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OPTIMAL DESIGN OF THE COOLING PLUNGER CAVITY

Petr Salač, Liberec

(Received May 5, 2011)

Abstract. An axisymmetric system of mould, glass piece, plunger and plunger cavity
is considered. The state problem is given as a stationary head conduction process. The
system includes the glass piece representing the heat source and is cooled inside the plunger
cavity by flowing water and outside by the environment of the mould. The design variable
is taken to be the shape of the inner surface of the plunger cavity.

The cost functional is the second power of the norm in the weighted space L
2
r of difference

of trace of temperature from given constant, which is evaluated on the outward boundary
of the plunger.

Existence and uniqueness of the state problem solution and existence of a solution of the
optimization problem are proved.
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1. Introduction

This work concerns the optimal design of the shape of the plunger cavity which

controls the cooling process of the glass piece during the manufacturing process. The

goal of optimization is to find such a shape of the inner plunger cavity which allows

us to control down the plunger temperature in such a way to achieve a constant

distribution of temperature across the surface of the moulding device at the moment

of separation of the plunger from the moulded piece.

The mathematical model is a strong idealization of the non-stationary periodical

problem of heat conduction. We study the problem of stationary conduction of heat

for mean values of this periodical process with cooling by stationary flowing water.

This work was supported by the Research plan No. MSM 4674788501 funded by Ministry
of Education, Youth and Sports of the Czech Republic.
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In view of the fact that the system of mould, glass piece, plunger and plunger

cavity is considered to be axisymmetric we assume planar stationary flow of water in

planes involving the z axis. Now it is suitable to formulate the problem in cylindrical

coordinates r, ϕ, z. We assume that the heat conduction and the flow pattern do not

depend on the angle ϕ so we get a two-dimensional problem in the weighted Sobolev

space.

The cost functional is defined as the second power of the norm in the weighted L2
r

space of the difference of the trace of temperature and the given constant evaluated

on the outward boundary of the plunger.

In Section 1 we define a weak formulation of the state problem in cylindrical

coordinates with reduced angle coordinate and prove the existence of its unique

solution. Further we formulate the problem of the optimal design for the plunger

cavity shape and prove the existence of solution.

2. Formulation of the problem

To formulate the state problem we start from the abstract formulation introduced

by authors Haslinger and Neittaanmäki [1].

We rotate the system to the horizontal position to be able to describe the optimized

plunger cavity surface by a function of one variable.

We define

(1.1) F e2 (x) =

{
0 for x ∈ [0, xe2],

fe2 (x) for x ∈ [xe2, 1],

where xe2 ∈ [smin, 1] (smin > 0 is a fixed constant given by the minimal thickness of

the plunger wall), fe2 ∈ C(0),1([xe2, 1]), fe2 (xe2) = 0 and 0 6 fe2 (x) 6 f1(x) − smin,

|fe2
′(x)| < CD for x ∈ ]xe2, 1], where f1 is a fixed given increasing function which

represents the outward shape of the plunger. Further we assume that a 6 fe2 (x)− s2
for x ∈ [xe3, 1], where a > 0 represents the radius of the supply tube and s2 > 0 is

the minimal admissible split width between the inner wall of the plunger cavity and

the supply tube, xe3 ∈ ]x2, 1] is the depth of insertion of the tube.

R em a r k. The condition |fe2
′(x)| < CD yields a non-smooth shape of the real

3D plunger. It can be omitted and replaced by a small rotation of the system in

negative sense in the proof of existence of a solution of the optimal design problem.
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Figure 1. Scheme of plunger with optimized part of boundary.

Further we define the set of admissible functions as

Uead =
{
F e2 (x) ∈ C(0),1([0, 1]) ; F e2 (x) =

{
0 for x ∈ [0, xe2],

fe2 (x) for x ∈ [xe2, 1],

xe2 ∈ [smin, 1], smin > 0, fe2 ∈ C(0),1([xe2, 1]), fe2 (xe2) = 0,

0 6 fe2 (x) 6 f1(x) − smin, |f
e
2
′(x)| < CD for x ∈ ]xe2, 1],

f1 given, a 6 fe2 (x) − s2 for x ∈ [xe3, 1], a > 0, s2 > 0, xe3 ∈ ]x2, 1]
}
,

where the function F e2 describes the technological constraint for the inner cavity

surface.

