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Abstract. For any x ∈ (0, 1], let

x =
1

d1
+

1

d1(d1 − 1)d2
+ . . .+

1

d1(d1 − 1) . . . dn−1(dn−1 − 1)dn
+ . . .

be its Lüroth expansion. Denote by Pn(x)/Qn(x) the partial sum of the first n terms
in the above series and call it the nth convergent of x in the Lüroth expansion. This
paper is concerned with the efficiency of approximating real numbers by their convergents
{Pn(x)/Qn(x)}n>1 in the Lüroth expansion. It is shown that almost no points can have
convergents as the optimal approximation for infinitely many times in the Lüroth expansion.
Consequently, Hausdorff dimension is introduced to quantify the set of real numbers which
can be well approximated by their convergents in the Lüroth expansion, namely the following
Jarník-like set: {x ∈ (0, 1] : |x − Pn(x)/Qn(x)| < 1/Qn(x)

ν+1 infinitely often} for any
ν > 1.

Keywords: Lüroth expansion, optimal approximation, Hausdorff dimension

MSC 2010 : 11K55, 28A80

1. Introduction

How well an irrational number can be approximated by rationals is a long standing
question in number theory. Many algorithms have been introduced to approximate

real numbers by rationals, such as decimal expansion, continued fraction expansion,
as well as the Lüroth expansion. In a common sense, one of the criteria for test-

ing whether an algorithm is effective or not in approximating the real numbers by
rational numbers is whether the convergent defined by the algorithm is the optimal

approximation or not.

This work is supported by National Natural Science Foundation of China (Grant Nos.
11271114, 11171124).
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Recall that a rational fraction a/b (b > 0) is said to be an optimal approximation

to a real number α if for any c/d 6= a/b and 0 < d 6 b holds that

|dα − c| > |bα − a|.

In this paper, we mainly talk about the efficiency of approximating real numbers
by the convergents in the Lüroth expansion. Let us first recall the algorithm for

the Lüroth expansion, which was first introduced by Lüroth [11] in 1883. For any
x ∈ (0, 1], the Lüroth map T : (0, 1] → (0, 1] is defined by

(1.1) T (x) := d1(x)(d1(x) − 1)
(

x −
1

d1(x)

)

, where d1(x) =
[ 1

x

]

+ 1.

Then we define the integer sequence {dn(x), n > 1} by

(1.2) dn(x) = d1(T
n−1(x)), n > 1,

where T n denotes the nth iterate of T (T 0 = Id(0,1]).

By the algorithm (1.1) and (1.2), any x ∈ (0, 1] can be developed uniquely into an
infinite series expansion of the form

x =
1

d1(x)
+

n
∑

j=2

1
j−1
∏

i=1

di(x)(di(x) − 1)dj(x)

+
T n(x)

n
∏

j=1

dj(x)(dj(x) − 1)
(1.3)

=

∞
∑

j=1

1

d1(x)(d1(x) − 1) . . . dj−1(x)(dj−1(x) − 1)dj(x)
,(1.4)

which is called the Lüroth expansion of x and denoted by x = [d1(x), d2(x), . . . ,

dn(x), . . .] for short.
In this setting, the nth convergent Pn(x)/Qn(x) of x in the Lüroth expansion is

defined as the partial sum of the first n terms of the series (1.4), i.e.

Pn(x)

Qn(x)
=

n
∑

j=1

1

d1(x)(d1(x) − 1) . . . dj−1(x)(dj−1(x) − 1)dj(x)
.

Now we are interested in the set of points whose convergents in the Lüroth expan-
sion are the optimal approximation for infinitely many times. It is natural to ask

how large such a set is in the sense of Lebesgue measure. Our first result shows that
it is of Lebesgue measure zero. Denote such a set by F , i.e.

F =
{

x ∈ (0, 1] :
Pn(x)

Qn(x)
is an optimal approximation to x i.o.

}

.

We prove
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Theorem 1.1. m(F ) = 0, where m denotes the Lebesgue measure.

