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On character of points in the

Higson corona of a metric space

Taras Banakh, Ostap Chervak, Lubomyr Zdomskyy

Dedicated to the 120th birthday anniversary of Eduard Čech.

Abstract. We prove that for an unbounded metric space X, the minimal character
mχ(X̌) of a point of the Higson corona X̌ of X is equal to u if X has asymptot-
ically isolated balls and to max{u, d} otherwise. This implies that under u < d a
metric space X of bounded geometry is coarsely equivalent to the Cantor macro-
cube 2<N if and only if dim(X̌) = 0 and mχ(X̌) = d. This contrasts with a
result of Protasov saying that under CH the coronas of any two asymptotically
zero-dimensional unbounded metric separable spaces are homeomorphic.

Keywords: Higson corona, character of a point, ultrafilter number, dominating
number

Classification: 03E17, 03E35, 03E50, 54D35, 54E35, 54F45

1. Introduction

In this paper we shall calculate the smallest character of a point in the corona X̌
of a metric space X and using this information we shall distinguish topologically
the Higson coronas of some metric spaces of asymptotic dimension zero. There
are many ways of introducing the Higson corona of a metric space. We shall follow
the approach developed by I.V. Protasov in [16] and [17].

For an unbounded metric space X , let βXd be the Stone-Čech compactification
of the space X endowed with the discrete topology. The space βXd consists of
all ultrafilters on X and carries the compact Hausdorff topology generated by the
sets Ā = {p ∈ βX : A ∈ p} where A runs over all subsets of X . In the space
βXd consider the closed subspace X♯ consisting of all ultrafilters which extend
the filter F0 = {X \ B : B is a bounded subset of X} of cobounded subsets
of X . Two ultrafilters p, q ∈ X♯ are called parallel (denoted by p ‖ q) if for some
positive real number ε we get {Bε(P ) : P ∈ p} ⊂ q and {Bε(Q) : Q ∈ q} ⊂ p.
Here Bε(A) = {x ∈ X : dX(x,A) ≤ ε} denotes the ε-neighborhood of a subset A
of a metric space (X, dX). The corona X̌ of X is defined as the quotient space
X♯/∼ of X♯ by the smallest closed equivalence relation ∼ on X♯ that contains the
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parallel relation ‖ on X♯. For an ultrafilter p ∈ X♯ by p̌ ∈ X̌ we shall denote its
equivalence class in the corona X̌. For a subspace A ⊂ X we identify the corona
Ǎ with the subspace {p̌ : A ∈ p ∈ X♯} of X̌.

By Proposition 1 of [17], two ultrafilters p, q ∈ X♯ belong to the same equiv-
alence class (which means that p̌ = q̌) if and only if for any slowly oscillating
function f : X → [0, 1] and its Stone-Čech extension βf : βXd → [0, 1] we get
βf(p) = βf(q). This allows us to define the corona X̌ of X using slowly oscillating
functions. Let us recall that a function f : X → R is slowly oscillating if for any
ε > 0 and any δ < ∞ there is a bounded subset B ⊂ X such that for each subset
A ⊂ X \B of diameter diam A ≤ δ the image f(A) has diameter diam f(A) ≤ ε.
It follows that for a proper metric space X the corona X̌ of X coincides with the
Higson corona ν(X) defined in [19]. Let us recall that a metric space X is proper
if each closed bounded subset of X is compact.

It is known that the coronas X̌ and Y̌ of two metric spaces (X, dX) and (Y, dY )
are homeomorphic if the metric spaces X,Y are coarsely equivalent in the sense
that there are two coarse functions f : X → Y and g : Y → X such that

max{sup
y∈Y

dY (f ◦ g(y), y), sup
x∈X

dX(g ◦ f(x), x)} < ∞.

A function f : X → Y between two metric spaces (X, dX) and (Y, dY ) is called
coarse if for any δ < ∞ there is ε < ∞ such that for any points x, x′ ∈ X with
dX(x, x′) ≤ δ we get dY (f(x), f(x

′)) ≤ ε.
The topological structure of the corona X̌ reflects certain asymptotic properties

of the metric space X , in particular, the asymptotic dimension of X . Let us recall
that a metric space X has asymptotic dimension asdim(X) ≤ n if for any ε < ∞
there is a cover U of X such that supU∈U diam(U) < ∞ and each ε-ball Bε(x),
x ∈ X , meets at most (n+ 1) sets of the cover U . The finite or infinite number

asdim(X) = min{n ∈ N ∪ {∞} : asdim(X) ≤ n}

is called the asymptotic dimension of X , see [5].
By [10] or [5, §5], for a proper metric space X of finite asymptotic dimension

asdim(X), the corona X̌ has topological dimension dim(X̌) = asdim(X). However
it is not known if the asymptotic dimension asdim(X) is finite provided that the
topological dimension dim(X̌) of the corona X̌ is finite (cf. [5, §5]). In Theorem 3.1
we shall give an affirmative answer to this problem for metric spaces X with zero-
dimensional corona X̌.

It follows that for two proper metric spaces X,Y with different finite asymp-
totic dimensions the coronas X̌ and Y̌ are not homeomorphic as they have differ-
ent topological dimensions. On the other hand, for metric spaces of asymptotic
dimension zero I.V. Protasov [18] proved the following striking consistency result.
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Theorem 1.1 (Protasov). Under Continuum Hypothesis the corona X̌ of any

asymptotically zero-dimensional unbounded separable metric space X is home-

omorphic to the Stone-Čech remainder ω∗ = βω \ ω of the countable discrete

space ω.

In a private communication with the first author, I.V. Protasov asked if his
Theorem 1.1 remains true in ZFC. In this paper we shall give a negative answer
to this question of Protasov, calculating the minimal character mχ(X̌) of the
corona X̌ for a metric space X .

By definition, the minimal character mχ(X) of a topological space X is the
smallest character minx∈X χ(x;X) of a point x in X , where the character χ(x;X)
of x in X is equal to the smallest cardinality of a neighborhood base at x. The
minimal character mχ(ω∗) of the Stone-Čech remainder ω∗ = βω\ω is denoted by
u and is one of important small uncountable cardinals, see [9], [20], [7]. Another
small uncountable cardinal that will appear in our considerations is the dominat-
ing number d, equal to the cofinality of the partially ordered set (ωω,≤), see [9],
[20], [7].

The cardinals u and d both are equal to the continuum c under Continuum
Hypothesis and more generally under Martin’s Axiom, see [20], [13]. On the
other hand, the strict inequalities u < d and u > d also are consistent with ZFC,
see [7, p. 480].

Following [1], we shall say that a metric space (X, d) has asymptotically isolated

balls if there is ε < ∞ such that for any finite δ ≥ ε there is x ∈ X such that the
ε-ball Bε(x) centered at x coincides with the δ-ball Bδ(x).

The principal result of this paper is the following theorem that shows that the
conclusion of Protasov’s Theorem 1.1 is not true under u < d:

Theorem 1.2. The corona X̌ of an unbounded metric space X has minimal

character

mχ(X̌) =

{

u if X contains asymptotically isolated balls,

max{u, d} otherwise.

This theorem will be proved in Section 5. Now we shall derive from Theorem 1.2
a corona characterization of the Cantor macro-cube.

