KI iff B(X)
∗

≤ E
∗

≤ βC(X) in the order of EC(C(X)). This further identifies in

a concrete way many LFrm-monics which are/are not one-to-one.

Keywords: Baire functions, archimedean lattice-ordered group, Lindelöf frame,
monomorphism

Classification: Primary 06D22, 06F20; Secondary 18A20, 18A40, 26A21, 28A05,
54C30, 54C40, 54C50

1. Introduction

General references are, for l-groups [16] and [20], for frames [29], for category
theory [28]. For present purposes, the most useful single reference is [9], which see
for much of what now follows. (A considerable amount of [9] is reprise of work of
Madden and Vermeer [30] and Madden [32]. See [9] for a careful discussion.)
W is the category whose objects are archimedean l-groupsA with distinguished

positive weak order unit eA (eA ∧ |a| = 0 implies a = 0), and a morphism A
ϕ
−→ B

is an l-group homomorphism with ϕ(eA) = eB. Prototypical examples are: for X
a Tychonoff space, the l-group part of C(X) the “ring of continuous functions”
[23], with unit the constant function 1. ([24] discuss aspects of W and the more
general connection with rings with identity.)

LFrm is the category with objects Lindelöf completely regular frames, with
frame homomorphisms.
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These two categories are connected by the adjunction W
k
⇆
c

LFrm with k on

the left, as we now describe following [9].

Let A ∈ W . If A
ϕ
−→ B ∈ W , then {a | ϕ(a) = 0} is called a W -kernel

of A. These are the convex sub-l-groups I of A for which A/I is archimedean
and eA + I is a weak unit in A/I. (See [9] for further details.) The collection
of these is denoted kA. For S ⊆ A, there is a least W -kernel containing S,
denoted 〈S〉A. After some work, one finds kA ∈ LFrm, the operations being
∧
Ii =

⋂
Ii and

∨
Ii = 〈

⋃
Ii〉A. Then, for A

ϕ
−→ B ∈ W , kA

kϕ
−−→ kB is the

function kϕ(I) = 〈ϕ(I)〉B .

The functor W
k
−→ LFrm results, and a right adjoint W ←−

c
LFrm is given (on

objects) by C(F ) = {R
f
−→ F | f ∈ Frm} ∈ W . A consequence of this (e.g. since

k is full, faithful and dense) is that k preserves and reflects monics [28]. I.e.

1.1 Proposition. ϕ is monic in W (which means 1-1) iff kϕ is monic in LFrm
(which means “dense”, i.e., kϕ(I) = 0 implies I = 0).

In LFrm, 1-1 implies dense, but not conversely.
We call ϕ ∈ W kernel-injective (resp., -surjective, -preserving) if kϕ is 1-1

(resp., onto, 1-1 and onto), and denote this KI (resp., KS, KP).
Now, ϕ KI implies ϕ is one-to-one (since kϕ one-to-one implies ϕ monic, i.e.,

one-to-one). And, one may study KS by just studying one-to-one KS maps (since
any ϕ ∈ W has the factorization ϕ = is, s onto and i one-to-one, and ϕ is KS iff
i is).

Consequently, all remarks about A
ϕ
−→ B, being or not, KI, KS, or KP can be

addressed to one-to-one ϕ, which we may indicate just as A
ϕ

≤ B, or A ≤ B.
We shall frequently avail ourselves of the frame-theoretic adjoint situations

[29] where, for A
ϕ
−→ B, we have kA

kϕ

⇆
t
kB, where t = t(ϕ) stands for “trace”:

t(J) ≡ ϕ−1J (and if A
ϕ

≤ B, t(J) = J ∩ A). (t would frequently be denoted
(kϕ)∗.) We have then these descriptions.

1.2 Proposition. Let A
ϕ

≤ B ∈W with adjoint t. These are equivalent.

(a) ϕ is KI (resp., KS, KP).
(b) kϕ is 1-1 (resp., onto, 1-1 and onto).
(c) t is onto (resp., 1-1, onto and 1-1).

We note further connections with categorical monic (m with mf = mg ⇒ f =
g), epic (e with fe = ge⇒ f = g), and essential monic (monic m with fm monic
⇒ f monic). (See [28].) In W : as noted earlier, monic means 1-1. An essential
monic is, of course, a A ≤ B with 0 6= J ∈ kB implying A ∩ J 6= 0. It is not hard
to see that this is equivalent to essentiality in all abelian l-groups, as described
in [16]. Epic is a much more complicated story. This theory is described in [3]
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and [8] (also [10]), underlies later developments here but the technicalities can be
avoided.

The following is true in much more general contexts (as the proofs will show),
but we ignore this.

1.3 Proposition. In W

(a) if ϕ is KI then ϕ is monic,
(b) if ϕ is KS then ϕ is epic,
(c) if ϕ is KS and monic then ϕ is essential monic,
(d) if ϕ is KP then ϕ is essential monic, and epic.

Proof: In the following, write A
ϕ
−→ B, and t is the adjoint of ϕ (the “trace”).

(a) We noted this earlier, from features of the functor k. However, again:
If ϕ is not 1-1, there is a > 0 with ϕ(a) = 0. Then 〈a〉A 6= 0 = 〈0〉A but
〈〈ϕ(a)〉A〉B = 〈〈0〉A〉B = 0, so kϕ is not 1-1.