We consider the region ΩePl which depends on the design function F
e
2 (x), and which

is defined by the formula

ΩePl = {(x, r) ∈ R2 ; F e2 (x) < r < f1(x) for x ∈ [0, 1]}.

Denote by Θ the set of all admissible regions ΩePl ⊂ R2 with Lipschitz boundaries.

We define the convergence on the set Θ.

We say that a sequence ΩnPl ∈ Θ converges to a region ΩPl ∈ Θ if, and only if, the

sequence of functions nF e2 (x) converges uniformly to the function F e2 (x) in [0, 1].

Let us consider the union of four planar regions Ω = ΩePl ∪ΩGl ∪ΩeCa ∪ΩMo which

represents the planar cross section of the system mould, glass piece, plunger and

the cooling canal of the plunger. Region ΩePl represents the plunger, region ΩGl the

cooled glass piece, region ΩeCa the cooling canal inside the plunger, where cooling

water flows, and region ΩMo represents the mould.

Furthermore, we denote by Γ1 the boundary between the plunger ΩePl and the

moulded piece ΩGl and by Γe2 the boundary between the plunger Ω
e
Pl and the plunger

cavity ΩeCa. We denote by Γ3 part of the boundary connecting the system mould, the

moulded piece and the plunger with presser, by Γ4 part of the axis of symmetry (see

Figure 2), by Γ5 part of the boundary formed by the tube. Γ6 is the notation for part
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of the boundary between the moulded piece ΩGl and the mould ΩMo and Γ7 is the

outward boundary of the mould, which is surrounded by the external environment.

Γin denotes part of the boundary, where cooling water comes into the cooling canal

of the plunger, and Γout part of the boundary where water exits.

Γ1

Γe2

Γ4

ΩePl (Plunger)ΩGl (Glass)

ΩeCa (Cavity)Γ5

Γ6

Γ7

ΩMo (Mould)

Γin
b b b b b b b b b b b b b bb

Γ3

Γout

Figure 2. Scheme of the system mould, glass piece, plunger, cavity of plunger and supply
tube.

In the three dimensional region GeCa which is created by rotation of ΩeCa around

the x axis, we assume an axisymmetric incompressible potential flow of water, which

is axisymmetric with the x axis. We split the boundary ∂GeCa into the union of four

parts as

(1.2) ∂GeCa = Γ3D
2 ∪ Γ3D

5 ∪ Γ3D
in ∪ Γ3D

out,

where Γ3D
2 , Γ

3D
5 , Γ

3D
in , and Γ3D

out denote respectively parts of boundary of ∂G
e
Ca created

by rotation of Γe2 , Γ5, Γin, and Γout, around the x axis.

The potential Φ is given as a solution of the Neumann problem

∆Φ = 0 in GeCa,(1.3)

∂Φ

∂n
= g on ∂GeCa,(1.4)

where g ∈ L2(∂GeCa), representing the normal component of the velocity at the

entrance to and the exit of the plunger cavity, is in the form

(1.5) g =





0 on Γ3D
2 ∪ Γ3D

5 ,

hin
velo on Γ3D

in ,

hout
velo on Γ3D

out,
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hin
velo is the normal velocity at the entrance Γ3D

in (hin
velo < 0) and hout

velo is the normal

velocity at the exit Γ3D
out. Further, we assume

(1.6)

∫

Γ3D

in
∪Γ3D

out

g dS = 0.

The variational formulation for the potential function has the following form:

We look for the function Φ ∈ H1(GeCa) such that

(1.7)

∫

Ge
Ca

∂Φ

∂xi

∂ϕ

∂xi
dV =

∫

Γ3D

in
∪Γ3D

out

gϕdS ∀ϕ ∈ H1(GeCa).

The velocity field of the flowing water u = (u1, u2, u3) in the cavity G
e
Ca is given as

(1.8) u = gradΦ.

Theorem 1.1 (Existence and uniqueness of the velocity field). Under the as-

sumption (1.6) there exists a unique velocity field of the form (1.8) satisfying the

estimate of the Euclid norm in the form

(1.9) ‖ |u| ‖L2(Ge
Ca

) 6 c(‖hin
velo‖L2(Γ3D

in
) + ‖hout

velo‖L2(Γ3D
out

)).

