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On α-embedded sets and extension of mappings
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Abstract. We introduce and study α-embedded sets and apply them to generalize

the Kuratowski Extension Theorem.

Keywords: α-embedded set; α-separated set; extension

Classification: 54C20, 54C30, 54H05

1. Introduction

A subset A of a topological space X is called functionally open (function-
ally closed) if there exists a continuous function f : X → [0, 1] such that A =
f−1((0, 1]) (A = f−1(0)).

Let G∗
0 (X) and F∗

0 (X) be the collections of all functionally open and function-
ally closed subsets of a topological space X , respectively. Assume that the classes
G∗
ξ (X) and F∗

ξ (X) are defined for all ξ < α, where 0 < α < ω1. Then, if α is odd,

the class G∗
α(X) (F∗

α(X)) consists of all countable intersections (unions) of sets of
lower classes, and, if α is even, the class G∗

α(X) (F∗
α(X)) consists of all countable

unions (intersections) of sets of lower classes. The classes F∗
α(X) for odd α and

G∗
α(X) for even α are said to be functionally additive, and the classes F∗

α(X) for
even α and G∗

α(X) for odd α are called functionally multiplicative. If a set belongs
to the α-th functionally additive and to the α-th functionally multiplicative class
simultaneously, then it is called functionally ambiguous of the α-th class . For
every 0 ≤ α < ω1 let

B∗
α(X) = F∗

α(X) ∪ G∗
α(X)

and let

B∗(X) =
⋃

0≤α<ω1

B∗
α(X).

If A ∈ B∗(X), then A is said to be a functionally measurable set.
If P is a property of mappings, then by P (X,Y ) we denote the collection of all

mappings f : X → Y with the property P . Let P (X) (P ∗(X)) be the collection
of all real-valued (bounded) mappings on X with a property P .

By the letter C we denote, as usual, the property of continuity.
Let K0(X,Y ) = C(X,Y ). For an ordinal 0 < α < ω1 we say that a mapping

f : X → Y belongs to the α-th functional Lebesgue class , f ∈ Kα(X,Y ), if the
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preimage f−1(V ) of an arbitrary open set V ⊆ Y is of the α-th functionally
additive class in X .

A subspace E of X is P -embedded (P ∗-embedded) in X if every (bounded)
function f ∈ P (E) can be extended to a (bounded) function g ∈ P (X).

A subset E of X is said to be z-embedded in X if every functionally closed set
in E is the restriction of a functionally closed set in X to E. It is well-known that

E is C-embedded ⇒ E is C∗-embedded ⇒ E is z-embedded.

Recall that sets A and B are completely separated in X if there exists a con-
tinuous function f : X → [0, 1] such that A ⊆ f−1(0) and B ⊆ f−1(1).

The following theorem was proved in [2, Corollary 3.6].

Theorem 1.1 (Blair-Hager). A subset E of a topological space X is C-embedded

in X if and only if E is z-embedded in X and E is completely separated from

every functionally closed set in X disjoint from E.

It is natural to consider P - and P ∗-embedded sets if P = Kα for α > 0. In
connection with this we introduce and study a class of α-embedded sets which
coincides with the class of z-embedded sets when α = 0. In Section 3 we generalize
the notion of completely separated sets to α-separated sets. Section 4 deals with
ambiguously α-embedded sets which play the important role in the extension of
bounded Kα-functions. In the fifth section we prove an analog of the Tietze-
Uryhson Extension Theorem for Kα-functions. Section 6 concerns the question
when K1-embedded sets coincide with K∗

1 -embedded sets. The seventh section
presents a generalization of the Kuratowski Theorem [11, p. 445] on extension of
Kα-mappings with values in Polish spaces.

2. α-embedded sets

Let 0 ≤ α < ω1. A subset E of a topological space X is α-embedded in X if
for any set A of the α-th functionally additive (multiplicative) class in E there
is a set B of the α-th functionally additive (multiplicative) class in X such that
A = B ∩ E.

Proposition 2.1. Let X be a topological space, 0 ≤ α < ω1 and let E ⊆ X be

an α-embedded set of the α-th functionally additive (multiplicative) class in X .

Then every set of the α-th functionally additive (multiplicative) class in E belongs

to the α-th functionally additive (multiplicative) class in X .

Proof: For a set C of the α-th functionally additive (multiplicative) class in E
we choose a set B of the α-th functionally additive (multiplicative) class in X such
that C = B∩E. Then C belongs to the α-th functionally additive (multiplicative)
class in X as the intersection of two sets of the same class. �

Proposition 2.2. Let X be a topological space, E ⊆ X and

(i) X is perfectly normal, or

(ii) X is completely regular and E is its Lindelöf subset, or
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(iii) E is a functionally open subset of X , or

(iv) X is a normal space and E is its Fσ-subset,

then E is 0-embedded in X .

Proof: Let G be a functionally open set in E.
(i) Choose an open set U in X such that G = E ∩ U . Then U is functionally

open in X by Vedenissoff’s theorem [5, p. 45].
(ii) Let U be an open set in X such that G = E ∩ U . Since X is completely

regular, U =
⋃

s∈S Us, where Us is a functionally open set in X for each s ∈ S.
Notice that G is Lindelöf, provided G is Fσ in the Lindelöf space E [5, p. 192].
Then there exists a countable set S0 ⊆ S such that G ⊆

⋃

s∈S0
Us. Let V =

⋃

s∈S0
Us. Then V is functionally open in X and V ∩ E = G.

(iii) Consider continuous functions ϕ : E → [0, 1] and ψ : X → [0, 1] such that
G = ϕ−1((0, 1]) and E = ψ−1((0, 1]). For each x ∈ X we set

f(x) =

{

ϕ(x) · ψ(x), x ∈ E,

0, x ∈ X \ E.

Since ϕ(x) · ψ(x) = 0 on E \ E, f : X → [0, 1] is continuous. Moreover, G =
f−1((0, 1]). Hence, the set G is functionally open in X .

(iv) Let G̃ be an open set in X such that G = G̃ ∩ E. Since G is functionally
open in E, G is Fσ in E. Consequently, G is Fσ in X , provided E is Fσ in X .
Therefore, there exists a sequence (Fn)

∞
n=1 of closed sets Fn ⊆ X such that

G =
⋃∞

n=1 Fn. Since X is normal, for every n ∈ N there exists a continuous

function fn : X → [0, 1] such that fn(x) = 1 if x ∈ Fn and fn(x) = 0 if x ∈ X \ G̃.
Then the set V =

⋃∞
n=1 f

−1
n ((0, 1]) is functionally open in X and V ∩E = G. �

Examples 2.3 and 2.4 show that none of the conditions (i)–(iv) on X and E in
Proposition 2.2 can be weakened.

Recall that a topological space X is said to be perfect if every its closed subset
is Gδ in X .