(b) For any B
fj
−→ C, j = 1, 2, kf1 = kf2 implies f1 = f2 by uniqueness of

(1-1)◦ onto factorization. If f1ϕ = f2ϕ, then ϕ
−1kf1 = ϕ−1kf2, and if ϕ is KS,

then t is 1-1 and then kf1 = kf2.

(c) A
ϕ

≤ B essential means 0 6= J ∈ kB implies 0 6= J ∩A. This is so when t is
one-to-one.

(d) Follows from (a), (b) and (c). �

We note a gross distinction between, on the one hand KP and KS, and on the
other KI. Let A ∈ W . Then, A ≤ C(kA) is the maximum KP extension [9]. And,
there is the maximum KS extension A ≤ aA [6]. While, for any cardinal m there
are KI extensions A ≤ B with m ≤ |B| (4.4 below). Further details appear in
Section 3 below.

Most what we have hinted at in this introduction seems to be required to get
to the Main Result about B(X) stated in the abstract.

2. Yosida representation and spaces with filter

Our proofs will be couched in terms of the classical Yosida representation
A ≤ D(Y A) [36], augmented to functoriality [24], further augmented to the rep-
resentation of kernels and the frames kA (thus of any F ∈ LFrm) [7]. We now
explain this.

The extended real line is R ∪ {±∞} = [−∞,+∞] with the obvious order
and topology. For X a Tychonoff space, D(X) ≡ {f ∈ C(X, [−∞,+∞]) |
f−1R dense}. In the pointwise order, this is a lattice, is closed under f 7→ nf
∀n ∈ Z, and the constant function 1 has the property |f | ∧ 1 = 0 implies f = 0.
But, pointwise addition is only partly defined (likewise, multiplication). We write
A ≤ D(X) if A ⊆ D(X), 1 ∈ A, and A is closed under the full and partial ope-
rations of D(X) requisite to making A ∈ W (with eA = 1). Comp denotes the
category of compact Hausdorff spaces with continuous maps.



144 R.N. Ball, A.W. Hager

2.1 Theorem. (a) For A ∈ W , there is Y A ∈ Comp and a 1-1 map A
ηA
−−→

D(Y A) such that ηA(A) ≤ D(Y A), A
ηA
−−→ ηA(A) is a W -isomorphism,

and ηA(A) separates points of Y A. For those attributes, Y A is unique
(up to homeomorphism).

(b) For A
ϕ
−→ B ∈ W , there is unique Y A

Y ϕ
←−− Y B ∈ Comp for which, for

each a ∈ A ηB(ϕ(a)) = ηA(a) ◦ Y ϕ. ϕ is 1-1 (monic in W ) iff Y ϕ is onto
(epic in Comp).

(c) W
Y
−→ Comp is a functor called the Yosida functor.

We identify each A with its ηA(A) and just write A ≤ D(Y A). Let A−1R ≡
{a−1R | a ∈ A}; this a filter base of dense cozero-sets in Y A. Note the following

consequences of 2.1(b) regarding a A
ϕ
−→ B with its Y A

Y ϕ
←−− Y B: For S ∈ A−1R,

we have (Y ϕ)−1S ∈ B−1R. This has spawned the following, first mentioned in
[3], and analyzed further in [7], [8], [12], [14].

The specific statements 2.3 and 2.4 are re-phrasing of results in [13].

2.2 Definition. The category SpFi (of Spaces with Filter) has: objects (X,H ),

X ∈ Comp and H a filter base of dense open sets; and morphisms (X,H )
f
←−

(Y,L ) with f ∈ Comp with the feature that f−1F ∈ L for each F ∈H .

We usually write just X for (X,H ), the filter base being understood.
For X = (X,H ) ∈ SpFi, and closed S ⊆ X , let S ∩H = {S ∩ F | F ∈ H }.

If S ∩H consists of dense subsets of S, then (S, S ∩H ) ∈ SpFi, the inclusion
S ⊆ X yields a SpFi-morphism, and then (abusing language) we say “S is a
SpFi-subspace of X”.

subX denotes the collection of such subspaces.
L SpFi is the full subcategory of SpFi of objects (X,H ) for which H consists

of cozero-sets.

2.3 Proposition. Let X ∈ SpFi.

(a) If {Si}I ⊆ subX (I arbitrary), then
⋃
Si ∈ subX .

(b) For K any closed subset of X there is a largest K ′ ∈ subX with K ′ ⊆ K.

In the following “Frm” is the category of completely regular frames and co-Frm
is Frm, with objects oppositely ordered.

2.4 Theorem. (a) ForX ∈ SpFi, subX ordered by inclusion k a completely

regular co-frame, with
∨
Si =

⋃
Si and

∧
Si = (

⋂
Si)

′. (I.e. reversing
the order gives a frame (or equivalently) cosubX = {X − S | S ∈ subX}
ordered by inclusion is a frame.)

(b) If X
τ
←− Y ∈ SpFi, then a co-frame morphism subX

sub τ
−−−→ subY is given

by (sub τ)(S) = (τ−1S)′. Its “co-frame adjoint” τ0 is just forward image:
τ0(S) = τ(S).