P r o o f. According to Theorem 35.1 (see [3] page 423) there exists a unique weak

solution Φ ∈ H1(GeCa) of the Neumann problem (1.7), which satisfies the condition

(1.10)

∫

Ge
Ca

Φ dV = 0

and

(1.11) ‖Φ‖H1(Ge
Ca

) 6 c‖g‖L2(∂Ge
Ca

).

Further, from (1.8) we get

(1.12)
∥∥∥
√
u2

1 + u2
2 + u2

3

∥∥∥
L2(Ge

Ca
)
6 ‖Φ‖H1(Ge

Ca
),

which together with

(1.13) ‖g‖L2(∂Ge
Ca

) = ‖hin
velo‖L2(Γ3D

in
) + ‖hout

velo‖L2(Γ3D
out

)

gives (1.9). �
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The energy equation for the stationary flow u with steady temperature in three

dimensions has the form

(1.14) cvgradϑ · u−
k

̺
∆ϑ =

1

̺
2µ|D(u)|2 + q,

where cv is the specific heat upon constant volume, ϑ the absolute temperature, k the

coefficient of thermal conductivity, ̺ the density of the flowing liquid, µ the dynamic

viscosity,

(1.15) D(u) = (dij)
3
i,j=1, dij =

1

2

( ∂ui
∂xj

+
∂uj
∂xi

)

the strain velocity tensor and q the density of the heat sources. We assume that

the cooling medium is water, which has dynamic viscosity 0.833 · 10−3 < µ <

1.231 · 10−3 [Nsm−2] at temperatures considered. It allows us to neglect the term

representing the energy of the inner friction of water. So we assume the energy

equation in the form

(1.16) cvgradϑ · u−
k

̺
∆ϑ = q.

We put u = 0 in GePl, GGl and GMo (the regions created by rotation of Ω
e
Pl, ΩGl

and ΩMo around the x axis) because there is no flowing liquid inside. Further we

consider q = 0 in GePl, G
e
Ca and GMo (there are no heat sources inside). Denote

G = GePl ∪ GGl ∪ G
e
Ca ∪ GMo. We divide the searched function ϑ representing the

distribution of temperature in the system into the sum of four functions as

ϑ = ϑ0 + ϑ1 + ϑ2 + ϑ3,

where

(1.17) ϑi =

{
ϑ|Gi

in Gi

0 in G \Gi
for i = 0, 1, 2, 3

(G0 ≡ GePl, G1 ≡ GGl, G2 ≡ GeCa, G3 ≡ GMo).

Further, we denote by ϑi|Γ3D

j
the trace of solution ϑi on the boundary Γ3D

j for i, j

if Γ3D
j is a boundary of Gi.

We assume the following boundary conditions :

At the entrance the cooling water has constant temperature 15◦C, i.e. 288 K, thus

ϑ2|Γ3D

in

= 288 on Γ3D
in .
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The output distribution of temperature is given by the function heout ∈ C(Γ3D
out), thus

ϑ2|Γ3D
out

= heout on Γ3D
out.

We assume that the supply tube is isolated, thus

∂ϑ2

∂n
= 0 on Γ3D

5 .

The boundary condition on Γ3D
3 is given as

ϑi|Γ3D

3

= h3 on Γ3D
3 , i = 0, 1, 3,

where h3 ∈ C(Γ3D
3 ) is the steady-state temperature at the place of connection with

the glass press.

The heat-transfer through Γ3D
2 (i.e. between the plunger and water) is modeled

as the boundary condition for contact of two bodies, where “the body” representing

water has a convective term (see [4]), thus

(1.18)
(
− k0

∂ϑ0

∂n

)−

=
(
− k2

∂ϑ2

∂n

)+

on Γ3D
2 ,

where ∂/∂n denotes the derivative with respect to the outward normal with respect

to the region GePl, or G
e
Ca, “+” standing for the limit in the direction of the normal

to the boundary from outside and “−” from inside of GePl.