Example 2.3. There exist a perfect completely regular space X and its func-
tionally closed subspace E which is not α-embedded in X for every 0 ≤ α < ω1.

Consequently, there is a bounded continuous function on E which cannot be
extended to a Kα-function for every α.

Proof: Let X be the Niemytski plane [5, p. 22], i.e., X = R × [0,+∞) where
a base of neighborhoods of (x, y) ∈ X with y > 0 is formed by open balls with
the center in (x, y), and a base of neighborhoods of (x, 0) is formed by the sets
U ∪ {(x, 0)} such that U is an open ball which tangent to R × {0} in the point
(x, 0). It is well-known that the space X is perfect and completely regular, but it
is not normal.

Denote E = R×{0}. Since the function f : X → R, f(x, y) = y, is continuous
and E = f−1(0), the set E is functionally closed in X .
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Notice that every function f : E → R is continuous. Therefore, |B∗
α(E)| = 22

ω0

for every 0 ≤ α < ω1. On the other hand, |B∗
α(X)| = 2ω0 for every 0 ≤ α < ω1,

provided the space X is separable. Hence, for every 0 ≤ α < ω1 there exists a set
A ∈ B∗

α(E) which cannot be extended to a set B ∈ B∗
α(X).

Observe that a function f : E → [0, 1] such that f = 1 on A and f = 0 on
E \ A is continuous on E. But there is no Kα-function f : X → [0, 1] such that
g|E = f , since otherwise the set B = g−1(1) would be an extension of A. �

Example 2.4. There exist a compact Hausdorff space X and its open subspace
E which is not α-embedded in X for every 0 ≤ α < ω1.

Proof: Let X = D∪{∞} be the Alexandroff compactification of an uncountable
discrete space D [5, p. 169] i E = D. Fix 0 ≤ α < ω1 and choose an arbitrary
uncountable set A ⊆ E with uncountable complement X \ A. Evidently, A is
functionally closed in E. Assume that there is a set B of the α-th functionally
multiplicative class in X such that A = B ∩E. Clearly, B = A∪{∞}. Moreover,
there exists a function f : X → R of the α-th Baire class such that B = f−1(0)
[9, Lemma 2.1]. But every continuous function on X , and consequently every
Baire function of the class α on X satisfies the equality f(x) = f(∞) for all but
countably many points x ∈ X , which implies a contradiction. �

Proposition 2.5. Let 0 ≤ α ≤ β < ω1 and let X be a topological space. Then

every α-embedded subset of X is β-embedded.

Proof: Let E be an α-embedded subset of X . If β = α, the assertion of the
proposition if obvious. Suppose the assertion is true for all α ≤ β < ξ and let A
be a set of the ξ-th functionally additive class in E. Then there exists a sequence
of sets An of functionally multiplicative classes < ξ in E such that A =

⋃∞
n=1An.

According to the assumption, for every n ∈ N there is a set Bn of a functionally
multiplicative class < ξ in X such that An = Bn∩E. Then the set B =

⋃∞
n=1Bn

belongs to the ξ-th functionally additive class in X and A = B ∩ E. �

The opposite proposition is not true, as the following result shows.

Theorem 2.6. There exist a completely regular space X and its 1-embedded

subspace E ⊆ X which is not 0-embedded in X .

Proof: Let X0 = [0, 1], Xs = N for every s ∈ (0, 1], Y =
∏

s∈(0,1]Xs and

X = [0, 1]× Y =
∏

s∈[0,1]

Xs.

Then X is completely regular as a product of completely regular spaces Xs. Let

A1 = (0, 1] and A2 = {0}.

For i = 1, 2 we consider the set

Fi =
⋂

n6=i

{y = (ys)s∈(0,1] ∈ Y : |{s ∈ (0, 1] : ys = n}| ≤ 1}.
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Obviously, F1 ∩ F2 = ∅ and the sets F1 and F2 are closed in Y .
Let

B1 = A1 × F1, B2 = A2 × F2 and E = B1 ∪B2.

It is easy to see that the sets B1 and B2 are closed in E, and consequently they
are functionally clopen in E.

Claim 1. The set Bi is 0-embedded in X for every i = 1, 2.

Proof: Let C be a functionally open set in B1. Let us consider the set

H = {x = (xs)s∈[0,1] ∈ X : |{s ∈ [0, 1] : xs 6= 1}| ≤ ℵ0}.

Then the set [0, 1]×Fi is closed in H for every i = 1, 2. Since H is the Σ-product
of the family (Xs)s∈[0,1] (see [5, p. 118]), according to [10] the space H is normal.
Consequently, [0, 1] × Fi is normal as closed subspace of normal space for every
i = 1, 2. Clearly, B1 is functionally open in [0, 1]× F1. Hence, B1 is 0-embedded
in [0, 1] × F1 according to Proposition 2.2(iii). Then C is functionally open in
[0, 1]× F1 by Proposition 2.1. Notice that the set [0, 1]× F1 is 0-embedded in H
by Propositions 2.2(iv). Hence, there exists a functionally open set C′ in H such
that C′ ∩ ([0, 1]× F1) = C. It follows from [3] that H is 0-embedded in X . Then
there exists a functionally open set C′′ in X such that C′′ ∩H = C′. Evidently,
C′′ ∩B1 = C. Therefore, the set B1 in 0-embedded in X .

Analogously, it can be shown that the set B2 is 0-embedded in X , using the
fact that B2 is 0-embedded in [0, 1]× F2 according to Proposition 2.2(iv).

Claim 2. The set E is not 0-embedded in X.

Proof: Assuming the contrary, we choose a functionally closed set D in X such
that D ∩E = B1. Then D = f−1(0) for some continuous function f : X → [0, 1].
It follows from [5, p. 117] that there exists a countable set S = {0} ∪ T , where
T ⊆ (0, 1], such that for any x = (xs)s∈[0,1] and y = (ys)s∈[0,1] of X the equality
x|S = y|S implies f(x) = f(y). Let y0 ∈ Y be such that y0|T is a sequence of
different natural numbers which are not equal to 1 or 2. We choose y1 ∈ F1 and
y2 ∈ F2 such that y0|T = y1|T = y2|T . Then

f(a, y0) = f(a, y1) = f(a, y2)

for all a ∈ [0, 1]. We notice that f(0, y1) = 0. Therefore, f(0, y0) = 0. But
f(a, y2) > 0 for all a ∈ A2. Then f(a, y0) > 0 for all a ∈ A2. Hence, A1 =
(fy0)−1(0), where fy0(a) = f(a, y0) for all a ∈ [0, 1], and fy0 is continuous. Thus,
the set A1 = (0, 1] is closed in [0, 1], which implies a contradiction.

Claim 3. The set E is 1-embedded in X.

Proof: Let C be a functionally Gδ-set in E. We put

E1 = A1 × Y, E2 = A2 × Y.