The Cantor macro-cube 2<N is the metric space

2<N = {(xi)
∞
i=1 ∈ {0, 1}N : ∃n ∈ N ∀m ≥ n xm = 0}

endowed with the ultrametric

d
(

(xn), (yn)
)

= max
n∈N

2n|xn − yn|.

By [12], the Cantor macro-cube contains a coarse copy of each asymptotically
zero-dimensional metric space of bounded geometry. Let us recall that a metric
space X has bounded geometry if there is ε < ∞ such that for every δ < ∞ there
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is an integer number N ∈ N such that each δ-ball in X can be covered by ≤ N
balls of radius ε.

The Cantor macro-cube 2<N is an asymptotic counterpart of the Cantor cube
2ω. According to the classical Brouwer characterization [14, 7.4], a topological
space X is homeomorphic to the Cantor cube 2ω if and only if X is a zero-
dimensional compact metrizable space without isolated points. A similar charac-
terization holds also for the Cantor macro-cube [1]: a metric space X is coarsely

equivalent to the Cantor macro-cube 2<N if and only if X is an asymptotically

zero-dimensional space of bounded geometry without asymptotically isolated balls .
This characterization, combined with Theorem 1.2, implies the following

“corona” characterization of 2<N, which will be proved in Section 6.

Theorem 1.3. Under u < d for a metric space X of bounded geometry the

following conditions are equivalent:

(1) X is coarsely equivalent to 2<N;

(2) the corona X̌ of X is homeomorphic to the corona of 2<N;

(3) dim X̌ = 0 and mχ(X̌) = d.

Another universal metric space is the Baire macro-space

ω<N = {(xi)
∞
i=1 ∈ ωN : ∃n ∈ N ∀m ≥ n xm = 0}

endowed with the ultrametric

d
(

(xn), (yn)
)

= max({0} ∪ {2n : xn 6= yn}).

The Baire macro-space contains a coarse copy of each separable metric space of
asymptotic dimension zero. Metric spaces that are coarsely equivalent to the
Baire macro-space ω<N have been characterized in [2]. By [18], under CH the
coronas of the metric spaces 2<N and ω<N are homeomorphic to ω∗.

Problem 1.4. Can the coronas of the metric spaces 2<N and ω<N be homeomor-

phic under the negation of the Continuum Hypothesis?

2. Preliminaries

In this section we collect some information that will be used in the next sections.
By a partial preorder on a set P we understand any reflexive transitive binary

relation ≤ on P . A subset A ⊂ P of a partially preordered space (P,≤) is called

• cofinal in (P,≤) if for each x ∈ X there is y ∈ A with x ≤ y;
• coinitial in (P,≤) if for each x ∈ X there is y ∈ A with y ≤ x.

The smallest cardinality of a cofinal (resp. coinitial) subset of (P,≤) is denoted
by cof(P ) (resp. coin(P )) and called the cofinality (resp. coinitiality) of (P,≤).

For example, the character χ(x,X) of a topological space X is equal to the
coinitiality of the set Nx of all neighborhoods of X , partially ordered by the
inclusion relation ⊂.
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We shall be interested in the cofinality and coinitiality of some function spaces
on metric spaces.

A function f : X → Y between metric spaces is defined to be bounded-to-

bounded if a subset B ⊂ X is bounded in X if and only if its image f(B) is
bounded in Y . We shall be especially interested in bounded-to-bounded functions
with values in the space ω of non-negative integers, endowed with the standard
Euclidean metric. Observe that a subset B ⊂ ω is bounded if and only if it
is finite. So, a function φ : ω → ω is bounded-to-bounded if and only if it is
finite-to-one in the sense that for each n ∈ ω the preimage φ−1(n) is finite.

The family of all bounded-to-bounded functions f : X → ω on a metric space
X will be denoted by ω↑X . The set ω↑X carries a natural partial order ≤ in which
f ≤ g iff f(x) ≤ g(x) for all x ∈ X .

Lemma 2.1. For an unbounded metric spaceX the partially ordered set (ω↑X ,≤)
has coinitiality

coin(ω↑X) ≤ d.

Proof: Choose any bounded-to-bounded function φ : X → ω. By definition of
the cardinal d = cof(ω↑ω), there exits a cofinal set F ⊂ ω↑ω of cardinality |F| = d.

For each function f ∈ F , consider the function f̄ ∈ ω↑ω defined by

f̄(n) = max
(

{0} ∪ {k ∈ ω : f(k) ≤ n}
)

.

We claim that the family E = {f̄ ◦ φ : f ∈ F} is coinitial in ω↑X and hence
coin(ω↑X) ≤ |E| ≤ |F| = d.

Indeed, take any function g ∈ ω↑X and consider the function g̃ ∈ ω↑ω defined
by

g̃(n) = min g
(

φ−1([n,∞))
)

for n ∈ ω.

Next, consider the function f̃ ∈ ω↑ω defined by

f̃(k) = min(g̃−1([k + 1,∞)) for k ∈ ω

and choose any function f ∈ F with f̃ ≤ f .
We claim that f̄ ◦ φ ≤ g. Take any point x ∈ X and consider the number

n = φ(x). Then g̃(n) ≤ g(x). Let k = g̃(n) and observe that

n ≤ max g̃−1(k) < min g̃−1([k + 1,∞)) = f̃(k) ≤ f(k).

Now the definition of f̄(n) implies that

f̄ ◦ φ(x) = f̄(n) ≤ k = g̃(n) ≤ g(x).

�

Now consider the space ω↑ω of bounded-to-bounded (=finite-to-one) functions
on ω. Besides the coinitiality of the partial order ≤ on ω↑ω we shall be interested
in the coinitiality of ω↑ω endowed with the linear preorder ≤U generated by an
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ultrafilter U ∈ ω∗. For two functions f, g ∈ ω↑ω we write f ≤U g if the set
{n ∈ ω : f(n) ≤ g(x)} belongs to the ultrafilter U . Following [4], we denote by
q(U) = coin(ω↑ω,≤U) and d(U) = cof(ω↑ω,≤U) the coinitiality and the cofinality
of the linearly preordered space (ω↑ω,≤U ). It is clear that max{q(U), d(U)} ≤ d.
In [8] M. Canjar constructed a ZFC-example of an ultrafilter U ∈ ω∗ with q(U) =
d(U) = cf(d), which can be consistently smaller than d.

The following lemma can be proved by analogy with Theorem 16 of [6], see also
Theorem 9.4.6 of [4] or [3, pp. 82, 85]. In this lemma χ(U) denotes the character
of an ultrafilter U ∈ ω∗ in the Stone-Čech compactification β(ω) of ω.

Lemma 2.2. Any ultrafilter U ∈ ω∗ with character χ(U) < d has q(U) = d(U) =
d. Consequently,

max{χ(U), q(U)} = max{χ(U), d(U)} = max{χ(U), d} ≥ max{u, d}

for any ultrafilter U ∈ ω∗.

We shall need to generalize the definition of a ball Bε(x) to allow the radius to
take a function value. Namely, for a function f : X → [0,∞) defined on a metric
space X , a point x ∈ X and a subset A ⊂ X , let B(x, f) = {y ∈ X : d(y, x) ≤
f(x)} = Bf(x)(x) and

B(A, f) =
⋃

a∈A

B(a, f).