The heat-transfer through the boundary Γ3D
7 (i.e. between the mould and envi-

ronment) is modeled as a boundary condition of the third kind for contact between

body and environment (see [4]), thus

(1.19)
(
− k3

∂ϑ3

∂n

)−

= α(ϑ3|Γ3D

7

− ϑ4) on Γ3D
7 ,

where ∂/∂n denotes the derivative with respect to the outward normal with respect

to the region GMo, “−” the limit in the direction of the normal to the boundary from

inside of GMo, α > 0 denotes the coefficient of heat-transfer between the mould and

environment, ϑ3|Γ3D

7

the trace of ϑ3 on the boundary of the region GMo and ϑ4 > 0

the temperature of environment. We use the transit condition for contact between

two bodies, where one of them changes its state of matter because of the influence

of solidification (see [4]), to describe the heat-transfer through the boundary Γ3D
1

between the glass piece and the plunger. Thus

(1.20)
(
k1
∂ϑ1

∂n

)+

−
(
k0
∂ϑ0

∂n

)−

= β1 on Γ3D
1 ,

where β1 > 0, β1 ∈ C(0),1(Γ3D
1 ) represents the flux density of the modified mass

of the body, ∂/∂n denotes the derivative with respect to the outward normal with

respect to the region GePl, or GGl, “+” the limit in the direction of the normal to the

boundary from outside and “−” from inside of GePl.
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Analogously we describe the heat-transfer through the boundary Γ3D
6 between the

glass and the mould. Thus

(1.21)
(
k1
∂ϑ1

∂n

)+

−
(
k3
∂ϑ3

∂n

)−

= β6 on Γ3D
6 ,

where β6 > 0, β6 ∈ C(0),1(Γ3D
6 ) represents the flux density of the modified mass

of the body, ∂/∂n denotes the derivative with respect to the outward normal with

respect to the region GMo, or GGl, “+” the limit in the direction of the normal to

the boundary from outside and “−” from inside of the region GMo.

We start from the variational formulation of the energy equation in three di-

mensions. Due to rotational symmetry we transform the problem to cylindrical

coordinates and use dimensional reduction to x, r coordinates.

In this way we obtain a two dimensional velocity field of flowing water w
e =

(w1, w2) where

w1 = u1,(1.22)

w2 =
√

(u2)2 + (u3)2,(1.23)

where u = (u1, u2, u3) is defined in (1.8).

Dimensional reduction leads to one more boundary condition on the axis of the

system Γ4, which means that there is no heat flow in the normal direction to the

axis, thus
∂ϑi
∂n

= 0 on Γ4, i = 0, 1, 2, 3.

To define the state problem based on the variational formulation of the energy equa-

tion in two dimensions we define operators

EnergyveloΩ (ϑ,w, ψ) = cv̺2

∫

Ωe
Ca

(∂ϑ2

∂x
w1 +

∂ϑ2

∂r
w2

)
ψr dΩ,(1.24)

Energycond
Ω (ϑ, ψ) = k0

∫

Ωe
Pl

(∂ϑ0

∂x

∂ψ

∂x
+
∂ϑ0

∂r

∂ψ

∂r

)
r dΩ(1.25)

+ k1

∫

ΩGl

(∂ϑ1

∂x

∂ψ

∂x
+
∂ϑ1

∂r

∂ψ

∂r

)
r dΩ

+ k2

∫

Ωe
Ca

(∂ϑ2

∂x

∂ψ

∂x
+
∂ϑ2

∂r

∂ψ

∂r

)
r dΩ

+ k3

∫

ΩMo

(∂ϑ3

∂x

∂ψ

∂x
+
∂ϑ3

∂r

∂ψ

∂r

)
r dΩ,

EnvironmentΩ(ϑ, ψ) =

∫

Γ7

αϑ3|Γ7
ψr dΓ,(1.26)
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SourceΩ(ψ) = ̺1

∫

ΩGl

qψr dΩ,(1.27)

CoeffΩ(ψ) =

∫

Γ1

β1ψr dΓ +

∫

Γ6

β6ψr dΓ +

∫

Γ7

αϑ4ψr dΓ.(1.28)

Further, we denote

AΩ(ϑ,w, ψ) = EnergyveloΩ (ϑ,w, ψ) + Energycond
Ω (ϑ, ψ)(1.29)

+ EnvironmentΩ(ϑ, ψ)

and

(1.30) FΩ(ψ) = SourceΩ(ψ) + CoeffΩ(ψ).