(c) “sub” is a functor and there is an adjunction F as SpFi
sub

⇆
F

co-Frm with

sub on the right. In consequence of which
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(d) Every completely regular frame F , when oppositely ordered, is isomorphic
to a subX , and F is Lindelöf iff X ∈ L SpFi.

One may interpret 2.4(d) as putting points back into point-free topology.
We return to the association described before 2.2: For A ∈ W , we have

(Y A,A−1R) ∈ L SpFi, which we now denote SY A and for A
ϕ
−→ B ∈ W , we have

(Y A,A−1R)
Y ϕ
←−− (Y B,B−1R) ∈ L SpFi, which we now denote SY A

SY ϕ
←−−− SY B.

Of course

2.5 Theorem ([7], [8]). This defines a faithful contravariant functor W
SY
−−→

L SpFi.

It is noted in [8, 4.7] that this functor is not dense (“onto objects”). We do
not know a characterization of objects in the range. (One is purported in [8, 4.8],
but it alludes to an erroneous statement elsewhere.)

Now consider the compositionW
SY
−−→ L SpFi

cosub
−−−→ LFrm. From the following,

this is the kernel functor.
For A ∈ W , as A ≤ D(Y A), let Za = {y ∈ Y A | a(y) = 0}.
The following is from [7]. In this set-up, we have: For A ∈ W , the associated

kA ∈ LFrm, SY A ∈ L SpFi, and subSY A ∈ co-LFrm. For A
ϕ
−→ B ∈ W , the

associated kA
kϕ
−−→ kB ∈ LFrm, and SY A

SY ϕ
−−−→ SY B ∈ L SpFi.

2.6 Theorem. (a) Suppose A ∈ W . A frame/co-frame isomorphism is
given by mutually inverse functions

kA
ZA //

subSY A
Z−1

A

oo

which are ZAI ≡
⋂
{Za | a ∈ I}, and Z−1

A S ≡ {a | Za ⊇ S}.

(b) Suppose A
ϕ
−→ B ∈W . The following commutes.

kA

ZA

��

kϕ
// kB

ZB

��
subSY A

subSY ϕ
// subSY B

The interpretation of (b) is: Since ZA and ZB are “anti-isomorphisms”,
subSY ϕ “represents” kϕ, and in the same way, the adjoint t(ϕ) (trace) of ϕ
corresponds to and is represented by the adjoint of subSY ϕ, denoted τ0 (forward
image).

This association between W -kernels of A and the subsets of Y A generalizes
all of the successively more general descriptions for kernels of homomorphisms
A1 → A2 (1) Ai = C(Xi), Xi ∈ Comp (folk? Gelfand-Kolmogorov?), (2) Ai =
C(Xi), Xi Tychonoff [34], (3) Ai reduced archimedean f -algebras with identity
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[25]. In each of these situations “homomorphism” usually meant “ring or ring
and lattice homomorphism preserving identity”. These are W -homomorphisms,
and [24] shows that any W -homomorphism between these objects is one of them.

The following sums up the situation, for easy reference to details to be used
later.

2.7 Corollary. For A
ϕ
−→ B ∈W , the following are equivalent.

(a) ϕ is KI (resp., KS, KP).
(b) kϕ is 1-1 (resp., onto, 1-1 and onto).
(c) sub τ is 1-1 (resp., onto, 1-1 and onto).
(d) t(ϕ) is onto (resp., 1-1, onto and 1-1).
(e) τ0 is onto (resp., 1-1, onto and 1-1).

We now provide even more detailed interpretation of 2.7 for KI, to make clearer
how the proofs in Section 5 work. In fact, the following lemma is considerably
more general than for KI embeddings in W , being phrased in forms of L SpFi
surjections τ in the opposite direction which have sub τ 1-1.

For (X,H ) ∈ L SpFi, Hδ = {
⋂
Fn | F1, F2, · · · ∈ H }. The members of Hδ

are dense by the Baire Category Theorem, and Lindelöf (see [22]). Recall the
subspace operator (·)′ from 2.3.

2.8 Lemma. The following are equivalent for a surjection X = (X,H )
τ
←−−

(Y,L ) = Y in L SpFi, with associated co-frame map subX
sub τ
−−−→ subY given as

(sub τ)(S) = (τ−1S)′.

(1) sub τ is 1-1 (or, its adjoint is onto).
(1′) (τ−1S)′ = ∅ implies S = ∅ (S ∈ subX).
(2) For all S ∈ subX and G ∈Hδ, (τG) ∩ S is dense in S.
(3) For all ∅ 6= S ∈ subX and G ∈Hδ, (τG) ∩ S 6= ∅.
(3′) If S ∈ subX and G ∈Hδ have (τG) ∩ S = ∅, then S = ∅.

Proof: (1)⇔ (1′) because the frames are regular; see [15].
(3) and (3′) are contrapositive.
(1′)⇒ (3). Suppose ∅ 6= S and G ∈Hδ. By (1′), (τ−1S)′ 6= ∅ so (τ−1S)∩G 6=

∅. Thus, ∅ 6= τ((τ−1S) ∩G) ⊆ ττ−1S ∩ τG = S ∩ τ(G).
(3) ⇒ (2). Suppose (2) false: we have a situation (τG) ∩ S not dense in S.