The set B(A, f) is called the f -neighborhood of A in X . Sometimes for a real
number ε ≥ 0 we shall use the notation B(x, ε) instead of Bε(x) identifying ε
with the constant function ε : X → {ε} ⊂ [0,∞).

For a set A ⊂ X and a function f : X → [0,∞), the f -neighborhood B(A, f) ⊂
X determines the closed-and-open set B̄(A, f) = {p ∈ X♯ : B(A, f) ∈ p} in the
compact Hausdorff space X♯ ⊂ βX and the closed subset B̌(A, f) = {p̌ : p ∈
B̄(A, f)} in the corona X̌ of X .

We shall use the following description of the topology X̌, mentioned in [18].

Lemma 2.3. For each ultrafilter p ∈ X♯ the family

{B̌(P, f) : P ∈ p, f ∈ ω↑X}

is a base of closed neighborhoods of p̌ in X̌.

This lemma implies an easy criterion for recognizing ultrafilters p, q ∈ X♯ with
different images p̌, q̌. We say that two subsets P,Q of a metric space (X, d) are
asymptotically disjoint if for each real number ε > 0 the intersection B(P, ε) ∩
B(Q, ε) is bounded in X . This is equivalent to the existence of a bounded-
to-bounded function f ∈ ω↑X such that the intersection B(P, f) ∩ B(Q, f) is
bounded.

The following fact was proved by I.V.Protasov in Lemma 4.2 of [16].
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Lemma 2.4. For an unbounded metric space X two ultrafilters p, q ∈ X♯ have

distinct images p̌ 6= q̌ in the corona X̌ if and only if there are two asymptotically

disjoint sets P,Q ⊂ X such that P ∈ p and Q ∈ q.

Proof: If p̌ 6= q̌, then we can choose two disjoint neighborhoods O(p̌) and O(q̌)
of the points p̌, q̌ in the corona X̌. By Lemma 2.3, we can assume that these
neighborhoods are of the form O(p̌) = B̌(P, f), O(q̌) = B̌(Q, f) for some sets
P ∈ p, Q ∈ q and some bounded-to-bounded function f ∈ ω↑X . To see that
the sets P,Q are asymptotically disjoint, it suffices to check that the intersection
B(P, f)∩B(Q, f) is bounded. Assuming the opposite, we could find an ultrafilter
r ∈ X♯ containing B(P, f)∩B(Q, f). Then ř ∈ B̌(P, f)∩ B̌(Q, f) = O(p̌)∩O(q̌),
which is not possible as the sets O(p̌) and O(q̌) are disjoint. This proves the “only
if” part of the lemma.

To prove the “if” part, assume that two ultrafilters p, q ∈ X♯ contain asymp-
totically disjoint sets P ∈ p, Q ∈ q. Choose a bounded-to-bounded function
f ∈ ω↑X such that B(P, f) ∩B(Q, f) is bounded. Then B̌(P, f) and B̌(Q, f) are
two disjoint neighborhoods of the points p̌ and q̌, which implies that p̌ 6= q̌. �

A subsetA of a metric spaceX is called asymptotically isolated ifA is asymptot-
ically disjoint from its complement X\A. This happens if and only if B(A, f) = A
for some bounded-to-bounded function f ∈ ω↑X . For a subset A ⊂ X let
Ǎ = {p̌ : A ∈ p ∈ X♯}.

Lemma 2.5. A subset U ⊂ X̌ is closed-and-open in the corona X̌ if and only if

U = Ǔ for some asymptotically isolated subset U ⊂ X .

Proof: Assume that U = Ǔ for some asymptotically isolated subset U ⊂ X .
Then B(U, f) = U for some bounded-to-bounded function f ∈ ω↑X . It follows
from Lemma 2.3 that for each ultrafilter p ∈ X♯ with p̌ ∈ Ǔ the set B̌(U, f) = Ǔ
is a neighborhood of p̌, which means that Ǔ = U is open in X̌. The set Ǔ = U is
closed being a continuous image of the compact subset Ū = {p ∈ X♯ : U ∈ p}.

Now assume that a subset U ⊂ X̌ is closed-and-open in X̌. Fix any point x0

in the metric space X . Since the set U is open in X̌, for each ultrafilter p ∈ X♯

with p̌ ∈ U , there is a set Pp ∈ p and a bounded-to-bounded function fp ∈ ω↑X

such that B̌(Pp, 3fp) ⊂ U . Replacing fp by a smaller function, if necessary, we
can assume that B(B(x, fp), fp) ⊂ B(x, 3fp) and fp(x) ≤

1
2d(x, x0) for each point

x ∈ X .
By the compactness of U , the cover {B̌(Pp, fp) : p ∈ X♯, p̌ ∈ U} has a

finite subcover {B̌(Pp, fp) : p ∈ F} where F ⊂ X♯ is a finite set. Now consider

the set U =
⋃

p∈F B(Pp, fp) and observe that Ǔ =
⋃

p∈F B̌(Pp, fp) = U . Let

f = min{fp : p ∈ F} and observe that

B̌(U, f) =
⋃

p∈F

⋃

x∈Pp

B(B(x, fp), f) ⊂
⋃

p∈F

⋃

x∈Pp

B(x, 3fp) =
⋃

p∈F

B(Pp, 3fp)
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and hence

U = Ǔ ⊂ B̌(U, f) ⊂
⋃

p∈F

B̌(Pp, 3fp) ⊂ U .

The equality Ǔ = B̌(U, f) implies that the set B(U, f) \ U is bounded. It follows
from f(x) ≤ 1

2d(x, x0), x ∈ X , that the setD = {x ∈ X : B(x, f)∩(B(U, f)\U) 6=

∅} is bounded in X . Now define a bounded-to-bounded function f0 ∈ ω↑X letting
f0|D ≡ 0 and f0|X \D = f |X \D.

We claim thatB(U, f0) = U . Assuming the opposite, find a point x ∈ B(U, f0)\
U and a point u ∈ U with x ∈ B(u, f0). The definition of the set D guarantees
that u ∈ D and hence f0(u) = 0 and x = u ∈ U , which is a contradiction. The
equality U = B(U, f0) witnesses that the set U with Ǔ = U is asymptotically
isolated. �

Balls B(x, f) with function radius f ∈ ω↑X can be used to prove the following
characterization of coarse maps in spirit of uniform continuity.

Lemma 2.6. A bounded-to-bounded function f : X → Y between metric spaces

is coarse if and only if

∀ε ∈ ω↑Y ∃δ ∈ ω↑X ∀x ∈ X f(B(x, δ)) ⊂ B(f(x), ε).

Proof: To prove the “only if” part, assume that the bounded-to-bounded func-
tion f : X → Y is coarse. In this case there is an increasing function ξ : ω → ω
such that for any n ∈ ω and points x, x′ ∈ X with dX(x, x′) ≤ n we get
dY (f(x), f(x

′)) ≤ ξ(n). Consider the bounded-to-bounded function ζ : ω → ω,
ζ : m 7→ max{n ∈ ω : ξ(n) ≤ m} and observe that ξ ◦ ζ(m) ≤ m for each m ∈ ω.

Given any bounded-to-bounded function ε ∈ ω↑Y , consider the bounded-to-
bounded function δ : X → ω, δ(x) = ζ ◦ ε ◦ f(x), and observe that it has the
required property: f(B(x, δ) ⊂ B(f(x), ε) for all x ∈ X .