We introduce the weighted Sobolev space H1
r (Ωi) (see [2]) with the norm

(1.31) ‖v‖1,r,Ωi
=

( ∫

Ωi

[(∂v
∂x

)2

+
(∂v
∂r

)2

+ v2
]
r dΩ

)1/2

, i = 0, 1, 2, 3,

(Ω0 ≡ ΩePl, Ω1 ≡ ΩGl, Ω2 ≡ ΩeCa, Ω3 ≡ ΩMo).

Further, we denote

H(Ω) = {ϑ ; ϑ defined in (1.17), ϑi ∈ H1
r (Ωi) for any i = 0, 1, 2, 3}.

We define the norm in H(Ω) as

(1.32) ‖ϑ‖H = (‖ϑ0‖
2
1,r,Ω0

+ ‖ϑ1‖
2
1,r,Ω1

+ ‖ϑ2‖
2
1,r,Ω2

+ ‖ϑ3‖
2
1,r,Ω3

)1/2.

Theorem 1.2. The set H(Ω) with the norm (1.32) is a Hilbert space.

We denote by H
∗(Ω) the dual space to the space H(Ω) with the norm

‖FΩ‖H∗ = sup
ψ 6=0

FΩ(ψ)

‖ψ‖H

.

Denote

ΩH = Ω ∪ Γ3 ∪ Γin ∪ Γout

and
eH2D = {v ∈ C∞(ΩH) ; v|Γ3∪Γin∪Γout

= 0}.

Let H0(Ω) be the closure of the set eH2D with respect to the norm H(Ω).
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We assume the existence of a function ϑeΓ ∈ H(Ω) such that

ϑeΓ|Γin
= 288 on Γin,(1.33)

ϑeΓ|Γout
= heout on Γout,(1.34)

ϑeΓ|Γ3
= h3 on Γ3,(1.35)

where h3 ∈ C(Γ3) is a given function representing the stagnation temperature on the

boundary Γ3 with the presser and h
e
out ∈ C(Γout) is a given function representing

the distribution of temperature at the output from the cavity of the plunger Γout.

We use the variational formulation of the energy equation to formulate

The State Problem:

We look for the function ϑ ≡ ϑ(F e2 ) ∈ H(Ω) such that

AΩ(ϑ,we, ψ) = FΩ(ψ) ∀ψ ∈ H0(Ω),(1.36)

ϑ− ϑeΓ ∈ H0(Ω),(1.37)

where F e2 ∈ Uead and w
e is the corresponding flow pattern given as the gradient of

the solution (1.7).

The physical assumption of cooling:

A1: The average temperature of water coming into the plunger cavity is less than

the average temperature of the leaving water.

Theorem 1.3. The bilinear form (1.24) satisfies the condition

(1.38) EnergyveloΩ (ϑ,we, ϑ) > 0

for ϑ,we satisfying the physical assumption of cooling A1.

P r o o f. The volume of water flowing into the region GeCa, or flowing out of the

region GeCa, during one second is

P = −

∫

Γ3D

in

u · n dS = −

∫

Γ3D

in

hin
velo dS =

∫

Γ3D
out

hout
velo dS =

∫

Γ3D
out

u · n dS,

because of assumption (1.6).

Further we assume that water flows into the region GeCa through the boundary

Γ3D
in , so

u · n < 0 on Γ3D
in

and flows out of the region GeCa through the boundary Γ3D
out, so

u · n > 0 on Γ3D
out.
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Then the expression

−
1

P

∫

Γ3D

in

ϑ2u · n dS = −
1

P

∫

Γ3D

in

288hin
velo dS

means the average temperature of water flowing into GeCa during one second (recall

hin
velo < 0) and

1

P

∫

Γ3D
out

ϑ2u · n dS =
1

P

∫

Γ3D
out

heouth
out
velo dS

means the average temperature of water flowing out of GeCa during one second.

We assume cooling process, that means the average temperature of water flowing

into is less than the average temperature of water flowing out (assumption A1), so

(1.39) −
1

P

∫

Γ3D

in

288hin
velo dS <

1

P

∫

Γ3D
out

heouth
out
velo dS.