Then there is a regular closed U with U ∩ S 6= ∅ and ((τG) ∩ S) ∩ U = ∅. Now
U ∈ subX , and because U is regular closed, we have S0 = U ∩ S ∈ subX , with
S0 ∩ τG = ∅ and (3) fails.

(2)⇒ (1). If (2) holds, we shall show (∗) ∅ 6= S ∈ subX implies τ((τ−1S)′) = S
(i.e., for the adjoint τ0 to sub τ , τ0 ◦ sub τ is the identity, which means (1)).

For such S: Fix x ∈ S. For any G ∈Hδ, we have T (G) ≡ G ∩ τ−1S∩τ−1x 6= ∅.
(If this set is ∅, there is open U ⊇ τ−1x with U ∩ (G ∩ τ−1S) = ∅. Then,
V = X − τ(Y − U) is open, x ∈ V , and V ∩ S ∩ τG = ∅; this contradicts (2).)

The family of compact sets T (G) has the finite intersection property (indeed,
the countable i.p.). Thus, ∅ 6=

⋂
G T (G) = (τ−1S)′ ∩ τ−1x.

This shows (∗). �
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3. KP, KS, and absolute KI

The point of this section is to compare the properties that a W -monic might
have: KP, KS, and KI. We call A ∈ W KS-complete (resp., absolutely KI) if any

A
ϕ

≤ B which is KS is an isomorphism (resp., any A
ϕ

≤ B is KI); these A shall be
characterized, and the results used later.

Some preliminaries are needed.
Suppose X ∈ Comp and H is a filter base of dense sets in X . We denote by

C[H ] the direct limit in W of the system {C(F ) | F ∈ H } (the bonding maps
being, for F1 ⊇ F2, the restriction C(F1) ∋ f 7→ f | F2 ∈ C(F2)). Then, C[H ] ∈
W and Y C[H ] is the inverse limit in Comp of the system {βF | F ∈H } — this
β being Čech-Stone compactification (the bonding maps being, for F1 ⊇ F2, the
natural surjection βF1 և βF2); we denote Y C[H ] as β[H ].

If H1 ⊆ H2, we have C[H1] ≤ C[H2] in W , and β[H1] և β[H2] in Comp.
For any such H , if Hδ ≡ {

⋂
Fn | F1, F2, · · · ∈ H } consists of dense sets, then

C[H ] ≤ C[Hδ ].
An important special case is: Let C (X) be the filter base of all dense cozero-

sets of X . The spaces β[C (X)] and β[C (X)δ] are the same, called the quasi-F
cover of X , denoted QFX. A space Y is called quasi-F (QF) if each F ∈ C (Y ) is
C∗-embedded; this is equivalent to D(Y ) ∈W [26].

The natural surjection X
α
և QFX is irreducible, the space QFX is QF and

whenever X
β
և Y is irreducible with Y QF, there is δ with αδ = β. We have

C[C (X)δ] = D(QFX). All this originates in [21] and [37], is explained further
in [27], is exploited and generalized in [14], and explained “framically” in [31] and
[33] (see 3.6(e) below).

For A ∈ W , using Y A = X above, we have A ≤ C[A−1R], and if A−1R ⊆H ,
then A ≤ C[H ] is essential monic in W . The cases of H = A−1Rδ and C (Y A)δ
are to the present point. The extension A ≤ C[A−1Rδ] originates in [1], has come

to be called A ≤ c3A and is the “same” as A
µA

≤ C(kA) (noted in [9], inter alia).

We label the A ≤ D(QFY A) as A
αA

≤ aA. Evidently, A ≤ c3A ≤ aA.
As advertised at the end of Section 1 we have the following quite parallel facts.

Further remarks on the “parallelism”, etc., are made in 3.6 below.

3.1 Theorem. Let A
ϕ

≤ B ∈ W .

(a) ([7, 4.13] and [9, 2.3.3]) ϕ is KP iff there is monic B
ψ
−→ c3A with ψϕ = µA.

(b) ([14, 2.19]) A ≤ aA is KS, and if ϕ is KS, then there is monic B
ψ
−→ aA

with ψϕ = αA.

(If ϕ is KS, it is epic (1.4), and the converse in 3.1(b) fails just because ψϕ = αA
does not imply ϕ epic. Perhaps this converse holds if ϕ is assumed epic.)

3.2 Corollary. A is KS complete iff A = aA, i.e., Y A is QF and A = D(Y A).
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Below, we keep in mind features of the adjunction W
k
⇆
c
LFrm : A

µA

≤ C(kA) =

c3A is essential monic. Any L1

f
−→ L2 in LFrm has C(L1)

Cf
−−→ C(L2) with

kCf = f . For A
ϕ
−→ B ∈ W , and any factorization kϕ : kA

f
−→ F

g
−→ kB, there

is the unique factorization Ckϕ = C(kA)
Cf
−−→ C(F )

Cg
−−→ C(kB), and thus a

unique factorization ϕ = A
α
−→ D

β
−→ B with kα = f and kβ = g obtained with

D ≡ Cf(µA(A)) ≤ C(F ) and α, β the obvious modifications of Cf and Cg.

3.3 Lemma. Any A
ϕ

≤ B in W has the unique factorization ϕ = βα with α epic
and KS, β monic and KI.