382 O. Karlova

Then the set E1 is functionally open in X and the set E2 is functionally closed
in X . For i = 1, 2 let Ci = C∩Bi. Since for every i = 1, 2 the set Ci is functionally
Gδ in the set Bi 0-embedded in X , by Proposition 2.5 there exists a functionally
Gδ-set C̃i in X such that C̃i ∩Bi = Ci. Let

C̃ = (C̃1 ∩ E1) ∪ (C̃2 ∩E2).

Then C̃ is functionally Gδ in X and C̃ ∩ E = C. �

3. α-separated sets and α-separated spaces

Let 0 ≤ α < ω1. Subsets A and B of a topological space X are said to be
α-separated if there exists a function f ∈ Kα(X) such that

A ⊆ f−1(0) and B ⊆ f−1(1).

Let us remark that 0-separated sets are also called completely separated [5, p. 42].

Lemma 3.1 ([8, Lemma 2.1]). Let X be a topological space, α > 0 and let

A ⊆ X be a subset of the α-th functionally additive class. Then there exists

a sequence (An)
∞
n=1 such that each An is functionally ambiguous of the class α

in X , An ∩ Am = ∅ for n 6= m and A =
⋃∞

n=1An.

Proof: Since A belongs to the α-th functionally additive class, A =
⋃∞

n=1Bn,
where each Bn belongs to the functionally multiplicative class < α in X . There-
fore, each Bn is functionally ambiguous of the class α. Let A1 = B1 and
An = Bn \

⋃

k<n Bk for n > 1. Then (An)
∞
n=1 is the required sequence. �

Lemma 3.2 ([8, Lemma 2.2]). Let X be a topological space, α ≥ 0 and let

An belongs to the α-th functionally additive class in X for every n ∈ N with

X =
⋃∞

n=1An. Then there exists a sequence (Bn)
∞
n=1 of mutually disjoint func-

tionally ambiguous sets of the class α in X such that Bn ⊆ An and X =
⋃∞

n=1Bn.

Proof: If follows from Lemma 3.1 that for every n ∈ N there exists a sequence
(Fn,m)∞m=1 such that each Fn,m is functionally ambiguous of the class α in X ,
Fn,m ∩ Fn,k = ∅ for m 6= k and An =

⋃∞
m=1 Fn,m. Let k : N2 → N be a bijection.

Set

Cn,m = Fn,m \
⋃

k(p,s)<k(n,m)

Fp,s.

Evidently,
⋃∞

n,m=1 Cn,m = X . Let Bn =
⋃∞

m=1 Cn,m. Then
⋃∞

n=1Bn =
⋃∞

n=1An

= X and Bn ⊆
⋃∞

m=1 Fn,m = An. Notice that each Cn,m is functionally ambigu-
ous of the class α. Therefore, Bn belongs to the functionally additive class α for
every n. Moreover, Bn ∩ Bm = ∅ for n 6= m. Since X \ Bn =

⋃

k 6=n Bk, Bn is
functionally ambiguous of the class α. �

Lemma 3.3. Let 0 ≤ α < ω1 and let A be a subset of the α-th functionally mul-

tiplicative class of a topological space X . Then there exists a function f ∈ K∗
α(X)

such that A = f−1(0).
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Proof: For α = 0 the lemma follows from the definition of a functionally closed
set. Let α > 0. Since the set B = X \A is of the α-th functionally additive class,
there exists a sequence of functionally ambiguous sets Bn of the α-th class in X
such that B =

⋃∞
n=1Bn and Bn ∩Bm = ∅ for all n 6= m by Lemma 3.1. Define a

function f : X → [0, 1] by

f(x) =

{

0, if x ∈ A,
1
n
, if x ∈ Bn.

Take an arbitrary open set V ⊆ [0, 1]. If 0 6∈ V then f−1(V ) is of the α-th
functionally additive class as a union of at most countably many sets Bn. If
0 ∈ V then there exists such a number N that 1

n
∈ V for all n > N . Then

the set X \ f−1(V ) =
⋃N

n=1Bn belongs to the α-th functionally multiplicative
class. Hence, f−1(V ) is of the α-th functionally additive class in X . Therefore,
f ∈ K∗

α(X). �

Proposition 3.4. Let 0 ≤ α < ω1 and let X be a topological space. Then any

two disjoint sets A and B of the α-th functionally multiplicative class in X are

α-separated.

Proof: By Lemma 3.3 we choose functions f1, f2 ∈ Kα(X) such that A = f−1
1 (0)

and B = f−1
2 (0). For all x ∈ X let

f(x) =
f1(x)

f1(x) + f2(x)
.

It is easy to see that f ∈ Kα(X), f(x) = 0 on A and f(x) = 1 on B. �

Let 0 ≤ α < ω1. A topological space X is α-separated if any two disjoint
sets A,B ⊆ X of the α-th multiplicative class in X are α-separated. It follows
from Urysohn’s Lemma [5, p. 41] that a topological space is 0-separated if and
only if it is normal. Proposition 3.4 implies that every perfectly normal space is
α-separated for each α ≥ 0. It is natural to ask whether there is an α-separated
space for α ≥ 1 which is not perfectly normal.

Example 3.5. There exists a completely regular 1-separated space which is not
perfectly normal.

Proof: Let D = D(m) be a discrete space of the cardinality m, where m is a
measurable cardinal number [6, 12.1]. According to [6, 12.2], D is not a realcom-
pact space. Let X = υD be a Hewitt realcompactification of D [5, p. 218]. Then
X is an extremally disconnected P -space, which is not discrete [6, 12H]. Thus,
there exists a point x ∈ X such that the set {x} is not open. Then {x}, being
a closed set, is not a Gδ-set, since X is a P -space (i.e. a space in which every
Gδ-subset is open). Therefore, the space X is not perfect.

If A and B are disjoint Gδ-subsets of X , then A and B are open in X . Notice
that in an extremally disconnected space any two disjoint open sets are completely
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separated [6, 1H]. Consequently, A and B are 1-separated, since every continuous
function belongs to the first Lebesgue class. �

Clearly, every ambiguous set A of the class 0 in a topological space (i.e., every
clopen set) is a functionally ambiguous set of the class 0. If A is an ambiguous set
of the first class, i.e. A is an Fσ- and a Gδ-set, then A need not be a functionally
Fσ- or a functionally Gδ-set. Indeed, let X be the Niemytski plane, E be a set
which is not of the Gδσ-type in R and let A = E × {0} be a subspace of X .
Then A is closed and consequently Gδ-subset of X , since the Niemytski plane is a
perfect space. Assume that A is a functionally Fσ-set in X . Then A =

⋃∞
n=1An,

where An is a functionally closed subset of X for every n ∈ N. According to [13,
Theorem 5.1], a closed subset F of X is a functionally closed set in X if and only
if the set {x ∈ R : (x, 0) ∈ F} is a Gδ-set in R. It follows that for every n ∈ N the
set An is a Gδ-subset of R, which implies a contradiction.