Now we have

EnergyveloG (ϑ,u, ϑ) = cv̺2

∫

Ge
Ca

(∂ϑ2

∂x
ϑ2u1 +

∂ϑ2

∂y
ϑ2u2 +

∂ϑ2

∂z
ϑ2u3

)
dV

=
1

2
cv̺2

∫

∂Ge
Ca

(ϑ2
2u1νx + ϑ2

2u2νy + ϑ2
2u3νz) dS

=
1

2
cv̺2

∫

∂Ge
Ca

ϑ2
2u · n dS

=
1

2
cv̺2

[∫

Γ3D
out

ϑ2
2u · n dS +

∫

Γ3D

in

ϑ2
2u · n dS

]

=
1

2
cv̺2

[∫

Γ3D
out

ϑ2
2h

out
velo dS +

∫

Γ3D

in

ϑ2
2h

in
velo dS

]
>

>
1

2
cv̺2

[
min heout

∫

Γ3D
out

heouth
out
velo dS + 288

∫

Γ3D

in

288hin
velo dS

]

=
1

2
cv̺2

[
(minheout − 288)

∫

Γ3D
out

heouth
out
velo dS

+ 288

(∫

Γ3D
out

heouth
out
velo dS +

∫

Γ3D

in

288hin
velo dS

)]
> 0,

where we used Green’s formula, the fact that minheout > 288 and (1.39). Transfor-

mation to cylindrical coordinates does not change the inequality. �

415



Theorem 1.4 (Existence and uniqueness of solution of the state problem). The

state problem (1.36), (1.37) has a unique solution ϑ(F e2 ) for each F e2 ∈ Uead and the

associated flow pattern w
e obtained as the gradient of the unique solution of (1.7)

and

(1.40) ‖ϑ(F e2 )‖H 6
1

min(c0, c1, c2, c3)
‖FΩ‖H∗ .

P r o o f. It is sufficient to verify the assumptions of the Lax-Milgram Theorem

(see [1] page 12). We denote V = H(Ω). According to Theorem 1.2 V is a Hilbert

space.

We denote the seminorms of the space H(Ω) as

‖u‖0,2,r =

(∫

Ω

u2r dΩ

)1/2

,

‖ux‖0,2,r =

(∫

Ω

(∂u
∂x

)2

r dΩ

)1/2

,

‖ur‖0,2,r =

(∫

Ω

(∂u
∂r

)2

r dΩ

)1/2

.

Then

‖u‖H = (‖u‖2
0,2,r + ‖ux‖

2
0,2,r + ‖ur‖

2
0,2,r)

1/2.

According to Theorem 1.1 there exists a unique flow pattern w
e corresponding to

F2 ∈ Uead. We substitute this vector function w
e into the bilinear form (1.24):

|EnergyveloΩ (ϑ,we, ψ)| = cv̺2

∣∣∣∣
∫

Ωe
Ca

(∂ϑ2

∂x
w1 +

∂ϑ2

∂r
w2

)
ψr dΩ

∣∣∣∣

6 cv̺2 max(|w1|, |w2|, 1)(‖ϑ2x‖0,2,r‖ψ‖0,2,r

+ ‖ϑ2r‖0,2,r‖ψ‖0,2,r)

6 2cv̺2 max(|w1|, |w2|, 1)‖ϑ‖H‖ψ‖H,

because

‖u‖2
H
‖v‖2

H
= (‖u‖2

0,2,r + ‖ux‖
2
0,2,r + ‖ur‖

2
0,2,r) (‖v‖2

0,2,r + ‖vx‖
2
0,2,r + ‖vr‖

2
0,2,r)

= ‖u‖2
0,2,r‖v‖

2
0,2,r + ‖u‖2

0,2,r‖vx‖
2
0,2,r + ‖u‖2

0,2,r‖vr‖
2
0,2,r

+ ‖ux‖
2
0,2,r‖v‖

2
0,2,r + ‖ux‖

2
0,2,r‖vx‖

2
0,2,r + ‖ux‖

2
0,2,r‖vr‖

2
0,2,r

+ ‖ur‖
2
0,2,r‖v‖

2
0,2,r + ‖ur‖

2
0,2,r‖vx‖

2
0,2,r + ‖ur‖

2
0,2,r‖vr‖

2
0,2,r.
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|Energycond
Ω (ϑ, ψ)| = k0