Proof: Consider the (1-1)◦onto factorization kϕ = is, then take ϕ = βα with
kα = s, kβ = i. �

3.4 Theorem. (a) If A is KS complete, then A is absolutely KI.
(b) A is absolutely KI iff c3A = aA.
(c) F ∈ LFrm has every monic F → · 1-1 iff F = kD(X) for QF X ∈ Comp.

Proof: (a) Use 3.3 supposing A is KS-complete: The α in 3.3 is an isomorphism.

(b) From 3.1(a), A
ϕ

≤ B is KI iff the c3A
ϕ

≤ c3B is KI. If c3A = aA, then c3A
is KS-complete (by 3.2), so any c3A ≤ H is KI (by (a)), so any A ≤ B is KI.

(c) Evidently, F has all monics F → · 1-1 iff C(F ) is absolutely KI (since
kC(F ) = F ), which means c3C(F ) = aC(F ) by (b). But c3C(F ) = C(F ), so that
means C(F ) = aC(F ), which means C(F ) = D(Y C(F )), with Y C(F ) QF. �

3.5 Corollary. For Tychonoff X , the following are equivalent.

(1) C(X) is KS-complete.
(2) C(X) is absolutely KI.
(3) X is an almost P -space (no proper dense cozeros).

Proof: By 3.2., (1) means C(X) = aC(X). Clearly, (3) implies that, and con-
versely, if coz f is dense and proper, then 1/|f | ∈ aC(X)− C(X).

Now, C(X) = c3C(X) always, so, 3.4(b) and the previous gives (2)⇔ (3). �

We shall mention 3.5 again in Section 5.

3.6 Remarks. We conclude this section with a number of inter-connected re-
marks about 3.1.

(a) 3.1(a) was announced in [7, 4.13(c)], without details of proof; the proof

envisioned there was via the apparatus surroundingW
SY
−−→ L SpFi (espe-

cially 2.6), which apparatus is sketched out there. A full proof of 3.1(a),
purely in Frames, appears in [9].

(b) 3.1(b) can be found in [6], but a reading of the proofs is required: what
is asserted is a property called “akd”, and what 3.1(b) asserts would be
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called “Wkd”. The later paper [14, p. 13] recognizes 3.1(b). The proofs
in [6] and [14] are a mixture of topology and l-group theory.

A frame-theoretic proof of 3.1(b) would be desirable.

(c) The paper [14] concerns exactly extensions in W (and in fact in archime-
dean l-groups (without specified unit)) which are “m-KP”, i.e., preserve
the frames of “m-kernels”, for regular m with ω0 ≤ m ≤ ∞. (An m-
kernel in A is an ideal closed under existing suprema of size < m, these
are all W -kernels of m-complete W -maps.) The case m = ω1 concerns us
here; let us call the ω1-kernels “σW -kernels”, and the ω1-KP property of
extensions “σ-KP”. [14, 3.10] shows σ-KP = σ-KS (contrasting with ω-

KP = KP 6= KS), and the present A
αA

≤ aA has the feature (5.1): A
ϕ

≤ B is

σ-KP iff there is monic B
ψ
−→ aA with ψg = αA. In fact, this is shown for

m-KP with aA replaced by D(Xm), Xm denoting the QFm-cover of Y A.
The proofs are in the terms of the adaptation to m-kernels and “m-SpFi

sets” of the apparatus W
SY
−−→ L SpFi; it is not clear if this adaptation

actually generalizes SY . Again, a purely frame-theoretic proof of all this
would be desirable.

(d) It is shown in [10] that in W , the class of A = c3A comprises the
least essentially monoreflective subcategory. This can be shown to fol-
low from 3.1(a).

Analogously, consider Wσ ≡ the category with all W -objects, but
only σ-homomorphisms (countably complete homomorphisms). It can
be shown that the class of all A = aA is the smallest essentially reflective
subcategory ofWσ, that for any A, σkA = σkaA (σ(·) denoting the frame
of σ-kernels); further σkaA = kaA appears in [5], and aA = C(σkA) fol-
lows. All of this is true replacing the ω1 implicit in σ by ∞, where ∞k(·)
is the Boolean algebra of polars, the correspondent of aA is Conrad’s
essential completion, and X∞ is the ED cover of X . Whether ω1 can
be replaced by general m in all this is not clear. Writing all this down
carefully would be desirable in whatever terms; also, we would like to see
purely frame-theoretic proofs copying [9] as far as possible.

Also, the condition c3A = aA is equivalent to: Any W -homomorphism
A→ · is a σ-homomorphism [18]. Of course, this is not a surprise granted
“aA = C(σkA)”, but the proof of that has not been written down.

(e) Finally, a propos of 3.4(c), we ask: What is an intrinsic description of
the frames F = kD(X), X QF, equivalently (via (d) above), the frames
σkA? According to Madden [31] and Molitor [33], these F have the localic
description: F op has exactly the form lX ≡ the minimum dense Lindelöf
sublocale of some X ∈ Comp and the cover QFX = β(lX), β being localic
Čech-Stone compactification; and this is shown for “QFmX = β(lmX)”,
lm(·) being minimum dense m-Lindelöf sublocale.
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4. KI epicompletions

E ∈ W is called epicomplete if the only E → · which are monic and epic
are isomorphisms. From [4], [5], and [30]: Each A ∈ W has an epicomplete

monoreflection A
βA

≤ βA. If E is epicomplete and E ։ A is a surjection, then
A is epicomplete (“epicompleteness is H-closed”). (The notation “β” was chosen
because of the analogy with Čech-Stone compactification.)