Theorem 3.6. Let 0 ≤ α < ω1 and let X be an α-separated space.

(1) Every ambiguous set A ⊆ X of the class α is functionally ambiguous of

the class α.
(2) For any disjoint sets A and B of the (α+ 1)-th additive class in X there

exists a set C of the (α+1)-th functionally multiplicative class such that

A ⊆ C ⊆ X \B.

(3) Every ambiguous set A of the (α + 1)-th class in X is a functionally

ambiguous set of the (α + 1)-th class.

(4) Any set of the α-th multiplicative class in X is α-embedded.

Proof: (1) Since the set B = X \ A belongs to the α-th multiplicative class
in X , there exists a function f ∈ Kα(X) such that A ⊆ f−1(0) and B ⊆ f−1(1).
Then A = f−1(0) and B = f−1(1). Hence, the sets A and B are of the α-th
functionally multiplicative class. Consequently, A is a functionally ambiguous set
of the class α.

(2) Choose two sequences (An)
∞
n=1 and (Bn)

∞
n=1, where An and Bn belong to

the α-th multiplicative class in X for every n ∈ N, such that A =
⋃∞

n=1An and
B =

⋃∞
n=1Bn. Since X is α-separated, for every n,m ∈ N there exists a function

fn,m ∈ Kα(X) such that An ⊆ f−1
n,m(1) and Bm ⊆ f−1

n,m(0). Set

C =

∞
⋂

n=1

∞
⋃

m=1

f−1
n,m((0, 1]).

Then the set C is of the (α + 1)-th functionally multiplicative class in X and
A ⊆ C ⊆ X \B.

(3) Let A ⊆ X be an ambiguous set of the (α+1)-th class. Denote B = X \A.
Since A and B are disjoint sets of the (α + 1)-th additive class in X , according
to (3.6) there exists a set C ⊆ X of the (α + 1)-th functionally multiplicative
class such that A ⊆ C ⊆ X \ B. It follows that A = C, consequently A is of the
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(α + 1)-th functionally multiplicative class. Analogously, it can be shown that
B is also of the (α + 1)-th functionally multiplicative class. Therefore, A is a
functionally ambiguous set of the (α+ 1)-th class.

(4) If α = 0 then X is a normal space. Therefore, any closed set F in X is
0-embedded by Proposition 2.2. Let α > 0 and let E ⊆ X be a set of the α-th
multiplicative class in X . Choose any set A of the α-th functionally multiplicative
class in E. Since the set E \A belongs to the α-th functionally additive class in E,
there exists a sequence of sets Bn of the α-th functionally multiplicative class in E
such that E \A =

⋃∞
n=1Bn. Then for every n ∈ N the sets A and Bn are disjoint

and belong to the α-th multiplicative class in X . Since X is α-separated, we can
choose a function fn ∈ Kα(X) such that A ⊆ f−1

n (0) and Bn ⊆ f−1
n (1). Let

Ã =
⋂∞

n=1 f
−1
n (0). Then the set Ã belongs to the α-th functionally multiplicative

class in X and Ã ∩ E = A. �

Proposition 3.7. A topological space X is normal if and only if every its closed

subset is 0-embedded.

Proof: We only need to prove the sufficiency. Let A and B be disjoint closed
subsets of X . Then A is a functionally closed subset of E = A ∪ B. Since E is
closed in X , E is a 0-embedded set. Therefore, there is a functionally closed set
Ã in X such that A = E ∩ Ã. Then B is a functionally closed subset of the closed
set D = Ã∪B. Since D is 0-embedded in X , there exists a functionally closed set
B̃ in X such that B = D∩ B̃. It is easy to check that Ã∩ B̃ = ∅. If f : X → [0, 1]

be a continuous function such that Ã = f−1(0) and B̃ = f−1(1), then the sets
U = f−1([0, 1/2)) and V = f−1((1/2, 1]) are disjoint and open in X , A ⊆ U and
B ⊆ V . Hence, X is a normal space. �

An analog of the previous proposition is valid for hereditarily α-separated
spaces. We say that a topological space X is hereditarily α-separated if every
its subspace is α-separated.

Proposition 3.8. Let 0 ≤ α < ω1 and let X be a hereditarily α-separated space.

If every subset of the (α + 1)-th multiplicative class in X is (α + 1)-embedded,

then X is (α+ 1)-separated.

Proof: Let A,B ⊆ X be disjoint sets of the (α+1)-th multiplicative class. Then
A is ambiguous of the class (α+1) in E = A∪B. Since E belongs to the (α+1)-th
multiplicative class in X , E is (α+ 1)-embedded. Moreover, E is α-separated as
a subspace of the hereditarily α-separated space X . According to Theorem 3.6(3)
A is functionally ambiguous of the (α+1)-th class in E. Therefore, there is a set

Ã of the (α + 1)-th functionally multiplicative class in X such that A = E ∩ Ã.
Then B is a functionally ambiguous subset of the class (α + 1) in D = Ã ∪ B.
Since D belongs to the (α+1)-th multiplicative class in X , D is (α+1)-embedded.

Therefore, there exists a set B̃ of the (α+1)-th functionally multiplicative class in

X such that B = D∩B̃. It is easy to check that Ã∩B̃ = ∅. Hence, the sets Ã and
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B̃ are (α+1)-separated by Proposition 3.4. Then A and B are (α+1)-separated
too. �

Remark that the Alexandroff compactification of the real line R endowed with
the discrete topology is a hereditarily normal space which is not 1-separated.

We give some examples below of α-separated subsets of a completely regular
space.

Proposition 3.9. Let X be a completely regular space and A,B ⊆ X are disjoint

sets. Then

(a) if A and B are Lindelöf Gδ-sets, then they are 1-separated;
(b) if A is a Lindelöf hereditarily Baire space and B is a functionally Gδ-set,

then A and B are 1-separated;
(c) if A is Lindelöf and B is an Fσ-set, then A and B are 2-separated.

Proof: (a) Let A =
⋂∞

n=1 Un, where Un is an open set in X for every n ∈ N.
Since X is completely regular, Un =

⋃

s∈Sn
Us,n for every n ∈ N such that all the

sets Us,n are functionally open in X . Then for every n ∈ N there is a countable set
Sn,0 ⊆ Sn such that A ⊆

⋃

s∈Sn0

Us,n, since A is Lindelöf. Let Vn =
⋃

s∈Sn0

Us,n,

n ∈ N. Obviously, every Vn is a functionally open set and A =
⋂∞

n=1 Vn. Hence,
A is a functionally Gδ-subset of X . Analogously, B is also a functionally Gδ-set.
Therefore, the sets A and B are 1-separated by Proposition 3.4.