Nevertheless, there should exist points which can be well approximated by the

convergents in the Lüroth expansion. Hence we are led to quantify such null sets by
their Hausdorff dimension, namely the following Jarník-like set: for any ν > 1,

Wν =
{

x ∈ (0, 1] :
∣

∣

∣
x −

Pn(x)

Qn(x)

∣

∣

∣
<

1

Qn(x)ν+1
for infinitely many n

}

.

Theorem 1.2. For any ν > 1, dimH Wν = 1/(ν + 1).

It should be compared with approximating real numbers by convergents in con-
tinued fraction expansion. By Dirichlet’s theorem, the set corresponding to W1 is of

full measure, while, by Jarník’s theorem, the Hausdorff dimension of the set corre-
sponding to Wν is 2/(ν + 1).

The metric and ergodic properties of the sequence {dn(x)}n>1 and the Lüroth
map T defined by (1.1) have been extensively studied in [4] (see also [7], [8], [9],

[12], [16]). The behavior of approximating real numbers by the Lüroth expansion
was thoroughly investigated in [2], [3], where the authors studied the distribution of

the approximation coefficients θn = θn(x) = Qn(x)x − Pn(x) for n > 1. The error-

sum function of the Lüroth expansion defined by S(x) =
∞
∑

n=1
(x− Pn(x)/Qn(x)) was

studied in [13], where the authors investigated the properties of this function and
determined the Hausdorff dimension of its graph. Since the Lüroth system can also

be viewed as an infinite iterated function system, dimensional theory is also of great
importance for Lüroth expansions. The spectrum analysis of the frequency of the

digits of {dn}n>1 was given in [1], [6]. The growth speed of the sequence {dn(x)}n>1

was studied in [14].

Throughout this paper, we use | · | to denote the diameter of a subset of (0, 1],
dimH to denote the Hausdorff dimension and cl the closure of a set, respectively.

Also, we may use a probability notation i.o. to mean “for infinitely many times”.

2. Preliminaries

In this section, we fix some notation and briefly recall some basic properties of the
Lüroth expansion.

Definition 2.1. A sequence of integers {dn}n>1 is called an admissible sequence
if there exists x ∈ (0, 1] such that

dn(x) = dn, ∀ n ∈ N

in the Lüroth expansion of x.
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Lemma 2.1 ([7]). A sequence of integers {dn}n>1 is admissible if and only if

dn > 2, ∀n > 1.

For any n > 1, denote by Ln the collection of all admissible blocks of order n, i.e.

Ln = {(d1, d2, . . . , dn) : dj > 2 for any 1 6 j 6 n}.

For any (d1, d2, . . . , dn) ∈ Ln, let

In(d1, d2, . . . , dn) = cl{x ∈ (0, 1] : d1(x) = d1, d2(x) = d2, . . . , dn(x) = dn}.

It is clear from the algorithm (1.1) that its length is given by the following formula.

Lemma 2.2 ([7]). |In(d1, d2, . . . , dn)| =
( n

∏

j=1

dj(dj − 1)
)−1

.

In order to compute the measure of the set F , we need some results related to the

continued fraction expansion (see [10] for more details). As is well known, every real
number x ∈ (0, 1] can be expanded as the continued fraction expansion

x =
1

a1(x) +
1

a2(x) + . . .

:= [0; a1(x), a2(x), . . .],

where the digits an(x) are all positive integers and called partial quotients of x. The

convergents in the continued fraction expansion are defined as follows:

pn(x)

qn(x)
= [0; a1(x), a2(x), . . . , an(x)].

Lemma 2.3 ([10]). For any x ∈ (0, 1], pn(x)/qn(x) are the convergents in the

continued fraction expansion of x. Then

(a) for any n > 1, pn−1(x)qn(x) − pn(x)qn−1(x) = (−1)n,

(b) |x − pn(x)/qn(x)| < 1/qn(x)qn+1(x).

Lemma 2.4 ([10]). Every optimal approximation is a convergent in the continued
fraction expansion.

To end this section, we state the mass distribution principle, which is a classical
tool to determine the lower bound of the Hausdorff dimension of a set.
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Lemma 2.5 (Mass distribution principle [5]). Suppose E ⊂ (0, 1] and let µ be

a measure with µ(E) > 0. If there exist constants c > 0 and δ > 0 such that

(2.1) µ(D) 6 c|D|s

for all sets D with the diameter |D| 6 δ, then

dimH E > s.