To prove the “if” part, choose any bounded-to-bounded function ε ∈ ↑X and
assume that there exists δ ∈ ω↑X such that f(B(x, δ)) ⊂ B(f(x), ε) for all x ∈ X .
To show that f is coarse, for each real number r we need to find a real number
R such that f(Br(x)) ⊂ B(f(x), R). Since the function δ : X → ω is bounded-
to-bounded, the set ∆ = δ−1([0, r)) is bounded in X and so is its r-neighborhood
Br(∆) =

⋃

x∈∆B(x, r). Since the functions f and ε are bounded-to-bounded, the
set f(Br(∆)) is bounded in Y and ε◦ f(Br(∆)) is bounded in ω. It can be shown
that the number

R = max
{

ε(r), diam
(

ε ◦ f(Br(∆))
)}

has the required property: f(Br(x)) ⊂ BR(f(x)) for each x ∈ X . �

A function φ : X → Y between two metric spaces is called boundedly oscillating

if there is a real number D such that for any real number ε there is a bounded
set B ⊂ X such that for each point x ∈ X \ B the set φ(Bε(x)) has diameter
diam φ(Bε(x)) ≤ D. It is clear that each slowly oscillating function is boundedly
oscillating.
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The following characterization of boundedly oscillating functions easily follows
from the definition.

Lemma 2.7. A function φ : X → Y between metric spaces is boundedly oscil-

lating if and only if there is a bounded-to-bounded function ε ∈ ω↑X such that

supx∈X diam φ(B(x, ε)) < ∞.

Using Lemma 2.7 it is quite easy to construct boundedly oscillating functions
f : X → ω with values in ω.

Lemma 2.8. For each metric space X there is a boundedly oscillating bounded-

to-bounded function φ : X → ω.

Proof: Fix any point x0 ∈ X and choose an increasing sequence of real numbers
(rn)n∈ω such that r0 < 0 and limn→∞ rn+1−rn = ∞. Then the function φ : X →
ω defined by φ−1(n) = Brn+1

(x0)\Brn(x0) for n ∈ ω is boundedly oscillating and
bounded-to-bounded. �

Lemma 2.9. For any boundedly oscillating bounded-to-bounded function φ :
X → ω on an unbounded metric space there is a bounded-to-bounded function

ε̃ ∈ ω↑ω such that supx∈X diam φ(B(x, ε̃ ◦ φ)) < ∞.

Proof: By Lemma 2.7, there is a bounded-to-bounded function ε ∈ ω↑X such
that

D = sup
x∈X

diam φ(B(x, ε)) < ∞.

Since the map φ : X → ω is bounded-to-bounded, there is a bounded-to-bounded
function ε̃ ∈ ω↑ω such that ε̃ ◦ φ ≤ ε. Such function ε̃ can be defined by the
formula

ε̃(n) = min ε(φ−1([n,∞)) for n ∈ ω.

The inequality ε̃ ◦ φ ≤ ε implies

sup
x∈X

diam φ(B(x, ε̃ ◦ φ)) ≤ sup
x∈X

diam φ(B(x, ε)) < ∞.

�

Observe that for a bounded-to-bounded function φ : X → ω defined on an
unbounded metric space X and an ultrafilter p ∈ X♯ its image βφ(p) = {A ⊂ ω :
φ−1(A) ∈ p} lies in the set ω♯ = ω∗ ⊂ βω. To shorten notations, we shall denote
the image βφ(p) of the ultrafilter p by φ(p).

3. Dimension of the corona

By [10], for each proper metric spaceX of finite asymptotic dimension asdim(X)
the corona X̌ has topological dimension dim(X̌) = asdim(X). However it is not
known if the asymptotic dimension asdim(X) is finite provided that the topologi-
cal dimension dim(X̌) of the corona X̌ is finite (cf. [5, §5]). In this section we give
an affirmative answer to this problem for metric spaces X with zero-dimensional
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corona. We shall apply a characterization of asymptotic dimension zero in terms
of ε-chains.

Let ε ≥ 0 be a real number. By an ε-chain in a metric space (X, d) we
understand any sequence of points x0, . . . , xn of X such that d(xi−1, xi) ≤ ε for
all positive i ≤ n. For a point x ∈ X its ε-component Cε(x) is the set of all points
y ∈ X , which can be linked with x by an ε-chain x = x0, x1, . . . , xn = y.

Theorem 3.1. For an unbounded metric space X the following conditions are

equivalent:

(1) X has asymptotic dimension zero;

(2) supx∈X diam Cε(x) < ∞ for each ε < ∞;

(3) the corona X̌ has topological dimension zero.

Proof: (1) ⇒ (2). Assume that X has asymptotic dimension zero. Then for
each ε < ∞ there is a cover U of X such that supU∈U diam(U) < ∞ and each
ε-ball Bε(x), x ∈ X , meets a unique set U ∈ U . Then for each point x ∈ X its
ε-component Cε(x) lies in a unique set U ∈ U , which implies that

sup
x∈X

diam Cε(x) ≤ sup
U∈U

diam(U) < ∞.

The implication (2) ⇒ (1) trivially follows from the fact that for each ε < ∞,
U = {Cε(x) : x ∈ X} is a disjoint cover of X such that each ε-ball Bε(x), x ∈ X ,
meets a unique set U ∈ U (which is equal to Cε(x)).

(2) ⇒ (3) Assume that for each ε ≥ 0 the number γ(ε) = supx∈X diam Cε(x)
is finite. Since the space X is unbounded, the function γ : [0,∞) → [0,∞) is
bounded-to-bounded.

To show that the corona X̌ of X has topological dimension zero, fix any ultra-
filter p ∈ X♯ and a neighborhood U ⊂ X̌ of its equivalence class p̌. By Lemma 2.3,
we can assume that U is of the form U = B̌(P, f) where P ∈ p and f : X → ω is
a bounded-to-bounded function.

Fix any point x0 ∈ X and put ‖x‖ = d(x, x0) for any point x ∈ X . Replacing
f by a smaller function, if necessary, we can assume that f(x) ≤ 1

2‖x‖. This
condition guarantees that for any point x ∈ X and y ∈ B(x, f) we get

‖y‖ = d(y, x0) ≤ d(y, x) + d(x, x0) ≤ f(x) + d(x, x0) ≤
1

2
‖x‖+ ‖x‖ =

3

2
‖x‖

and

‖x‖ = d(x, x0) ≤ d(x, y) + d(y, x0) ≤ f(x) + ‖y‖ ≤
1

2
‖x‖+ ‖y‖,

which implies 1
2‖x‖ ≤ ‖y‖. Consequently,

(1)
2

3
‖y‖ ≤ ‖x‖ ≤ 2‖y‖ for any points x ∈ X and y ∈ B(x, f).
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Consider the bounded-to-bounded function ε : X → [0,∞) defined by

ε(x) =
1

2
sup{ε ≥ 0 : γ(ε) ≤ f(x)} for x ∈ X,

and observe that Cε(x)(x) ⊂ B(x, f(x)) for all x ∈ X . Using the inequalities (1),
one can check that the function

δ : X → [0,∞), δ : x 7→ inf{ε(y) : x ∈ Cε(y)(y)},

is bounded-to-bounded. So, we can choose a bounded-to-bounded function f̃ :
X → ω such that f̃(x) ≤ δ(x) for all x ∈ X .