This is all we need for the moment. More detail is required below, and yet
more in Section 5.

4.1 Theorem. Each A
βA

≤ βA is KI.

Proof: Recall from Section 1 that kβA(P ) = 〈P 〉βA (P ∈ kA). The main step
in the proof is

(∗) 〈P 〉βA = kψ,

for the ψ in the diagram

(1) A

ψ

��

β
// βA

ψ

��
✤

✤

✤
(β is βA)

A/P
β′

// β(A/P ) (β′ is βA/P )

where ψ is the quotient, and ψ exists by reflectivity.
In (∗), ⊆ is clear. For the reverse, diagram (1) is expanded to the following

“completely commutative” diagram.

(2) A

ψ

��

β
// βA

f

��
βA/〈P 〉βA

g

��
✤

✤

✤

A/P

h

44✐
✐

✐
✐

✐
✐

✐
✐

✐
✐

β′

// β(A/P )

k

88q
q

q
q

q

βA/kβψ

in which: the “=” is because ψ is epic, and thus the (1-1)◦ onto factorization

ψ : βA
s
։ S

i
−→ β(A/P ) has i epic and S epicomplete, so i is an isomorphism.

Then ψ = gf as shown, because 〈P 〉βA ⊆ kψ and a homomorphism theorem.
Then there is the h by a homomorphism theorem, which is epic because hψ =

fβ is epic. Then, there is k by reflectivity, since βA/〈P 〉βA is epicomplete.
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We have the equations h = kgh and β′ = gkβ′ which imply kg is an identity
(since h is epic), and this implies g is 1-1, which means 〈P 〉βA = kψ. So (∗) is
proved.

Now, it is easy to see that (any) G ≤ H is KI iff P * Q in kG implies
〈P 〉H * 〈Q〉H .

To show A ≤ βA is KI, suppose P * Q in kA. In the manner of diagram (1),
we have

(3) A

σ

��

// βA

σ

��
A/P

δ

��

// β(A/P )

δ
��

A/Q // β(A/Q)

The desired 〈P 〉βA * 〈Q〉βA is exactly the statement “δ is not 1-1” using (∗)

above. Since δ is not 1-1 (i.e., P * Q), neither is δ. �

4.2 Remarks. (a) The proof above seems valid in considerable generality,
proving roughly this: In a concrete category “with kernels” if R is a
monoreflective subcategory for which R ∋ R ։ A implies A ∈ R, then

all reflections A
rG−−→ rA are KI.

(b) InW , since epicompleteness is monoreflective, for any monoreflective sub-
category R, each reflection map A→ rA is an initial factor of A → βA,
thus is KI. Cf. (a) above.

(c) It appears that [30, 3.2] asserts 4.1 here, after sorting through several
categorical equivalences.

InW , an epicompletion of A is a monic epic A ≤ E, with E epicomplete. Most
A have many such; see the next section.

We now reduce a general A ≤ B KI to a unique epicompletion A ≤ E which is
KI. We need to know (see [5]) that: W -maps ϕ have unique factorization ϕ = ie,
with e epic and i extremal monic (A ≤ B is extremal monic means A has no
proper epic extension within B). And, if E1 ≤ E2 is extremal monic with E2

epicomplete, then so is E1 (this follows from the monoreflectivity). Also, recall
from [4] and [5] that in W , E is epicomplete iff Y E is basically disconnected
(BD) and E = D(Y A). Since BD implies QF, this means E = aE and thus E is
absolutely KI (3.2 and 3.4).

The following is entré to the main theorem of the paper, in Section 5, about
the KI epicompletions of C(X). Note the “simple proof” using 4.1, knowledge of
epicompleteness in W , 3.1(b), and many features of W .

4.3 Proposition. Let A
ϕ
−→ B ∈ W , consider A

ϕ
−→ B

βB

−−→ βB and let A
e
−→

E
i
−→ βB be the (extr. mono) ◦ epi factorization of βBϕ mentioned above.
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Then ϕ is KI iff e is KI (thus a KI epicompletion of A).

Proof: Suppose ϕ is KI. By 4.1, βB is KI, the composition of KIs is KI, so βBϕ
is KI. An initial factor of a KI is KI, thus E is KI.

Suppose e is KI. Since E is epicomplete, i is KI, thus so is ie = βBϕ, and so
is ϕ. �

If A
ϕ

≤ E is an epicompletion, then there is βA
δ
։ E with δβA = ϕ by reflec-

tivity and H-closed. This “upper bounds” the epicompletions of A, thus the KI
epicompletions. In fact, [4, 10.1] says |E| = |A|ω.

On the other hand, and finally for this section, we show that there is no upper
bound on the KI extensions of any object. This contrasts with KP and KS (3.1).