3. Efficiency of approximation by Lüroth expansion

Recall that F = {x ∈ (0, 1] : Pn(x)/Qn(x) is an optimal approximation to x i.o.}.
In this section, we prove Theorem 1.1, i.e. F is a set of Lebesgue measure zero, which

indicates that almost no points can be well approximated by the convergents in the
Lüroth expansion.

P r o o f of Theorem 1.1. Let {aj(x)}j>1 and {pj(x)/qj(x)}j>1 be, respectively,

the partial quotients and convergents in the continued fraction expansion of x. For
any 0 < ε < 1, assume A = {x : aj+1(x) > q1−ε

j (x) i.o.} and B = {x : aj+1(x) >

q1−ε
j (x) for only a finite number of indices}. Then we have

F = (F ∩ A) ∪ (F ∩ B).

By the Borel-Cantelli lemma, the set A is of measure zero, hence we only need to

prove that F ∩ B is of measure zero. Suppose x ∈ F ∩ B and for any Qn(x) there
exists an integer i such that

qi(x) 6 Qn(x) < qi+1(x).

Then if Pn(x)/Qn(x) is the optimal approximation, by Lemma 2.3 and Lemma 2.4

we know that Pn(x)/Qn(x) = pi(x)/qi(x). Thus we have

∣

∣

∣
x −

Pn(x)

Qn(x)

∣

∣

∣
=

∣

∣

∣
x −

pi(x)

qi(x)

∣

∣

∣
<

1

qi(x)qi+1(x)
<

ai+1(x) + 1

Q2
n(x)

6
1

Q1+ε
n (x)

.

While algorithm (1.3) gives

∣

∣

∣
x −

Pn(x)

Qn(x)

∣

∣

∣
=

T n(x)

d1(x)(d1(x) − 1) . . . dn(x)(dn(x) − 1)
.
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Since T n(x) > 1/dn+1(x), we obtain

F ∩ B ⊂ {x ∈ (0, 1] : dn+1(x)(dn(x) − 1) > Qε
n(x) i.o.}

=

∞
⋂

m=1

∞
⋃

n=m

{x ∈ (0, 1] : dn+1(x)(dn(x) − 1) > Qε
n(x)}

=
∞
⋂

m=1

∞
⋃

n=m

⋃

(d1,d2,...,dn)∈Ln

⋃

d>Qε
n/(dn−1)

In+1(d1, d2, . . . , dn, d)

where Qn = d1(d1 − 1) . . . dn−1(dn−1 − 1)dn.

From Lemma 2.2 we have

m
(

⋃

d>Qε
n/(dn−1)

In+1(d1, d2, . . . , dn, d)
)

6
2

Q1+ε
n

.

Thus

m(F ∩ B) 6 lim inf
m→∞

∑

n>m

∑

(d1,d2,...,dn)∈Ln

2

Q1+ε
n

6 lim inf
m→∞

∑

n>m

∑

(d1,d2,...,dn−1)∈Ln−1

( n−1
∏

j=1

dj(dj − 1)

)−(1+ε) ∞
∑

dn=2

2

(dn − 1)1+ε

6 2ζ(1 + ε) lim inf
m→∞

∑

n>m

2−(n−1)ε
∑

(d1,d2,...,dn−1)∈Ln−1

( n−1
∏

j=1

dj(dj − 1)

)−1

6 2ζ(1 + ε) lim inf
m→∞

∑

n>m

2−(n−1)ε = 0

where ζ(t) =
∞
∑

n=1
1/nt is the Riemann-Zeta function. �

4. The Hausdorff dimension of Wν

Recall

Wν =
{

x ∈ (0, 1] :
∣

∣

∣
x −

Pn(x)

Qn(x)

∣

∣

∣
<

1

Qn(x)ν+1
for infinitely many n

}

.

In this section, we will establish the Hausdorff dimension of Wν . Let

Eβ =

{

x ∈ (0, 1] : dj(x) > 2, ∀j > 1 and

dn+1(x) > β

n−1
∏

j=1

(dj(x)(dj(x) − 1))νdν−1
n (x) i.o.