∫

Ωe
Pl

(∂ϑ0

∂x

∂ψ

∂x
+
∂ϑ0

∂r

∂ψ

∂r

)
r dΩ

+ k1

∫

ΩGl

(∂ϑ1

∂x

∂ψ

∂x
+
∂ϑ1

∂r

∂ψ

∂r

)
r dΩ

+ k2

∫

Ωe
Ca

(∂ϑ2

∂x

∂ψ

∂x
+
∂ϑ2

∂r

∂ψ

∂r

)
r dΩ

+ k3

∫

ΩMo

(∂ϑ3

∂x

∂ψ

∂x
+
∂ϑ3

∂r

∂ψ

∂r

)
r dΩ

6 k0(‖ϑ0x‖0,2,r‖ψx‖0,2,r + ‖ϑ0r‖0,2,r‖ψr‖0,2,r)

+ k1(‖ϑ1x‖0,2,r‖ψx‖0,2,r + ‖ϑ1r‖0,2,r‖ψr‖0,2,r)

+ k2(‖ϑ2x‖0,2,r‖ψx‖0,2,r + ‖ϑ2r‖0,2,r‖ψr‖0,2,r)

+ k3(‖ϑ3x‖0,2,r‖ψx‖0,2,r + ‖ϑ3r‖0,2,r‖ψr‖0,2,r)

6 2 max(k0, k1, k2, k3)‖ϑ‖H‖ψ‖H,

|EnvironmentΩ(ϑ, ψ)| =

∣∣∣∣
∫

Γ7

α(ϑ3|Γ7
)ψr dΓ

∣∣∣∣ 6

∫

Γ7

α|(ϑ3|Γ7
)ψr| dΓ

6 α

( ∫

Γ7

(ϑ3|Γ7
)2r dΓ

)1/2( ∫

Γ7

ψ2r dΓ

)1/2

6 αC‖ϑ3‖H‖ψ‖H 6 αC1‖ϑ‖H‖ψ‖H,

where we have used the Hölder inequality and the Trace Theorem [1] page 9.

Together we get

|AΩ(ϑ,we, ψ)|

6 [2cv̺2 max(|w1|, |w2|, 1) + 2 max(k0, k1, k2, k3) + αC1]‖ϑ‖H‖ψ‖H,

which proves continuity of the left hand side.

Further,

Energycond
Ω (ϑ, ϑ) + EnvironmentΩ(ϑ, ϑ)

= k0

∫

Ωe
Pl

[(∂ϑ0

∂x

)2

+
(∂ϑ0

∂r

)2]
r dΩ + k1

∫

ΩGl

[(∂ϑ1

∂x

)2

+
(∂ϑ1

∂r

)2]
r dΩ

+ k2

∫

Ωe
Ca

[(∂ϑ2

∂x

)2

+
(∂ϑ2

∂r

)2]
r dΩ + k3

∫

ΩMo

[(∂ϑ3

∂x

)2

+
(∂ϑ3

∂r

)2]
r dΩ

+

∫

Γ7

α(ϑ3|Γ7
)2r dΓ > c0‖ϑ0‖

2
H

+ c1‖ϑ1‖
2
H

+ c2‖ϑ2‖
2
H

+ c3‖ϑ3‖
2
H

> min(c0, c1, c2, c3)‖ϑ‖
2
H
,

where we have used Friedrichs’ inequality (see [1] page 10).
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Together with Theorem 1.3 we get

(1.41) |AΩ(ϑ,we, ϑ)| > min(c0, c1, c2, c3)‖ϑ‖
2
H
.

This proves H-ellipticity.

Further we have

(1.42) |SourceΩ(ψ)| 6 ̺1

∫

ΩGl

|qψr| dΩ 6 ̺1

(∫

ΩGl

q2r dΩ
)1/2( ∫

ΩGl

ψ2r dΩ
)1/2

6 ̺1‖q‖L2
r(ΩGl)‖ψ‖L2

r(ΩGl) 6 ̺1‖q‖L2
r(ΩGl)‖ψ‖H

and

(1.43) |CoeffΩ(ψ)| 6

∫

Γ1

β1|ψr| dΓ +

∫

Γ6

β6|ψr| dΓ +

∫

Γ7

αϑ4|ψr| dΓ

6 β1‖1‖L2
r(∂ΩGl)‖ψ‖L2

r(∂ΩGl) + β6‖1‖L2
r(∂ΩGl)‖ψ‖L2

r(∂ΩGl)

+ αϑ4‖1‖L2
r(∂ΩGl)‖ψ‖L2

r(∂ΩGl)

6 (β1 + β6 + αϑ4)‖1‖L2
r(∂ΩGl)‖ψ‖H,

where we have used the Hölder inequality and the Trace Theorem (see [1] page 9).