The choice of the function ε guarantees that the set P̃ =
⋃

x∈P Cε(x)(x) belongs
to the ultrafilter p and lies in the f -neighborhood B(P, f) of the set P . Moreover,

B(P̃ , f̃) = P̃ . Indeed, for each point x ∈ P̃ we can find a point y ∈ P with x ∈
Cε(y)(y). Then definition of the function δ guarantees that f̃(x) ≤ δ(x) ≤ ε(y),

which implies that B(x, f̃) ⊂ Cε(y)(y) ⊂ P̃ . So, B(P̃ , f̃) = P̃ , which implies that

B̌(P̃ , f̃) ⊂ B̌(P, f) is a closed-and-open neighborhood of p̌ in X̌ .

(3) ⇒ (2) To derive a contradiction, assume that dim(X̌) = 0 but there is
ε < ∞ such that supx∈X diam Cε(x) = ∞. For two subsets A,B ⊂ X put
dist(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}. Fix any point θ ∈ X .

Claim 3.2. There is a sequence (Cn)n∈ω of bounded ε-connected subsets of X
such that diam Cn > n and dist(Cn, C<n) ≥ n where C<n = Bn(θ) ∪

⋃

k<n Ck.

Proof: The sets Cn, n ∈ ω, will be constructed by induction. Assume that
for some number n ∈ ω bounded ε-connected sets C0, . . . , Cn−1 have been con-
structed. Consider the bounded set C<n = Bn(θ) ∪

⋃

k<n Ck and its n-neighbor-
hood B = Bn(C<n) =

⋃

c∈C<n
Bn(c).

Now we consider two cases.

(i) D = supx∈B diam Cε(x) < ∞. Since supx∈X Cε(x) = ∞, we can choose a
point x ∈ X such that diam Cε(x) > 2max{n,D}. It follows that x /∈ B and
moreover, Cε(x) ∩ B = ∅ (in the opposite case, for a point y ∈ B ∩ Cε(x), its ε-
connected component Cε(y) = Cε(x) has diameter diam Cε(y) > 2D ≥ D, which
contradicts the definition of D). So, Cε(x) ∩B = ∅.

Since diam Cε(x) > 2n, we can choose a point y ∈ Cε(x) such that d(y, x) > n.
By the definition of the set Cε(x), the points x, y ∈ Cε(x) can be linked by an
ε-chain x = x0, . . . , xm = y. Then Cn = {x0, . . . , xm} is a required bounded
ε-connected subset of X that has diameter diam Cn ≥ d(x, y) > n and

dist(Cn, C<n) ≥ dist(Cε(x), C<n) ≥ dist(X \B,C<n) ≥ n.

(ii) The second case happens when supx∈B diam Cε(x) = ∞. In this case we can
choose a point y ∈ B such that diam Cε(y) > 2(diam(B)+n+ε). Then there is a
point x ∈ Cε(y) with d(x, y) > diam(B)+n+ε, which can be linked with y by an
ε-chain x = x0, . . . , xm = y. Since d(x0, xm) = d(x, y) > diam(B)+n+ ε, we can
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choose the smallest number k ≤ m such that d(x0, xk) > n. Then d(x0, xi) ≤ n
for every i < k and hence

d(xi, B) ≥ d(xi, y)− diam(B)

≥ d(x0, y)− d(x0, xi)− diam(B)

> diam(B) + n+ ε− n− diam(B) = ε.

Also d(xk, B) ≥ d(xk−1, B)−d(xk−1, xk) > ε−ε = 0. Consequently, the bounded
ε-connected set Cn = {x0, . . . , xk} has diameter diam(Cn) ≥ d(x0, xk) > n and is
disjoint with the set B = Bn(C<n), which implies that dist(Cn, C<n) ≥ n. This
completes the inductive construction. �

Claim 3.2 yields a sequence (Cn)n∈ω of ε-connected sets such that diam(Cn) >
n and dist(Cn, C<n) ≥ n for each n ∈ ω. For every n ∈ ω choose two points
xn, yn ∈ Cn on distance d(xn, yn) > n. The choice of the sets Cn ⊂ X \ Bn(θ),
n > 0, implies that the sequences ~x = (xn)n∈ω and ~y = (yn)n∈ω tend to infinity
and the sets P = {xn}n∈ω and Q = {yn}n∈ω are unbounded and asymptotically
disjoint.

The sequences ~x and ~y can be thought as functions ~x : ω → X and ~y : ω → Y
and so have the Stone-Čech extensions β~x : βω → βXd and β~y : βω → βXd.
Since the sequences ~x and ~y tend to infinity, β~x(ω∗)∪β~y(ω∗) ⊂ X♯. Take any free
ultrafilter F ∈ ω∗ and consider its images p = β~x(F) ∈ X♯ and q = β~y(F) ∈ X♯.
Since the sets ~x(ω) ∈ p and ~y(ω) ∈ q are asymptotically disjoint, p̌ 6= q̌ according
to Lemma 2.4.

Since the space X̌ has topological dimension zero, there are disjoint open-and-
closed sets U ,V ⊂ X̌ such that p̌ ∈ U and q̌ ∈ V . By Lemma 2.5 there are
asymptotically isolated sets U, V ⊂ X such that U = Ǔ and V = V̌ . Since U, V
are asymptotically isolated in X , there is a bounded-to-bounded function f ∈ ω↑X

such that B(U, f) = U and B(V, f) = V .
It follows from Ǔ ∩ V̌ = U ∩ V = ∅ that the intersection U ∩ V is bounded.

Choose n ∈ ω so large that

• the n-ball Bn(θ) contains the bounded set U ∩ V , and
• f(x) > ε for each x ∈ X \Bn(θ).

It follows from p̌ ∈ U = Ǔ and q̌ ∈ V = V̌ that U ∈ p = β~x(F) and V ∈
q = ~y(F). Consider the (infinite) set F = ~x−1(U \Bn(θ)) ∩ ~y−1(V \Bn(θ)) ∈ F .
Choose any number m ∈ F with m > n and consider the ε-connected set Cm. By
Claim 3.2, Cm ∩Bn(θ) ⊂ Cm ∩Bm(θ) = ∅. Choose an ε-chain xm = z0, . . . , zk =
ym linking the points xm and ym of the set Cm. Observe that z0 = xm ∈ U \Bn(θ)
and zk = ym ∈ V \Bn(θ) ⊂ X \U . So, the largest number l ≤ k such that zl ∈ U
is not equal to k. It follows from zl ∈ Cm ⊂ X \ Bm(θ) ⊂ X \ Bn(θ) and the
choice of the number n that f(zl) > ε.

Then zl+1 ∈ Bε(zl) ⊂ Bf(zl)(zl) = B(zl, f) ⊂ B(U, f) = U , which contradicts
the definition of l. �
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4. Evaluating the character of a point in the corona

In this section, for an unbounded metric space (X, d) and an ultrafilter p ∈ X♯

we shall evaluate the character χ(p̌, X̌) of the point p̌ in the corona X̌ of X .
First we derive an upper bound on χ(p̌, X̌) from Lemmas 2.1 and 2.3.