}

for any β > 1. Then we have:
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Lemma 4.1. Eβ ⊂ Wν ⊂ E1 with β > 4.

P r o o f. This follows from the simple observation that by the algorithm (1.1),

(1.2) and the formula (1.4) we have

∣

∣

∣
x −

Pn(x)

Qn(x)

∣

∣

∣
=

T n(x)

d1(x)(d1(x) − 1) . . . dn(x)(dn(x) − 1)

and
1

dn+1(x)
< T nx 6

1

dn+1(x) − 1
.

�

As a result, it suffices to determine the dimension of Eβ for any β > 1.

4.1. The upper bound.

Proposition 4.1. dimH Eβ 6 1/(ν + 1).

P r o o f. Let

Jn(d1, d2, . . . , dn) =
⋃

d>β
∏n−1

j=1
(dj(dj−1))νdν−1

n

In+1(d1, d2, . . . , dn, d).

Then we have

Eβ =

{

x ∈ (0, 1] : dj(x) > 2, ∀j > 1, dn+1(x)

> β

n−1
∏

j=1

(dj(x)(dj(x) − 1))νdν−1
n (x) i.o.

}

=

∞
⋂

m=1

∞
⋃

n=m

{

x ∈ (0, 1] : dj(x) > 2, ∀j > 1, dn+1(x)

> β

n−1
∏

j=1

(dj(x)(dj(x) − 1))νdν−1
n (x)

}

=

∞
⋂

m=1

∞
⋃

n=m

⋃

(d1,d2,...,dn)∈Ln

⋃

d>β
∏n−1

j=1
(dj(dj−1))νdν−1

n

In+1(d1, d2, . . . , dn, d)

=

∞
⋂

m=1

∞
⋃

n=m

⋃

(d1,d2,...,dn)∈Ln

Jn(d1, d2, . . . , dn).
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From Lemma 2.2 we have

|Jn(d1, d2, . . . , dn)| =
1

n
∏

j=1

dj(dj − 1)
(

β
( n−1

∏

j=1

dj(dj − 1)
)ν

dν−1
n − 1

)

<
2

β
n−1
∏

j=1

(dj(dj − 1))ν+1dν
n(dn − 1)

.

Then for any s > 1/(ν + 1),

Hs(Eβ) 6 lim inf
m→∞

∑

n>m

∑

(d1,d2,...,dn)∈Ln

|Jn(d1, d2, . . . , dn)|s

6 lim inf
m→∞

∑

n>m

∑

(d1,d2,...,dn)∈Ln

β−s2s
n−1
∏

j=1

(dj(dj − 1))−(ν+1)s

× (dν
n(dn − 1))−s

6 β−s2s lim inf
m→∞

∑

n>m

∑

(d1,d2,...,dn−1)∈Ln−1

n−1
∏

j=1

(dj(dj − 1))−(ν+1)s

×
∞
∑

dn=2

(dn − 1)−(ν+1)s

6 β−s2sζ((ν + 1)s) lim inf
m→∞

∑

n>m

∑

(d1,...,dn−1)∈Ln−1

n−1
∏

j=1

(dj(dj − 1))−(ν+1)s

6 β−s2sζ((ν + 1)s)

where ζ(t) =
∞
∑

n=1
1/nt. Then we have dimH W 6 s, and since s > 1/(ν + 1) is

arbitrary, we get dimH W 6 1/(ν + 1). �

4.2. The lower bound. In this subsection, we determine the lower bound of
dimH Eβ for β > 4. It should be mentioned that the method used here is similar to

that in [15].

Proposition 4.2. dimH Eβ > 1/(ν + 1).

Applying the Mass distribution principle to obtain the lower bound of dimH Eβ ,

first we construct a Cantor subset of E, secondly, we define a probability measure µ

supported on the Cantor subset, and at last, we estimate the Hölder exponent of µ.
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4.2.1. Cantor subset. On account of using the following formula frequently, for

the clarity and concision of expression we write

Θ(x, n, {dj}) =

[

β
n−1
∏

j=1

(dj(x)(dj(x) − 1))νdν−1
n (x)

]

.

For any given B > 2, we choose inductively a rapidly increasing sequence of integers
satisfying n1 > 2 and for any k > 1,

nk+1 > (2β)(ν+1)k(3k+1+k)B(ν+1)k
∑

k
i=1

3ink−i+1 .