4.4 Proposition. For any A ∈ W and any cardinal m, there is A ≤ B which is
KI and m ≤ |B|.

Proof: A map X1

f
←− X2 in Comp is called skeletal if F dense open in X1 implies

f−1F dense in F2.

For any Y,X ∈ Comp, projection Y
π
←− Y ×X is skeletal.

Any irreducible surjection is skeletal, and thus for any U ∈ Comp, the absolute

(projective cover) U
p
←− pU has p skeletal. Here pU is extremally disconnected

(ED), ED ⇒ BD ⇒ QF, so D(pU) ∈ W . The topological weights satisfy wU ≤
wpU .

If V ∈ Comp is zero-dimensional, then wV = | clopV | ≤ |D(V )|. (Here, clop(·)
is the collection of clopen sets.) This applies to ED spaces, thus to the D(pU)
above.

Now let A ∈ W . Then, A
β

≤ βA is KI (4.1), any βA
ϕ

≤ B is KI (by 3.2 etc., as

noted before 4.3) and thus A
ϕβ

≤ B is KI.

Consider Y A
Y β
←−− Y βA. Take any X with m ≤ wX , and consider Y βA

π
←−

Y βA × X
p
←− p(Y βA × X) ≡ K. For b ∈ βA = D(Y βA), b ◦ (π ◦ p) ∈ D(K)

because p, π, thus π ◦ p are skeletal. This defines βA
ϕ

≤ D(K) which is KI. So

A
ϕβ

≤ D(K) is KI, while m ≤ |D(K)| follows from the above. �

Doubtless there are other ways to prove 4.4.

5. KI epicompletions of C(X) and the Baire functions

We come to the main theorem of the paper.
For A ∈ W , the set EC(A) of (equivalence classes of) epicompletions of A is

partially ordered by: For A
ϕi

≤ Ei (i = 1, 2), E1

∗

≥ E2 means there is E1

ψ
։ E2

with ψϕ1 = ϕ2. The maximum in EC(A) is A ≤ βA, of course. More detail
appears below.

For X a Tychonoff space, we have the much-studied W -object C(X) (e.g.,
[23]), and its W -extension C(X) ≤ B(X) to the Baire functions, and this is an
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epicompletion (more detail below). (The issue B(X)
?
= βC(X) is addressed in

[11] and commented on below in 5.5(2).)

5.1 Theorem. Let X be any Tychonoff space and E ∈ EC(C(X)). Then,

C(X) ≤ E is KI iff B(X)
∗

≤ E.

This result answers the question 10.6(f) in [4]. We do not know if there is a si-
milar theorem for general A ∈W . A speculation is that an answer might be found
in the first author’s frame-theoretic development of pointwise convergence [2].

In proving 5.1, we shall have to say quite a bit about the Yosida representations
of the E ∈ EC(C(X)) as developed in [4]. This will be explained as needed.

First, for any Tychonoff space X , the Baire field B(X) is the σ-field of subsets
of X generated by {cozf | f ∈ C(X)} (coz f = {x | f(x) 6= 0}), and theW -object
of Baire functions is B(X) = {f ∈ RX | f−1(U) ∈ B(X) for U open}, with unit 1.

Evidently C(X)
b
≤ B(X) (b is a label).

We explain the Yosida representations.
Of course Y C(X) = βX , Čech-Stone compactification, with C(X) ≤ D(βX)

achieved by extension and SY C(X) ∈ L SpFi has the filter C(X)−1R = {F | F
is dense cozero in βX and F ⊇ X}.

Now, Y B(X) = SB(X), the Stone space of the Boolean algebra B(X). This
space is BD, and is a compactification of the space XP ≡ the set X with the weak
topology generated by B(X). (XP is the P -space coreflection of the spaceX .) We
have B(X) ≤ C(XP ) (equality is rare), and the Yosida representation B(X) =
D(SB(X)) is continuous extension, with equality because B(X) is epicomplete.
For SY B(X) ∈ L SpFi, the filter is B(X)−1R = {F | F is dense cozero in
SB(X)}. (See [35] about Boolean algebras, and [8] for a careful discussion of
SB(X).)

The image under SY of C(X)
b
≤ B(X) is the surjection SY b relabeled as

βX
ρ
և SB(X), which is extension of the “identity” X ← XP . The Stone rep-

resentation of the Boolean isomorphism B(X) ≈ clopSB(X) is B(X) ∋ A 7→

AP ∈ clopSB(X), where AP is A with the topology from XP and (·) is closure

in SB(X); we have ̺−1A = AP .

Proof of 5.1⇐: Note that, in general, if E1

∗

≤ E2 in an EC(A), then, if A ≤ E1

is KI, so is E2: Label the situation as A
ϕ

≤ E2

ψ
։ E1 with A

ψϕ

≤ E1. Here
k(ψϕ) = (kψ)(kϕ) is supposed 1-1, thus so is the first factor kϕ.