Lemma 4.1. For each ultrafilter p ∈ X♯ the point p̌ ∈ X̌ has character

χ(p̌, X̌) ≤ max{χ(p,X♯), d}.

Proof: Let κ = max{χ(p,X♯), d}. Since χ(p,X♯) ≤ κ, there is a family P ⊂ p
of cardinality |P| = χ(p,X♯) ≤ κ such that for each set P ∈ p there is a set Q ∈ P
with Q̄ ⊂ P̄ , where Q̄ = {q ∈ X♯ : Q ∈ q}. We claim that the complement Q \ P
is bounded. In the other case, there is an ultrafilter q ∈ X♯ such that Q \ P ∈ p.
Then q ∈ Q̄ \ P̄ , which is a contradiction.

Fix any point θ ∈ X and consider the enriched family P ′ = {P \ Bn(θ) : P ∈
P , n ∈ ω} ⊂ p. It is clear that |P ′| ≤ ℵ0 · |P| ≤ κ and for each set P ∈ p there is
a set P ′ ∈ P ′ with P ′ ⊂ P .

By Lemma 2.1, the partially ordered set (ω↑ω,≤) has coinitiality coin(ω↑X) ≤ d.
So, we can find a coinitial set F ⊂ ω↑X of cardinality |F| ≤ d.

It follows that for each set P ∈ p and a function g ∈ ω↑X there is a set P ′ ∈ P ′

and a function f ∈ F such that P ′ ⊂ P and f ≤ g. Then p ∈ B̄(P ′, f) ⊂ B̄(P, g)
and hence p̌ ∈ B̌(P ′, f) ⊂ B̌(P, g), which implies that {B̌(P, f) : P ∈ P ′, f ∈ F}
is a neighborhood base at p̌ and χ(p̌, X̌) ≤ |P ′| · |F| ≤ κ. �

Lemma 4.2. If φ : X → ω is a boundedly oscillating bounded-to-bounded

function, then for each ultrafilter p ∈ X♯ the point p̌ ∈ X̌ has character

χ(p̌, X̌) ≥ χ(φ(p), ω∗).

Proof: Assume conversely that the cardinal κ = χ(p̌, X̌) is smaller than
χ(φ(p), ω∗). Using Lemma 2.3, choose a transfinite sequence of pairs (Pα, fα) ∈
p×ω↑X , α < κ, such that for each pair (P, f) ∈ p×ω↑X there is an ordinal α < κ
with B̌(Pα, fα) ⊂ B̌(P, f).

By Lemma 2.9, there is a function f̃ ∈ ω↑ω such that

D = sup
x∈X

diam φ
(

B(x, f̃ ◦ φ)
)

< ∞.

Let f = f̃ ◦ φ and choose any natural number l > 2D.

Since φ(p) is an ultrafilter on ω =
⋃l−1

i=0 lω + i, there is a non-negative integer
number i < d such that the set lω + i = {ln+ i : n ∈ ω} belongs to φ(p).

For every α < κ consider the set Qα = (lω+i)∩φ(Pα) ∈ φ(p). Since the family
{Qα}α<κ has cardinality ≤ κ < χ(φ(p), ω∗), there exists a set Q ∈ φ(p) such that
Qα \Q is infinite for all α < κ.

Let P = φ−1(Q ∩ (lω + i)) and for the neighborhood B̌(P, g) of p̌ in X̌ find
an ordinal α < κ such that B̌(Pα, fα) ⊂ B̌(P, f). By the choice of the set Q,
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the complement Qα \ Q is infinite. Then we can construct a sequence of points
(ak)k∈ω such that φ(ak) ∈ Qα \Q and φ(ak+1) > φ(ak) for every k ∈ ω.

The set A = {ak}k∈ω is not bounded because it has infinite image φ(A) ⊂ ω
under the bounded-to-bounded function φ.

We claim that the sets A and B(P, f) are asymptotically disjoint. This will
follow as soon as we check that

d(ak, B(P, f)) ≥ f(ak) = f̃ ◦ φ(ak).

Assume conversely that d(ak, x) < f(ak) for some x ∈ B(P, f) and find a point

y ∈ P such that x ∈ B(y, f). The choice of the function f = f̃ ◦φ guarantees that
|φ(ak)−φ(x)| ≤ diam φ(B(ak, f)) ≤ D and |φ(x)−φ(y)| ≤ diam φ(B(y, f)) ≤ D.
Taking into account that φ(ak) ∈ Qα ⊂ lω + i and φ(y) ∈ φ(P ) ⊂ lω + i, we
conclude that φ(ak)− φ(y) ∈ lZ. This fact combined with the upper bound

|φ(ak)− φ(y)| ≤ |φ(ak)− φ(x)| + |φ(x) − φ(y)| ≤ D +D < l

implies that φ(ak) = φ(y), which is not possible as φ(y) ∈ Q and φ(ak) ∈ Qα \Q.
This contradiction shows that the sets A and B(P, f) are asymptotically dis-

joint. Therefore, there exists q ∈ A♯ such that q̌ /∈ B̌(P, f) according to Lemma 2.4.
On the other hand, A ⊂ Pα ⊂ B(Pα, fα) implies q̌ ∈ B̌(Pα, fα) ⊂ B̌(P, f). This
contradiction completes the proof. �

Lemma 4.3. If the space X has no asymptotically isolated balls, then for each

boundedly oscillating bounded-to-bounded function φ : X → ω and each ultrafil-

ter p ∈ X♯ the point p̌ ∈ X̌ has character χ(p̌, X̌) ≥ q(φ(p)).

Proof: Given any ultrafilter p ∈ X♯, we need to check that χ(p̌) ≥ q(φ(p)). To
derive a contradiction, assume that the cardinal κ = χ(p̌) is smaller than q(φ(p)).

Using Lemma 2.3, choose a transfinite sequence of pairs {(Pα, fα)}α<κ ⊂ p ×
ω↑X such that for each (P, f) ∈ p× ω↑X there is α < χ(p̌) such that B̌(Pα, fα) ⊂
B̌(P, f).

For every α < κ choose a bounded-to-bounded function f̃α : ω → ω such
that f̃α ◦ φ ≤ fα. Such a function f̃α can be defined by the formula f̃α(n) =
min fα

(

φ−1([n,∞))
)

for n ∈ ω. Since κ < q(φ(p)) = coin(ω↑ω,≤φ(p)), there exists

a non-decreasing function f̃ ∈ ω↑ω such that f̃ ≤φ(p) f̃α for all α < κ.
Since the function φ : X → ω is boundedly oscillating and bounded-to-bounded

we can replace f̃ by a smaller function, if necessary and assume additionally that

D = sup
x∈X

diam φ(B(x, f̃ ◦ φ)) < ∞,

see Lemma 2.9. Let f = f̃ ◦ φ ∈ ω↑X and choose an integer number l > 3D.
Since X has no asymptotically isolated balls, there exists a non-decreasing

function ρ ∈ ω↑ω such that ρ(n) ≥ n and B(x, ρ(n)) 6⊂ B(x, n) for all n ∈ ω and

x ∈ X . Let n0 ≥ D be an integer number such that f̃(n0) ≥ 4ρ(0). For every
n < n0 put g(n) = 0 and for every n ≥ n0 let g̃(n) be the largest number m ∈ ω
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such that ρ(6m) ≤ 1
4 f̃(n). In this way we define a non-decreasing bounded-to-

bounded function g̃ : ω → ω such that

6g̃(n) ≤ ρ(6g̃(n)) ≤ 1
4 f̃(n) for all n ≥ n0.