Let

EB = {x ∈ (0, 1] : Θ(x, nk, {dj}) + 1 6 dnk+1(x) 6 2Θ(x, nk, {dj})

for any k > 1, and 2 6 dj(x) 6 B, for any j 6= nk + 1}.

In addition, to make the proof clearer and illustrate the structure of EB , we will
make use of a kind of symbolic space defined as follows. For any n > 1, define

Dn = {(σ1, . . . , σn) ∈ N
n : Θ(x, nk, {σj}) + 1 6 σnk+1 6 2Θ(x, nk, {σj}),

2 6 σj 6 B for any j 6= nk + 1 6 n},

and D =
∞
⋃

n=0
Dn (D0 := ∅).

For any n > 1 and (σ1, . . . , σn) ∈ Dn, we call In(σ1, . . . , σn) a basic interval of
order n and

(4.1) J(σ1, . . . , σn) =
⋃

σn+1

In+1(σ1, . . . , σn, σn+1)

a fundamental interval of order n, where the union in (4.1) is taken over all σn+1

such that (σ1, . . . , σn, σn+1) ∈ Dn+1. Then, if n 6= nk for any k > 1,

(4.2) |J(σ1, σ2, . . . , σn)| =
B − 1

B

n
∏

j=1

1

σj(σj − 1)
;

if n = nk for some k > 1, we have

(4.3) |J(σ1, σ2, . . . , σn)| =

(

2Θ(x, n, {σj})
n

∏

j=1

σj(σj − 1)

)−1

.
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It is clear that

(4.4) EB =
⋂

n>1

⋃

(σ1,...,σn)∈Dn

Jn(σ1, σ2, . . . , σn).

4.2.2. A probability measure supported on EB. For any given B > 2, let

sB be the unique solution of

B
∑

d=2

( 1

d(d − 1)

)(ν+1)̺

= 1.

Since
∞
∑

d=2

1

d(d − 1)
= 1,

we know that 0 6 sB 6 1/(ν + 1).
To constitute a probability measure supported on EB, we first define a set function

µ : {J(σ), σ ∈ D \ D0} → R
+ given as follows.

For any (σ1, . . . , σn1
) ∈ Dn1

, let

µ(J(σ1, . . . , σn1
)) =

n1
∏

j=1

(σj(σj − 1))−(ν+1)sB

and let

µ(J(σ1, . . . , σn1
, σn1+1)) = Θ(x, n1, {σj})

−1µ(J(σ1, . . . , σn1
))

for any (σ1, . . . , σn1
, σn1+1) ∈ Dn1+1.

For any (σ1, . . . , σn2
) ∈ Dn2

, let

µ(J(σ1, . . . , σn2
)) = µ(J(σ1, . . . , σn1

, σn1+1))

n2
∏

j=n1+2

(σj(σj − 1))−(ν+1)sB

and let

µ(J(σ1, . . . , σn2
, σn2+1)) = Θ(x, n2, {σj})

−1µ(J(σ1, . . . , σn2
))

for any (σ1, . . . , σn2
, σn2+1) ∈ Dn2+1.

For any n1 + 1 < n < n2 and (σ1, . . . , σn) ∈ Dn, let

µ(J(σ1, . . . , σn)) =
∑

26σn+1,...,σn2
6B

µ(J(σ1, . . . , σn2
))

= µ(J(σ1, . . . , σn1
, σn1+1))

n
∏

j=n1+2

(σj(σj − 1))−(ν+1)sB .
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Suppose that for some k > 3, µ(J(σ1, . . . , σnk
)) has been defined for any (σ1, . . . ,

σnk
) ∈ Dnk

, and let

µ(J(σ1, . . . , σnk
, σnk+1)) = Θ(x, nk, {σj})

−1µ(J(σ1, . . . , σnk
)).