(b) According to [7, Proposition 12] there is a functionally Gδ-set C in X such
that A ⊆ C ⊆ X \ B. Taking a function f ∈ K1(X) such that C = f−1(0) and
B = f−1(1), we obtain that A and B are 1-separated.

(c) Let X \B =
⋂∞

n=1 Un, where (Un)
∞
n=1 is a sequence of open subsets of X .

Then Un =
⋃

s∈Sn
Us,n for every n ∈ N such that all the sets Us,n are functionally

open in X . Since A is Lindelöf, A ⊆ Vn =
⋃

s∈Sn0

Us,n, where the set Sn0
is

countable for every n ∈ N. Denote C =
⋂∞

n=1 Vn. Then C is a functionally Gδ-set
in X and A ⊆ C ⊆ X \B. Since C is a functionally ambiguous set of the second
class, A and B are 2-separated. �

The following example shows that the class of separation of sets A and B in
Proposition 3.9(c) cannot be made lower.

Example 3.10. There exist a metrizable space X and its disjoint Lindelöf Fσ-
subsets A and B, which are not 1-separated.

Proof: Let X = R, A = Q and B is a countable dense subsets of irrational
numbers. Assume that A and B are 1-separated, i.e. there exist disjoint Gδ-sets
C and D in R such that A ⊆ C and B ⊆ D. Then C = D = R, which implies a
contradictions, since X is a Baire space. �
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4. Ambiguously α-embedded sets

Let 0 < α < ω1. A subset E of a topological space X is ambiguously α-
embedded in X if for any functionally ambiguous set A of the class α in E there
exists a functionally ambiguous set B of the class α in X such that A = B ∩ E.

Proposition 4.1. Let 0 < α < ω1 and let X be a topological space. Then every

ambiguously α-embedded set E in X is α-embedded in X .

Proof: Take a set A ⊆ E of the α-th functionally additive class in E. Then
A can be written as A =

⋃∞
n=1An, where An is a functionally ambiguous set of

the class α in E for every n ∈ N by Lemma 3.1. Then there exists a sequence of
functionally ambiguous sets Bn of the class α in X such that An = Bn ∩ E for
every n ∈ N. Let B =

⋃∞
n=1Bn. Then the set B belongs to the α-th functionally

additive class in X and B ∩ E = A. �

We will need the following auxiliary fact.

Lemma 4.2 (Lemma 2.3 [8]). Let 0 < α < ω1 and let X be a topological space.

Then for any disjoint sets A,B ⊆ X of the α-th functionally multiplicative class

in X there exists a functionally ambiguous set C of the class α in X such that

A ⊆ C ⊆ X \B.

Proof: Lemma 3.2 implies that there are disjoint functionally ambiguous sets
E1 and E2 of the class α such that E1 ⊆ X \ A, E2 ⊆ X \ B and X = E1 ∪ E2.
It remains to put C = E2. �

Proposition 4.3. Let 0 < α < ω1 and let X be a topological space. Then every

α-embedded set E of the α-th functionally multiplicative class inX is ambiguously

α-embedded in X .

Proof: Consider a functionally ambiguous set A of the class α in E. Then
there exists a set B of the α-th functionally multiplicative class in X such that
A = B ∩ E. Since E is of the α-th functionally multiplicative class in X , the
set A is also of the same class in X . Analogously, the set E \ A belongs to the
α-th functionally multiplicative class in X . It follows from Lemma 4.2 that there
exists a functionally ambiguous set C of the class α in X such that A ⊆ C and
C∩(E\A) = ∅. Clearly, C∩E = A. Hence, the set E is ambiguously α-embedded
in X . �

Example 4.4. There exists a 0-embedded Fσ-set E ⊆ R which is not ambiguously
1-embedded.

Proof: Let E = Q. Obviously, E is a 0-embedded set. Consider any two disjoint
A and B which are dense in E. Then A and B are simultaneously Fσ- and Gδ-sets
in E. Assume that there exists an Fσ- and Gδ-set C in R such that A = E ∩ C.
Since A ⊆ C and B ⊆ R \ C, the sets C and R \ C are dense in R. Moreover,
the sets C and R \ C are Gδ in R. It implies a contradiction, since R is a Baire
space. �
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Example 4.5. There exits a Borel non-measurable ambiguously 1-embedded sub-
set of a perfectly normal compact space.

Proof: Let X be the “two arrows” space (see [5, p. 212]), i.e. X = X0∪X1 where
X0 = {(x, 0) : x ∈ (0, 1]} and X1 = {(x, 1) : x ∈ [0, 1)}. The topology base on X
is generated by the sets

((x−
1

n
, x]× {0}) ∪ ((x−

1

n
, x)× {1}) if x ∈ (0, 1] and n ∈ N

and

((x, x +
1

n
)× {0}) ∪ ([x, x +

1

n
)× {1}) if x ∈ [0, 1) and n ∈ N.

For a set A ⊆ X we denote

A+ = {x ∈ [0, 1] : (x, 1) ∈ A} and A− = {x ∈ [0, 1] : (x, 0) ∈ A}.

It is not hard to verify that for every open or closed set A ⊆ X we have
|A+∆A−| ≤ ℵ0. It follows that |B+∆B−| ≤ ℵ0 for any Borel measurable set
B ⊆ X .

Let E = X0. Since E
+ = ∅ and E− = (0, 1], the set E is non-measurable. We

show that E is an ambiguously 1-embedded set. Indeed, let A ⊆ E be an Fσ-
and Gδ-subset of E. Then B = E \ A is also an Fσ- and Gδ-subset of E. Let Ã

and B̃ be Gδ-sets in X such that A = Ã ∩ E and B = B̃ ∩ E. The inequalities
|Ã+∆Ã−| ≤ ℵ0 and |B̃+∆B̃−| ≤ ℵ0 imply that |C| ≤ ℵ0, where C = Ã ∩ B̃.

Hence, C is an Fσ-set in X . Moreover, C is a Gδ-set in X . Therefore, Ã \C and

B̃ \ C are Gδ-sets in X . According to Lemma 4.2, there is an Fσ- and Gδ-set D

in X such that Ã \ C ⊆ D and D ∩ (B̃ \ C) = ∅. Then D ∩ E = A. �

5. Extension of real-valued Kα-functions

Analogs of Proposition 5.1 and Theorem 5.3 for α = 1 were proved in [7].

Proposition 5.1. Let X be a topological space, E ⊆ X and 0 < α < ω1. Then

the following conditions are equivalent:

(i) E is K∗
α-embedded in X ;

(ii) E is ambiguously α-embedded in X ;

(iii) (X,E, [c, d]) has the Kα-extension property for any segment [c, d] ⊆ R.