The function g̃ induces a bounded-to-bounded function g = g̃ ◦ φ : X → ω.
For every n ∈ ω using Zorn’s Lemma, choose a maximal subset Sn ⊂ φ−1(n),

which is f̃(n)-separated in the sense that d(x, y) ≥ f̃(n) for any distinct points
x, y ∈ Sn.

For every i < l, consider the set Xi = φ−1(lω+ i) ⊂ X where lω+ i = {ln+ i :
n ∈ ω}. Divide each set Xi into two subsets

Bi = Xi ∩
⋃

n∈lω+i

B(Sn, 2g) and Ai = Xi \Bi.

Since p is an ultrafilter, there is a set P ∈ p such that P = Ai or P = Bi for
some 0 ≤ i < l. By Lemma 2.3, the set B̌(P, g) is a neighborhood of p̌ in X̌, so
we can find an ordinal α < κ such that B̌(Pα, fα) ⊂ B̌(P, g).

By the choice of the function f̃ , the set Q̃α = {n ∈ ω : f̃(n) ≤ f̃α(n)} belongs
to the ultrafilter φ(p). Then the set

Qα = P ∩ Pα ∩ φ−1
(

Q̃α ∩ (lω + i)
)

belongs to the ultrafilter p and hence is unbounded. This allows us to choose a
sequence of points (ak)k∈ω in Qα such that φ(ak+1) > φ(ak) + 2 > n0 + 2 for
every k ∈ ω.

Now we consider two cases.

1) P = Ai. For every k ∈ ω the maximality of the f̃(φ(ak))-separated set
Sφ(ak) ⊂ φ−1(φ(ak)) ⊂ Xi yields a point sk ∈ Sφ(ak) such that d(ak, sk) <

f̃(φ(ak)) = f(ak). Since φ(sk) = φ(ak) → ∞, the set Σ = {sk}k∈ω is unbounded
and hence belongs to some ultrafilter q ∈ X♯.

We claim that q̌ ∈ B̌(Pα, fα) \ B̌(P, g), which will contradict the choice of α.

To see that q̌ ∈ B̌(Pα, fα), observe that for every k ∈ ω we get φ(ak) ∈ Q̃α and

hence f̃ ◦ φ(ak) ≤ f̃α ◦ φ(ak) ≤ fα(ak). This implies

sk ∈ B(ak, f̃ ◦ φ̃(ak)) ⊂ B(ak, fα) ⊂ B(Pα, fα)

and Σ ⊂ B(Pα, fα).
Lemma 2.4 will imply that q̌ /∈ B̌(P, g) as soon as we show that the sets

Σ = {sk}k∈ω and B(P, g) are asymptotically disjoint. This will follow as soon as
we check that d(sk, B(P, g)) ≥ g(sk) for every k ∈ ω. Assume conversely that
d(sk, x) < g(sk) for some x ∈ B(P, g). Since d(sk, x) < g(sk) = g̃ ◦ φ(sk) ≤
f̃ ◦ φ(sk) = f(sk), the choice of the function f̃ guarantees that |φ(x) − φ(sk)| ≤
diam φ

(

B(sk, f)
)

≤ D.
Since x ∈ B(P, g), there is a point y ∈ P with d(x, y) ≤ g(y). The inequality

d(x, y) ≤ g(y) = g̃ ◦φ(y) ≤ f̃ ◦φ(y) implies that |φ(x)−φ(y)| ≤ l. It follows from
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φ(sk)− φ(y) ∈ (lω + i)− (lω + i) = lZ and

|φ(sk)− φ(y)| ≤ |φ(sk)− φ(x)| + |φ(x) − φ(y)| ≤ D +D < l

that φ(sk) = φ(y) = n for some number n ∈ ω. Taking into account that
y ∈ P = Ai = Xi \Bi ⊂ Xi \B(sk, 2g̃(n)), we conclude that d(y, sk) > 2g̃(n) and
hence

d(x, sk) ≥ d(y, sk)− d(x, y) > 2g̃(n)− g(φ(y)) = 2g̃(n)− g̃(n) = g̃(n) = g(sk),

which contradicts our assumption. So, the sets Σ and B(P, g) are asymptotically
disjoint and q̌ /∈ B̌(P, g).

2) Now consider the second case P = Bi. By the choice of the function ρ,
for every k ∈ ω there is a point bk ∈ B(ak, ρ(6g(ak))) \ B(ak, 6g(ak)). Since

d(bk, ak) ≤ ρ(6g(ak)) = ρ(6g̃ ◦ φ(ak)) ≤ f̃ ◦ φ(ak), the choice of the number D

and the function f̃ guarantees that |φ(bk) − φ(ak)| ≤ D. Since the sequence
(φ(ak))k∈ω tends to infinity, so does the sequence (φ(bk))k∈ω , which implies that
the set Σ = {bk}k∈ω is unbounded. So we can find an ultrafilter q ∈ X♯ with
Σ ∈ q.

We claim that q̌ ∈ B̌(Pα, fα). Indeed, for every k ∈ ω we get φ(ak) ∈ Q̃α and
hence

bk ∈ B
(

ak, ρ(6g(ak))
)

⊂ B(ak, f̃ ◦ φ(ak)) ⊂ B(ak, fα(ak)) ⊂ B(Pα, fα).

Consequently, Σ ⊂ B(Pα, fα) and q̌ ∈ B̌(Pα, fα).
Next, we show that q̌ /∈ B̌(P, g). By Lemma 2.4, it suffices to show that the

sets Σ and B(P, g) are asymptotically disjoint. Since g̃(φ(bk)−D) → ∞, this will
follow as soon as we check that

d(bk, B(P, g)) ≥ g̃(φ(bk)−D) for every k ∈ ω.

Assuming the converse, find a point x ∈ B(P, g) such that d(bk, x) < g̃(φ(bk)−D).
Since

d(ak, bk) ≤ ρ(6g̃(φ(ak))) ≤ f̃ ◦ φ(ak),

the choice of the number D guarantees that |φ(ak) − φ(bk)| ≤ D. Taking into
account that ak ∈ P = Bi, find a point sk ∈ Sφ(ak) such that ak ∈ B(sk, 2g) and
φ(ak) = φ(sk) ∈ lω + i.