For any nk−1 + 1 < n < nk and (σ1, . . . , σn) ∈ Dn, let

µ(J(σ1, . . . , σn)) =
∑

26σn+1,...,σnk
6B

µ(J(σ1, . . . , σnk
))

= µ(J(σ1, . . . , σnk−1
, σnk−1+1))

n
∏

j=nk−1+2

(σj(σj − 1))−(ν+1)sB

and let

µ(J(σ1, . . . , σnk+1
)) = µ(J(σ1, . . . , σnk+1))

nk+1
∏

j=nk+2

(σj(σj − 1))−(ν+1)sB .

Until now, the set function µ : {J(σ), σ ∈ D \ D0} → R
+ is well defined. It is easy

to check that for any n > 1 and (σ1, . . . , σn) ∈ Dn we have

µ(J(σ1, . . . , σn)) =
∑

σn+1

µ(J(σ1, . . . , σn+1)),

where the summation is taken over all σn+1 such that (σ1, . . . , σn+1) ∈ Dn+1. Notice

that
∑

σ1∈D1

µ(J(σ1)) = 1.

By the Kolmogorov extension theorem, the set function µ can be extended into
a probability measure supported on EB, which is still denoted by µ.

4.2.3. Hölder exponent of µ. Given a fundamental interval J(σ1, . . . , σn) where

(σ1, . . . , σn) ∈ Dn, denote by gr(σ1, . . . , σn) the distance between J(σ1, . . . , σn) and
the fundamental interval of order n which lies to the right of J(σ1, . . . , σn) and

is closest to it, and by gl(σ1, . . . , σn) the distance between J(σ1, . . . , σn) and the
fundamental interval of order n which lies to the left of J(σ1, . . . , σn) and is closest

to it. Let

g(σ1, . . . , σn) = min{gr(σ1, . . . , σn), gl(σ1, . . . , σn)}.

Then we get the following lemma.
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Lemma 4.2.

g(σ1, . . . , σn) >
1

B2 − 1
|J(σ1, . . . , σn)|.

P r o o f. We will divide the proof into two parts.

Case I: n 6= nk for any k > 1.

In this case, the fundamental interval of order n which is closest to and lies to the
left of J(σ1, . . . , σn) is separated from J(σ1, . . . , σn) by In+1(σ1, . . . , σn, B + 1). For
the right side, we can always assume that these two fundamental intervals are both

contained in the J(σ1, . . . , σn−1); if not, it means that they are contained in different
fundamental intervals of order n − 1, and then

gr(σ1, . . . , σn) > gr(σ1, . . . , σn−1).

Then the fundamental interval of order n which is closest to and lies to the right of

J(σ1, . . . , σn) is separated from J(σ1, . . . , σn) by In+1(σ1, . . . , σn − 1, B + 1). Thus

g(σ1, . . . , σn) > min{|In+1(σ1, . . . , σn, B + 1)|, |In+1(σ1, . . . , σn − 1, B + 1)|}

>

n
∏

j=1

1

σj(σj − 1)

1

B(B + 1)
>

1

B2 − 1
|J(σ1, . . . , σn)|.

Case II: n = nk for some k > 1.

In this case, J(σ1, . . . , σn) lies in the interior of In(σ1, . . . , σn), so it suffices to con-
sider the distance between the two endpoints of J(σ1, . . . , σn) and the corresponding

two endpoints of In(σ1, . . . , σn). Then we have

gl(σ1, . . . , σn) >

∞
∑

σn+1=2Θ(x,n,{σj})+1

|In+1(σ1, . . . , σn+1)|

>

(

2Θ(x, n, {σj})
n

∏

j=1

(σj(σj − 1))

)−1

,

gr(σ, . . . , σn) >

Θ(x,n,{σj})
∑

σn+1=2

|In+1(σ1, . . . , σn+1)| > |In+1(σ1, . . . , σn, 2)|.

Thus

g(σ1, . . . , σn) >
1

B2 − 1
|J(σ1, . . . , σn)|.

This completes the proof. �
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Lemma 4.3. For any ε > 0 and any (σ1, . . . , σn) ∈ Dn with n sufficiently large,

we have

µ(J(σ1, . . . , σn)) ≪ |J(σ1, . . . , σn)|t−ε, with t = sB − ε,

where the constant in “≪” is an absolute constant.

P r o o f. First, choose k0 sufficiently large such that 1/k < ε for any k > k0. For

any n > nk0
and (σ1, . . . , σn) ∈ Dn, we estimate µ(J(σ1, . . . , σn)).