Proof: (i)=⇒(ii) Take an arbitrary functionally ambiguous set A of the class α
in E and consider its characteristic function χA. Then χA ∈ K∗

α(E), as is easy
to check. Let f ∈ Kα(X) be an extension of χA. Then the sets f−1(1) and
f−1(0) are disjoint and belong to the α-th functionally multiplicative class in X .
According to Lemma 4.2 there exists a functionally ambiguous set B of the class
α in X such that f−1(1) ⊆ B and B ∩ f−1(0) = ∅. It remains to notice that
B ∩E = f−1(1)∩E = χ−1

A (1) = A. Hence, E is an ambiguously α-embedded set
in X .



On α-embedded sets and extension of mappings 389

(ii)=⇒(iii) Let f ∈ Kα(E, [c, d]). Define

h1(x) =

{

f(x), if x ∈ E,

inf f(E), if x ∈ X \ E,

h2(x) =

{

f(x), if x ∈ E,

sup f(E), if x ∈ X \ E,

Then c ≤ h1(x) ≤ h2(x) ≤ d for all x ∈ X .
We prove that for any reals a < b there exists a function h ∈ Kα(X) such that

h−1
2 ([c, a]) ⊆ h−1(0) and h−1

1 ([b, d]) ⊆ h−1(1).

Fix a < b. Without loss of generality we may assume that

inf f(E) ≤ a < b ≤ sup f(E).

Denote

A1 = f−1([c, a]), A2 = f−1([b, d]).

Then A1 and A2 are disjoint sets of the α-th functionally multiplicative class in E.
Using Lemma 4.2, we choose a functionally ambiguous set C of the class α in E
such that A1 ⊆ C and C ∩ A2 = ∅. Since E is an ambiguously α-embedded set
in X , there exists such a functionally ambiguous set D of the class α in X that
D ∩E = C. Moreover, by Proposition 4.1 there exist sets B1 and B2 of the α-th
functionally multiplicative class in X such that Ai = E ∩Bi when i = 1, 2. Let

Ã1 = D ∩B1, Ã2 = (X \D) ∩B2.

Then the sets Ã1 and Ã2 are disjoint and belong to the α-th functionally multi-
plicative class in X . Moreover, A1 = E ∩ Ã1 and A2 = E ∩ Ã2. According to
Proposition 3.4 there is a function h ∈ K∗

α(X) such that

h−1(0) = Ã1 and h−1(1) = Ã2.

According to [12, Theorem 3.2] there exists a function g ∈ Kα(X) such that

h1(x) ≤ g(x) ≤ h2(x)

for all x ∈ X . Clearly, g is an extension of f and g ∈ Kα(X, [c, d]).

(iii)=⇒(i) Let f ∈ K∗
α(E) and let |f(x)| ≤ C for all x ∈ E. Consider a function

g ∈ Kα(X) which is an extension of f . Define a function r : R → [−C,C],
r(x) = min{C,max{x,−C}}. Obviously, r is continuous. Let h = r ◦ g. Then
h ∈ K∗

α(X) and h|E = f . Hence, E is K∗
α-embedded in X . �
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Lemma 5.2. Let 0 < α < ω1, X be a topological space and let E ⊆ X be such

an α-embedded set in X that for any set A of the α-th functionally multiplicative

class in X with E ∩ A = ∅ the sets E and A are α-separated. Then E is an

ambiguously α-embedded set.

Proof: Consider a functionally ambiguous set C of the class α in E and denote
C1 = C, C2 = E \ C. Then there exist sets C̃1 and C̃2 of the α-th functionally

multiplicative class in X such that C̃i ∩ E = Ci when i = 1, 2. Then the set
A = C̃1 ∩ C̃2 is of the α-th functionally multiplicative class in X and A ∩ E = ∅.
Let h ∈ Kα(X) be a function such that E ⊆ h−1(0) and A ⊆ h−1(1). Denote

H = h−1(0) and Hi = H ∩ C̃i when i = 1, 2. Since H1 and H2 are disjoint
sets of the α-th functionally multiplicative class in X , by Lemma 4.2 there is a
functionally ambiguous set D of the class α in X such that H1 ⊆ D ⊆ X \H2.
Obviously, D ∩ E = C. �

Theorem 5.3. Let 0 < α < ω1 and let E be a subset of a topological space X .

Then the following conditions are equivalent:

(i) E is Kα-embedded in X ;

(ii) E is α-embedded in X and for any set A of the α-th functionally multi-

plicative class in X such that E∩A = ∅ the sets E and A are α-separated.

Proof: (i)=⇒(ii) Let C ⊆ E be a set of the α-th functionally multiplicative class
in E. Then by Lemma 3.3 we choose a function f ∈ K∗

α(E) such that C = f−1(0).
If g ∈ Kα(X) is an extension of f , then the set B = g−1(0) belongs to the α-th
functionally multiplicative class in X and B∩E = C. Hence, E is an α-embedded
set in X .

Now consider a set A of the α-th functionally multiplicative class in X such
that E∩A = ∅. According to Lemma 3.3 there is a function h ∈ K∗

α(X) such that
A = h−1(0). For all x ∈ E let f(x) = 1

h(x) . Then f ∈ Kα(E). Let g ∈ Kα(X) be

an extension of f . For all x ∈ X let ϕ(x) = g(x) · h(x). Clearly, ϕ ∈ Kα(X). It
is not hard to verify that E ⊆ ϕ−1(1) and A ⊆ ϕ−1(0).

(ii)=⇒(i) Let us remark that according to Lemma 5.2 the set E is ambiguously
α-embedded in X .

Let f ∈ Kα(E) and let ϕ : R → (−1, 1) be a homeomorphism. Using Proposi-
tion 5.1 to the function ϕ ◦ f : E → [−1, 1] we have that there exists a function
h ∈ Kα(X, [−1, 1]) such that h|E = ϕ ◦ f . Let

A = h−1(−1) ∪ h−1(1).

Then A belongs to the α-th functionally multiplicative class in X and A∩E = ∅.
Therefore, there exists a function ψ ∈ Kα(X) such that A ⊆ ψ−1(0) and E ⊆
ψ−1(1). For all x ∈ X define

g(x) = ϕ−1(h(x) · ψ(x)).

Remark that g ∈ Kα(X) and g|E = f . �
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Corollary 5.4. Let 0 < α < ω1 and let E be a subset of the α-th functionally

multiplicative class of a topological space X . Then the following conditions are

equivalent:

(i) E is Kα-embedded in X ;

(ii) E is α-embedded in X .

6. K∗
1 -embedding versus K1-embedding

A family U of non-empty open sets of a space X is called a π-base [4] if for any
non-empty open set V of X there is U ∈ U with V ⊆ U .

Proposition 6.1. Let X be a perfect space of the first category with a countable

π-base. Then there exist disjoint Fσ- and Gδ-subsets A and B of X which are

dense in X and X = A ∪B.