Since

d(bk, x) < g̃(φ(bk)−D) ≤ g̃(φ(bk)) ≤ f̃(φ(bk)),

the choice of the number D guarantees that |φ(bk)− φ(x)| ≤ diam φ(B(bk, f)) ≤
D. Since x ∈ B(P, g), there is a point y ∈ P such that x ∈ B(y, g) ⊂ B(y, f) and
hence |φ(x) − φ(y)| ≤ D. Since y ∈ P = Bi, there is a point s ∈ Sφ(y) such that
y ∈ B(s, 2g) and φ(s) = φ(y) ∈ lω + i.
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Taking into account that φ(s)− φ(sk) ∈ (lω + i)− (lω + i) = lZ and

|φ(s)− φ(sk)| ≤ |φ(s)− φ(y)|+ |φ(y) − φ(x)|

+ |φ(x) − φ(bk)|+ |φ(bk)− φ(ak)|+ |φ(ak)− φ(sk)|

≤ 0 +D +D +D + 0 < l,

we conclude that φ(s) = φ(sk). Let n = φ(s) = φ(sk) = φ(ak) = φ(y).
If s = sk, then

d(bk, x) ≥ d(bk, ak)− d(ak, sk)− d(sk, s)− d(s, y)− d(x, y)

≥ 6g(ak)− 2g(sk)− 0− 2g(s)− g(y)

= 6g̃(φ(ak))− 2g̃(φ(sk))− 2g̃(φ(s)) − g(̃(y))

= 6g̃(n)− 2g̃(n)− 2g̃(n)− g̃(n)

= g̃(n) = g̃(φ(ak)) ≥ g̃(φ(bk)−D),

which contradicts the choice of the point x.

If s 6= sk, then d(s, sk) ≥ f̃(n) by the choice of the f̃(n)-separated set Sn and
then

d(bk, x) ≥ d(sk, s)− d(sk, ak)− d(ak, bk)− d(x, y)− d(y, s)e

≥ f̃(n)− 2g(sk)− ρ(6g(ak))− g(y)− 2g(s)

= f̃(n)− 2g̃(n)− ρ(6g̃(n))− g̃(n)− 2g̃(n)

= f̃(n)− ρ(6g̃(n))− 6g̃(n) ≥ f̃(n)− ρ(6g̃(n))− ρ(6g̃(n))

≥ f̃(n)− 2ρ(6g̃(n)) ≥ f̃(n)−
1

2
f̃(n) =

1

2
f̃(n)

≥ g̃(n) = g̃(φ(ak)) ≥ g̃(φ(bk)−D).

Therefore d(bk, B(P, g)) ≥ g̃(φ(bk) − D) → ∞, which implies that the sets B =
{bk}k∈ω and B(P, g) are asymptotically disjoint and q̌ /∈ B̌(P, g). �

Lemma 4.4. If an unbounded metric space X has asymptotically isolated balls,

then its corona X̌ contains a closed-and-open subset, homeomorphic to ω∗ and

hence mχ(X̌) ≤ mχ(ω∗) = u.

Proof: Since X has asymptotically isolated balls, there is ε > 0 such that for
each finite δ ≥ ε there is an ε-ball Bε(x) equal to the δ-ball Bδ(x). In particular,
for the number δ0 = 2ε, we can find a point x0 ∈ X such that Bε(x0) = Bδ0(x0).
By induction we shall construct an increasing sequence of real numbers (δn)

∞
n=1

and a sequence of points (xn)n∈ω in X such that for every n ∈ N the following
conditions are satisfied:

(1) δn ≥ (n+ 2)ε;
(2) Bδn−ε(xk) 6⊂ B2ε(xk) for all k < n;
(3) Bδn(xn) = Bε(xn).
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These conditions imply that for every k < n we get dX(xk, xn) ≥ δn. Assuming
the opposite, we get xk ∈ Bδn(xn) = Bε(xn) and hence dX(xk, xn) < ε and

Bδn−ε(xk) ⊂ Bδn(xn) = Bε(xn) ⊂ B2ε(xk),

which contradicts the condition (2).
Consider the subspace D = {xn}n∈ω ⊂ X and its ε-neighborhood

Dε =
⋃

n∈ω

Bε(xn) =
⋃

n∈ω

Bδn(xn).

It follows that the characteristic function f : X → {0, 1} of the set Dε is slowly
oscillating. It induces a continuous map f̌ : X̌ → {0, 1} such that the preimage
f̌−1(1) is a clopen subset of X̌ that coincides with the corona Ďε of the set Dε.

It is easy to check that the identity embedding e : D → Dε is a coarse equiv-
alence, which induces a homeomorphism ě : Ď → Ďε. Since each function on
D is slowly oscillating, the corona Ď of D coincides with the Stone-Čech re-
mainder D♯ = βD \ D of the discrete space D. Consequently, the corona X̌
contains a clopen subset Ďε, which is homeomorphic to ω∗ = βω \ ω and hence
mχ(X̌) ≤ mχ(Ď) = mχ(ω∗) = u. �

Lemmas 4.1, 4.2, 4.3 and 2.2 imply the following theorem, which is the main
result of this section.

Theorem 4.5. Let X be an unbounded metric space and φ : X → ω be a

boundedly oscillating bounded-to-bounded function. For each ultrafilter p ∈ X♯

the point p̌ ∈ X̌ has character

(1) χ(p̌, X̌) ≤ max{χ(p,X♯), d};
(2) χ(p̌, X̌) ≥ χ(φ(p), ω∗) ≥ u;

(3) χ(p̌, X̌) ≥ max{χ(φ(p), ω∗), q(φ(p))} ≥ max{u, d} if the space X has no

asymptotically isolated balls.

5. Proof of Theorem 1.2

We need to prove that for an unbounded metric space X its corona X̌ has
minimal character

• mχ(X̌) = u if X has asymptotically isolated balls and
• mχ(X̌) = max{u, d}, otherwise.

If X has asymptotically isolated balls, then the corona X̌ has minimal char-
acter mχ(X̌) ≤ u by Lemma 4.4. The inequality mχ(X̌) ≥ u follows from Theo-
rem 4.5(2).

If X does not have asymptotically isolated balls, then mχ(X̌) ≥ max{u, d}
by Theorem 4.5(3). To prove the reverse inequality, take any injective function
f : ω → X such that limn→∞ d(f(n), f(0)) = ∞. Choose any ultrafilter U ∈ ω∗

with χ(U , ω∗) = u and consider its image p = βf(U) ∈ βX . The choice of the
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function f guarantees that p ∈ X♯. It follows that χ(p,X♯) = χ(U , ω∗) = u and
then

mχ(X̌) ≤ χ(p̌, X̌) ≤ max{χ(p,X♯), d} = max{u, d}

according to Theorem 4.5(1).

6. Proof of Theorem 1.3

It is easy to see that the Cantor macro-cube C = 2<N has no asymptotically
isolated balls. Consequently, mχ(Č) = max{u, d} = d by Theorem 1.2. By
[10], dim(Č) = asdim(C) = 0. Now we are ready to prove the implications
(1) ⇒ (2) ⇒ (3) ⇒ (1) of Theorem 1.3. Let (X, dX) be a metric space of bounded
geometry.

(1) ⇒ (2). If X is coarsely homeomorphic to the Cantor macro-cube C = 2<N,
then the coronas of X and C are homeomorphic according to [19, 2.42].

(2) ⇒ (3) If the coronas X̌ and Č are homeomorphic, then dim(X̌) = dim(Č) =
asdim(C) = 0 and mχ(X̌) = mχ(Č) = d.

(3) ⇒ (1) Assume that dim(X̌) = 0 and mχ(X̌) = d > u. By Proposition 3.1
and Theorem 1.2(1), the metric spaceX has asymptotic dimension zero and has no
asymptotically isolated balls. SinceX has bounded geometry, the characterization
theorem [1] implies that the metric space X is coarsely equivalent to the Cantor
macro-cube 2<N.
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