Case I: n = nk for some k > k0.

µ(J(σ1, . . . , σnk
))

=

nk
∏

j=nk−1+2

(σj(σj − 1))−(ν+1)sB µ(J(σ1, . . . , σnk−1+1))

=

k−1
∏

i=1

Θ(x, ni, {σj})
−1

ni
∏

j=ni−1+2

(σj(σj − 1))−(ν+1)sB

6 2k−1
k−1
∏

i=1

(σni+1)
−1

ni
∏

j=ni−1+2

(σj(σj − 1))−(ν+1)sB (since σn+1 6 2Θ(x, n, {σj}))

6 2k−1
k−1
∏

i=1

(σni+1(σni+1 − 1))−t
ni
∏

j=ni−1+2

(σj(σj − 1))−(ν+1)sB (since t 6 1/2)

≪ 2k−1|J(σ1, . . . , σn)|t
(

2β

k−1
∏

j=1

σnj+1(σnj+1 − 1)

)tν

σ−t
n (σn − 1)−tν

≪ 2k−1|J(σ1, . . . , σn)|t
k−1
∏

j=1

σ2tν
nj+1

≪ |J(σ1, . . . , σn)|t−ε (by the choice of {nk}k>1).

Case II: n = nk + 1 for some k > k0.

µ(J(σ1, . . . , σnk+1)) = Θ(x, nk, {σj})
−1µ(J(σ1, . . . , σnk

))

≪ Θ(x, nk, {σj})
−1|J(σ1, . . . , σnk

)|t−ε

≪ (σni+1(σni+1 − 1))−(t−ε)|J(σ1, . . . , σnk
)|t−ε

≪ |J(σ1, . . . , σn)|t−ε.
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Case III: nk + 1 < n < nk+1 for some k > k0.

µ(J(σ1, . . . , σn)) =
∑

26σn+1,...,σnk+1
6B

µ(J(σ1, . . . , σnk+1
))

= µ(J(σ1, . . . , σnk
, σnk+1))

n
∏

j=nk+2

(σj(σj − 1))−(ν+1)sB

≪ |J(σ1, . . . , σnk+1)|
t−ε

n
∏

j=nk+2

(σj(σj − 1))−(t−ε)

≪ |J(σ1, . . . , σn)|t−ε.

The proof is completed. �

Now, we will give the estimation of µ(B(x, r)).

Lemma 4.4. For any x ∈ EB and sufficiently small r > 0,

µ(B(x, r)) ≪ rt−ε.

P r o o f. Take r0 = min
16j6nk0

min
(σ1,...,σj)∈Dj

g(σ1, . . . , σj). Fix x ∈ EB and 0 < r <

r0, then there exists a unique sequence σ1, . . . , σk, . . . such that x ∈ J(σ1, . . . , σk) for

all k > 1 and for some n > nk0
,

g(σ1, . . . , σn+1) 6 r < g(σ1, . . . , σn).

From the definition of g(σ1, . . . , σn) we know that the ball B(x, r) can intersect only

one fundamental interval of order n, which is J(σ1, . . . , σn).
Case I: n = nk for some k > k0.

(i) r 6 1
3 |Ink+1(σ1, . . . , σnk+1)|. In this case, the ball B(x, r) can intersect at

most three basic intervals of order nk + 1, which are Ink+1(σ1, . . . , σnk+1 − 1),

Ink+1(σ1, . . . , σnk+1) and Ink+1(σ1, . . . , σnk+1 + 1). Then by Lemma 4.3 we have

µ(B(x, r)) 6 3µ(J(σ1, . . . , σnk+1)) 6 3|J(σ1, . . . , σnk+1)|
t−ε

6 3(B2 − 1)|g(σ1, . . . , σnk+1)|
t−ε 6 3(B2 − 1)rt−ε.

(ii) r > 1
3 |Ink+1(σ1, . . . , σnk+1)|. In this case, since

|Ink+1(σ1, . . . , σnk+1)| =

nk+1
∏

j=1

(σj(σj −1))−1 > (2Θ(x, nk, {σj}))
−2

nk
∏

j=1

(σj(σj −1))−1,
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the number of fundamental intervals of order nk +1 contained in J(σ1, . . . , σnk
) that

the ball B(x, r) intersects is at most

l =
6r

(2Θ(x, nk, {σj}))−2
nk
∏

j=1

(σj(σj − 1))−1

6 6r(2Θ(x, nk, {σj}))
2

nk
∏

j=1

(σj(σj − 1)).