Proof: Let (Vn : n ∈ N) be a π-base in X and X =
⋃∞

n=1Xn, where Xn

is a closed nowhere dense subset of X for every n ≥ 1. Let E1 = X1 and
En = Xn \

⋃

k<nXk for n ≥ 2. Then En is a nowhere dense Fσ- and Gδ-subset

of X for every n ≥ 1, En ∩ Em = ∅ if n 6= m, and X =
⋃∞

n=1En.
Let m0 = 0. We choose a number n1 ≥ 1 such that (

⋃n1

n=1En) ∩ V1 6= ∅

and let A1 =
⋃n1

n=1En. Since X \A1 = X , there exists a number m1 > n1

such that (
⋃m1

n=n1+1En) ∩ V1 6= ∅. Set B1 =
⋃m1

n=n1+1En. It follows from the

equality X \ (A1 ∪B1) = X that there exists n2 > m1 such that (
⋃n2

n=m1+1En)∩

V2 6= ∅. Further, there is such m2 > n2 that (
⋃m2

n=n2+1En) ∩ V2 6= ∅. Let

A2 =
⋃n2

n=m1+1En and B2 =
⋃m2

n=n2+1En. Repeating this process, we obtain the
sequence of numbers

m0 < n1 < m1 < · · · < nk < mk < nk+1 < . . .

and the sequence of sets

Ak =

nk
⋃

n=mk−1+1

En, Bk =

mk
⋃

n=nk+1

En, k ≥ 1,

such that Ak ∩ Vk 6= ∅ and Bk ∩ Vk 6= ∅ for every k ≥ 1.
Let A =

⋃∞
k=1 Ak and B =

⋃∞
k=1 Bk. Clearly, X = A ∪ B, A ∩ B = ∅ and

A = B = X . Moreover, A and B are Fσ-sets in X . Therefore, A and B are Fσ-
and Gδ-subsets of X . �

We say that a topological space X hereditarily has a countable π-base if every
its closed subspace has a countable π-base.

Proposition 6.2. Let X be a hereditarily Baire space, E be a perfectly normal

ambiguously 1-embedded subspace of X which hereditarily has a countable π-
base. Then E is a hereditarily Baire space.
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Proof: Assume that E is not a hereditarily Baire space. Then there exists a
nonempty closed set C ⊆ X of the first category. Notice that C is a perfectly
normal space with a countable π-base. According to Proposition 6.1 there exist
disjoint dense Fσ- and Gδ-subsets A and B of C such that C = A∪B. Since C is
Fσ- and Gδ-set in E, the sets A and B are also Fσ and Gδ in E. Therefore there
exist disjoint functionally Fσ- and Gδ-subsets Ã and B̃ of X such that A = Ã∩E
and B = B̃ ∩ E. Notice that the sets Ã and B̃ are dense in C. Taking into
account that X is hereditarily Baire, we have that C is a Baire space. It follows
a contradiction, since Ã and B̃ are disjoint dense Gδ-subsets of C. �

Remark that there exist a metrizable separable Baire space X and its am-
biguously 1-embedded subspace E which is not a Baire space. Indeed, let X =
(Q×{0})∪ (R× (0, 1]) and E = Q×{0}. Then E is closed in X . Therefore, any
Fσ- and Gδ-subset C of E is also Fσ- and Gδ- in X . Hence, E is an ambiguously
1-embedded set in X .

Theorem 6.3. Let X be a hereditarily Baire space and let E ⊆ X be its perfect

Lindelöf subspace which hereditarily has a countable π-base. Then E is K∗
1 -

embedded in X if and only if E is K1-embedded in X .

Proof: Since the sufficiency is obvious, we only need to prove the necessity.
According to Proposition 5.1 the set E is ambiguously 1-embedded in X . Using

Proposition 6.2, we have E is a hereditarily Baire space. Since E is Lindelöf,
Proposition 3.9(b) implies that E is 1-separated from any functionally Gδ-set A
of X such that A∩E = ∅. Therefore, by Theorem 5.3 the set E is K1-embedded
in X . �

7. A generalization of the Kuratowski theorem

K. Kuratowski [11, p. 445] proved that every mapping f ∈ Kα(E, Y ) has an
extension g ∈ Kα(X,Y ) in the case when X is a metric space, Y is a Polish space
and E ⊆ X is a set of the multiplicative class α > 0.

In this section we will prove that the Kuratowski Extension Theorem is still
valid if X is a topological space and E is a Kα-embedded subset of X .

We say that a subset A of a space X is discrete if any point a ∈ A has a
neighborhood U ⊆ X such that U ∩ A = {a}.

Theorem 7.1 ([8, Theorem 2.11]). Let X be a topological space, Y be a metriz-

able separable space, 0 ≤ α < ω1 and f ∈ Kα(X,Y ). Then there exists a sequence

(fn)
∞
n=1 such that

(i) fn ∈ Kα(X,Y ) for every n;
(ii) (fn)

∞
n=1 is uniformly convergent to f ;

(iii) fn(X) is at most countable and discrete for every n.

Proof: Consider a metric d on Y which generates its topological structure. Since
(Y, d) is metric separable space, for every n there is a subset Yn = {yi,n : i ∈ In}
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of Y such that Yn is discrete, |In| ≤ ℵ0 and for any y ∈ Y there exists i ∈ In such
that d(y, yi,n) < 1/n (see [11, p. 226]).

For every n ∈ N and i ∈ In put Ai,n = {x ∈ X : d(f(x), yi,n) < 1/n}. Then
each Ai,n belongs to the α-th functionally additive class in X and

⋃

i∈In
Ai,n = X

for every n. According to Lemma 3.2 for every n we can choose a sequence
(Fi,n)i∈In of disjoint functionally ambiguous sets of the class α such that Fi,n ⊆
Ai,n and

⋃

i∈In
Fi,n = X .

For all x ∈ X and n ∈ N let fn(x) = yi,n if x ∈ Fi,n for some i ∈ In. Notice
that fn ∈ Kα(X,Y ) for every n ∈ N.

It remains to prove that the sequence (fn)
∞
n=1 is uniformly convergent to f .

Indeed, fix x ∈ X and n ∈ N. Then there exists i ∈ In such that x ∈ Fi,n. Since
Fi,n ⊆ Ai,n, d(f(x), fn(x)) = d(f(x), yi,n) <

1
n
, which completes the proof. �

Recall that a family (As : s ∈ S) of subsets of a topological space X is called
a partition of X if X =

⋃

s∈S As and As ∩ At = ∅ for all s 6= t.

Proposition 7.2. Let 0 < α < ω1, X be a topological space, E ⊆ X be an α-
embedded set which is α-separated from any disjoint set of the α-th functionally

multiplicative class in X and let (An : n ∈ N) be a partition of E by functionally

ambiguous sets of the class α in E. Then there is a partition (Bn : n ∈ N) of X
by functionally ambiguous sets of the class α in X such that An = E ∩ Bn for

every n ∈ N.