So it suffices to show that C(X)
b
≤ B(X) is KI. We show that SY b = ρ satisfies

condition (3′) in 2.8.
Suppose S ∈ subβX , G ∈ (B(X)−1R)δ in SB(X) and ρ(G) ∩ S = ∅. This

G ⊇ XP , so ρ(G) ⊇ ρ(XP ) = X . This G is Lindelöf [22], and so is ρG. By
Smirnov’s Theorem on normal placement [22], there is a cozero-set F of βX with
ρG ⊆ F and F ∩ S = ∅. Thus, immediately, (S =) S′ 6= ∅. �
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The proof of the converse requires more machinery again synopsized from [4].
For A ∈ W , we have Y A and A ≤ D(Y A) and thus cozA ≡ {coz g | g ∈ A},

and the Baire field B(Y A), which is actually the σ-field on Y A generated by
cozA (because for any f ∈ C(Y A) there is {gn} ⊆ A with

⋃
coz gn = coz f , in

consequence of 2.1(a)). For g ∈ A, let ∞(g) = g−1(±∞), and let ∞(A) be the
σ-ideal in B(Y A) generated by {∞(g) | g ∈ A}.

The poset EC(A) is in bijective order-reversing correspondence with the family
of σ-ideals D in B(Y A) for which

(i) ∞(A) ⊆ D , and (ii) cozA ∩D = {∅},

as follows.
Given D as above, let I = {f ∈ B(Y A) | coz f ∈ D}. This is a σ-ideal

in B(Y A) which is (thus) a W -kernel, and A ≤ B(Y A)/I ≡ E(D) is a typical
epicompletion of A. (Here, (i) creates an epic A→ E(D), and (ii) makes it 1-1.)

The orderings are: D1 ⊆ D2 iff E(D1)
∗

≥ E(D2).
Given E ∈ EC(A), the associated D is denoted D(E). For βA (the top of

EC(A)) we have D(βA) =∞(A) (the bottom of the poset of Ds).
The Yosida representation of an A ≤ E(D) in EC(A) has Y E(D) =

S(B(Y A)/D) (the Stone space of the quotient Boolean algebra), which is BD,
and E(D) = D(S(B(Y A)/D)) and the filter is E(D)−1R = all dense cozero-sets.
The Boolean theory of quotients [35] applied here shows

(5.2) S(B(Y A)/D) = SB(Y A)−
⋃
{DP | D ∈ D},

where D ∈ D ⊆ B(Y A), DP is D with the topology from (Y A)P , and (·) is
closure in SB(Y A).

The discussion preceding the proof of 5.1⇐ above applies using for the X there
a present Y A: We have C(Y A) ≤ B(Y A) whose image under SY we denote

Y A
ρ
և SB(Y A). Then, for A ≤ E(D) in EC(A) we have the image under SY ,

Y A
τ
և Y E(D) = S(B(Y A)/D) and the commutative diagram

(5.3) Y A SB(Y A)
ρ

oooo

Y E(D)

τ

OOOO

+

�

88rrrrrrrrrr

For the situation under discussion A = C(X), where Y C(X) = βX , we have
(as noted) B(X) ∈ EC(C(X)) and D(B(X)) = {M ∈ B(βX) |M ⊆ βX −X}.
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Proof of 5.1⇒: For A = C(X), and E ∈ EC(C(X)), the diagram (5.3) be-
comes

(5.4) βX SB(βX)
ρ

oooo

Y E = SB(βX)−
⋃
{DP | D ∈ D(E)}

τ

OOOO

&

�

44❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

Suppose E
∗

≥ B(X) fails. This means D(E) * D(βA). So there is M ∈ D(E)
with M * βX − X . In any space, any Baire set is a union of zero-sets [19], so
there is a zero-set Z of βX with Z ⊆ M and Z * βX − X . Thus, Z ∩ X 6= ∅

and Z ∩X ⊆ Z ′ (closure in βX , Z ′ is the largest SpFi-subspace contained in Z
(Section 2), and ⊆ here because Z ∩X ∈ subβX). Using Z ∩ X as a DP in
(5.4), we have ρ−1Z = Z ∩X (since Z is closed) and τ−1Z = ρ−1Z ∩ Y E ⊆
Z ∩X ∩ (SB(βX)− Z ∩X) = ∅. Since Z ′ ⊆ Z, (τ−1Z)′ = ∅ as well.

Thus, Z ′ witnesses violation of 2.8(1′), so sub τ is not 1-1, and C(X) ≤ E is
not KI. �

5.5 Remarks. We briefly consider two extreme cases.
(1) The first case is (E) Every epicompletion of A is KI. From 4.3, (E) holds iff

A is absolutely KI. Now, any A has a unique minimal (not minimum) and unique
essential epicompletion A ≤ λA [4, Section 9]. Obviously, (E) implies A ≤ λA is
KI. We do not know about the converse in general, but for A = C(X), it does hold

because C(X) ≤ λC(X) KI implies B(X)
∗

≤ λC(X) (by 5.1), and this condition
is equivalent to “C(X) ≤ B(X) is essential”, which can be shown to hold iff X is
almost P , thus C(X) is absolutely KI (3.5).

(2) The second case is (U) A has Unique KI epicompletion (which must be βA,
by 4.1). What this means in general, we do not know, but for A = C(X), it means
that B(X) = βC(X) (by 5.1). This condition is studied in [11], there called “X
is an ε-space”: it holds if X is pseudocompact or a P -space, or the irrationals,
or the Sorgenfrey line; it fails if X is the rationals, or a certain locally compact
space. Overlooked in [11] is that this holds for X almost-P , because then C(X)
has unique epicompletion [4, Section 9].
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