Therefore

µ(B(x, r)) 6 min{µ(J(σ1, . . . , σnk
)), µ(J(σ1, . . . , σnk+1))l}

6 µ(J(σ1, . . . , σnk
))min

{

1, 24rΘ(x, nk, {σj})
nk
∏

j=1

σj(σj − 1)

}

6 |J(σ1, . . . , σnk+1)|
t−ε(12r)t−ε(2Θ(x, nk, {σj})

nk
∏

j=1

σj(σj − 1))t−ε ≪ rt−ε.

Case II: n 6= nk for any k > k0.

By the definition of µ, for any 2 6 τ 6= η 6 B we have

µ(J(σ1, . . . , σn, η))

µ(J(σ1, . . . , σn, τ))
6 B2,

hence

µ(J(σ1, . . . , σn)) 6 (B − 1)B2µ(J(σ1, . . . , σn, σn+1)),

thus

µ(B(x, r)) 6 µ(J(σ1, . . . , σn)) 6 (B − 1)B2µ(J(σ1, . . . , σn, σn+1))

6 (B − 1)B2(B2 − 1)|J(σ1, . . . , σn, σn+1)|
t−ε

6 (B − 1)B2(B2 − 1)|g(σ1, . . . , σn, σn+1)|
t−ε

6 (B − 1)B2(B2 − 1)rt−ε.

This completes the proof. �

P r o o f of Proposition 4.2. By Lemma 4.4 and the mass distribution principle,
we have

dimH EB > t − ε = sB − 2ε.

Since ε > 0 is arbitrary, we have

dimH EB > sB.

Since B is arbitrary, and when B tends to infinity, sB tends to 1/(ν + 1), we have

dimH Eβ >
1

ν + 1
.

�
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Combining this with Proposition 4.1 completes the proof of Theorem 1.2.

Moreover, we can find there is a close relation between the set F and the set Eβ

for ν = 1 in the proof of Theorem 1.2.

Lemma 4.5. Let F = {x ∈ (0, 1] : Pn(x)/Qn(x) is optimal approximation to

x i.o.}, then we have Eβ ⊂ F for any β > 8 and ν = 1.

P r o o f. Supposing x ∈ Eβ , as in the proof of Lemma 4.1 there exists a sequence

of integers {nk}k>1 such that

∣

∣

∣
x −

Pnk
(x)

Qnk
(x)

∣

∣

∣
<

1

2Q2
nk

(x)
.

We will prove that the fraction Pnk
(x)/Qnk

(x) is the optimal approximation for the
number x. Let

|dx − c| 6 |Qnk
(x)x − Pnk

(x)| <
1

2Qnk
(x)

,

where d > 0 and c/d 6= Pnk
(x)/Qnk

(x), then

∣

∣

∣
x −

c

d

∣

∣

∣
<

1

2dQnk

and consequently

(4.5)
∣

∣

∣

c

d
−

Pnk
(x)

Qnk
(x)

∣

∣

∣
6

∣

∣

∣
x−

c

d

∣

∣

∣
+

∣

∣

∣
x−

Pnk
(x)

Qnk
(x)

∣

∣

∣
<

1

2dQnk
(x)

+
1

2Q2
nk

(x)
=

Qnk
(x) + d

2Q2
nk

(x)d
.

On the other hand, since c/d 6= Pnk
(x)/Qnk

(x), we have

∣

∣

∣

c

d
−

Pnk
(x)

Qnk
(x)

∣

∣

∣
>

1

Qnk
(x)d

,

and combining it with (4.5), we obtain d > Qnk
(x). Thus the fraction Pnk

(x)/Qnk
(x)

is indeed the optimal approximation. This completes the proof. �

From Proposition 4.2, we can get the following result.

Corollary 4.1. dimH F > 1
2 .

From the above theorem, we know that there exists an uncountable number of

points in F .
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