Proof: According to Proposition 5.2 for every n ∈ N there exists a functionally
ambiguous set Dn of the class α in X such that An = Dn∩E. By the assumption
there exists a function f ∈ Kα(X) such that E ⊆ f−1(0) and X \

⋃∞
n=1Dn ⊆

f−1(1). Let D = f−1(0). Then the set X \D is of the α-th functionally additive
class in X . Then there exists a sequence (En)

∞
n=1 of functionally ambiguous

set of the class α in X such that X \ D =
⋃∞

n=1En. For every n ∈ N denote
Cn = En ∪Dn. Then all the sets Cn are functionally ambiguous of the class α in
X and

⋃∞
n=1 Cn = X . Let B1 = C1 and Bn = Cn \ (

⋃

k<n Ck) for n ≥ 2. Clearly,
every Bn is a functionally ambiguous set of the class α in X , Bn∩Bm = ∅ if n 6= m
and

⋃∞
n=1Bn =

⋃∞
n=1 Cn = X . Moreover, Bn ∩ E = An for every n ∈ N. �

Let 0 ≤ α < ω1, X and Y be topological spaces and E ⊆ X . We say that a
collection (X,E, Y ) has theKα-extension property if every mapping f ∈ Kα(E, Y )
can be extended to a mapping g ∈ Kα(X,Y ).

Theorem 7.3. Let 0 < α < ω1 and let E be a subset of a topological space X .

Then the following conditions are equivalent:

(i) E is Kα-embedded in X ;

(ii) (X,E, Y ) has the Kα-extension property for any Polish space Y .

Proof: Since the implication (ii)⇒(i) is obvious, we only need to prove the
implication (i)⇒(ii). Let Y be a Polish space with a metric d which generates its
topological structure and (Y, d) is complete and let f ∈ Kα(E, Y ).
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It follows from Theorem 7.1 that there exists a sequence of mappings fn ∈
Kα(E, Y ) which is uniformly convergent to f on E. Moreover, for every n ∈ N

the set fn(E) = {yin,n : in ∈ In} is at most countable and discrete. We may
assume that each fn(E) consists of distinct points.

For every n ∈ N and for each (i1, . . . , in) ∈ I1 × · · · × In let

Bi1,...,in = f−1
1 (yi1,1) ∩ · · · ∩ f−1

n (yin,n).

Then for each i1 ∈ I1, . . . , in ∈ In the set Bi1...in is functionally ambiguous of the
class α in E and the family (Bi1,...,in : i1 ∈ I1, . . . , in ∈ In) is a partition of E for
every n ∈ N. By Proposition 7.2 we choose a sequence of systems of functionally
ambiguous sets Di1...in of the class α in X such that

(1) Di1,...,in ∩ E = Bi1,...,in for every n ∈ N and (i1, . . . , in) ∈ I1 × · · · × In;
(2) (Di1,...,in : i1 ∈ I1, . . . , in ∈ In) is a partition of X for every n ∈ N.

For all n ∈ N and (i1, . . . , in) ∈ I1 × · · · × In let

(3) Di1,...,in = ∅, if Bi1,...,in = ∅.

Notice that the system (Bi1,...,in,in+1
: in+1 ∈ In+1) forms a partition of the

set Bi1,...,in for every n ∈ N.
For all i1 ∈ I1 let

Ci1 = Di1 .

Assume that for some n ≥ 1 the system (Ci1,...,in : i1 ∈ I1, . . . , in ∈ In) of
functionally ambiguous sets of the class α in X is already defined and

(A) Bi1,...,in = E ∩ Ci1,...,in ;
(B) (Ci1,...,in : i1 ∈ I1, . . . , in ∈ In) is a partition of X ;
(C) Ci1,...,in = ∅ if Bi1,...,in = ∅;
(D) (Ci1...in−1in : in ∈ In) is a partition of the set Ci1,...,in−1

.

Fix i1, . . . , in. Since the set K = Ci1,...,in \
⋃

k∈In+1
Di1,...,in,k is of the α-th

functionally multiplicative class in X and K ∩ E = ∅, there exists a set H of the
α-th functionally multiplicative class in X such that E ⊆ H ⊆ X \K. Using [8,
Lemma 2.1] we obtain that there exists a sequence (Ak)

∞
k=1 of disjoint functionally

ambiguous sets of the class α in X such that

Ci1,...,in \H =

∞
⋃

k=1

Ak.

Let

Mi1,...,in,in+1
= ∅, if Di1,...in,in+1

= ∅,

and

Mi1,...in,in+1
= (Ain+1

∪Di1,...,in,in+1
) ∩ Ci1,...,in , if Di1,...,in,in+1

6= ∅.

Now let

Ci1,...,in,1 =Mi1,...,in,1,
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and

Ci1,...,in,in+1
=Mi1,...,in,in+1

\
⋃

k<in+1

Mi1,...,in,k if in+1 > 1.

Then for every n ∈ N the system (Ci1,...,in : i1 ∈ I1, . . . , in ∈ In) of functionally
ambiguous sets of the class α in X has the properties (A)–(D).

For each n ∈ N and x ∈ X let

gn(x) = yin,n,

if x ∈ Ci1,...,in . It is not hard to prove that gn ∈ Kα(X,Y ).
We show that the sequence (gn)

∞
n=1 is uniformly convergent on X . Indeed, let

x0 ∈ X and n,m ∈ N. Without loss of generality, we may assume that n ≥ m.
By the property (B), x0 ∈ Ci1,...,in ∩ Cj1,...,jm . It follows from (B) and (D) that
i1 = j1,. . . , im = jm. Take an arbitrary point x from the setBi1,...,in , the existence
of which is guaranteed by the property (C). Then fm(x) = yim,m = gm(x0) and
fn(x) = yin,n = gn(x0). Since the sequence (fn)

∞
n=1 is uniformly convergent

on E, limn,m→∞ d(yim,m, yin,n) = 0. Hence, the sequence (gn)
∞
n=1 is uniformly

convergent on X .
Since Y is a complete space, for all x ∈ X define g(x) = limn→∞ gn(x). Ac-

cording to the property (A), g(x) = f(x) for all x ∈ E. Moreover, g ∈ Kα(X,Y )
as a uniform limit of functions from the class Kα. �

8. Open problems

Question 8.1. Does there exist a completely regular not perfectly normal space

in which any functionally Gδ-set is 1-embedded?

Question 8.2. Does there exist a completely regular not perfectly normal space

in which any set is 1-embedded?

Question 8.3. Do there exist a normal space and its functionally Gδ-subset

which is not 1-embedded?

Question 8.4. Do there exist a topological space X and its subspace E such

that E is K∗
1 -embedded and is not K1-embedded in X?
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