The linearity of the right hand side of (1.36) together with (1.42) and (1.43) gives

its continuity. According to the Lax-Milgram theorem there exists a unique solution

of problem (1.36), (1.37). �

R em a r k. The problem includes both the pure conduction of heat in the regions

ΩePl∪ΩGl∪ΩMo (flow pattern is equal to zero) and the combination of heat convection

with conduction of heat in region ΩeCa.

We will solve the problem of optimal design for the plunger cavity shape:

We define the cost functional as

(1.44) J S(F e2 ) = ‖ϑ(F e2 ) |Γ1
−TΓ1

‖2
0,r,Γ1

,

where ϑ(F e2 ) |Γ1
is the trace of the solution ϑ(F e2 ) of the state problem (1.36), (1.37)

in the region ΩePl on the boundary Γ1, TΓ1
is a chosen fixed constant corresponding to

the optimal surface plunger temperature. We look for the optimal design FOpt ∈ Uead
such that

(1.45) J S(FOpt) 6 J S(F e2 ) ∀F e2 ∈ Uead.
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Theorem 1.5 (Existence of solution of the problem of optimal design for plunger

cavity shape). The optimal design problem (1.45) has at least one solution.

P r o o f. We use Theorem 2.1 published in [1] page 29. We denote Ũ = C([0, 1]),

U◦ = {f ∈ Ũ ; 0 6 f(x) 6 f1(x) ∀x ∈ [0, 1]}, where f1 ∈ C([0, 1]) is a fixed given

increasing function.

The set Uead is bounded and closed in C([0, 1]) and, moreover, consists of uniformly

continuous functions. The theorem of Arzela-Ascoli implies the compactness of Uead
in C([0, 1]).

We denote Ωn = ΩnPl ∪ ΩGl ∪ ΩnCa ∪ ΩMo. Let ϑ
n = ϑn0 + ϑn1 + ϑn2 + ϑn3 be the

solution of the state problem (1.36), (1.37) in the region Ωn (see (1.17)). Further

we denote by w
n = (wn1 , w

n
2 ) the associated velocity field derived from the unique

solution of the problem (1.7) in the region ΩnCa.

Let F en ∈ Uead be a sequence of functions, then there exists a subsequence F
e
nk

→

F e ∈ Uead such that F
e
nk

⇒ F e uniformly on [0, 1] so then Ωnk

Pl → ΩPl and thus

Ωnk → Ω on the set Θ.

The variational formulation (1.7) of the problem for finding the potential function

in the region ΩeCa has the form

(1.46)

∫

Ωe
Ca

[∂Φ

∂x

∂ϕ

∂x
+
∂Φ

∂r

∂ϕ

∂r

]
r dΩ =

∫

Γin∪Γout

gϕr dΓ ∀ϕ ∈ H1
r (Ω

e
Ca ∪ ΩePl)

and the variational formulation of the analogous problem in the region Ωnk

Ca has the

form

(1.47)

∫

Ω
nk
Ca

[∂Φnk

∂x

∂ϕ

∂x
+
∂Φnk

∂r

∂ϕ

∂r

]
r dΩ =

∫

Γin∪Γout

gϕr dΓ ∀ϕ ∈ H1
r (Ω

nk

Ca ∪Ωnk

Pl ).

We subtract (1.47) from (1.46) and obtain

∫

Ωe
Ca

∩Ω
nk
Ca

[∂(Φ − Φnk)

∂x

∂ϕ

∂x
+
∂(Φ − Φnk)

∂r

∂ϕ

∂r

]
r dΩ

+

∫

Ωe
Ca

\Ω
nk
Ca

[∂Φ

∂x

∂ϕ

∂x
+
∂Φ

∂r

∂ϕ

∂r

]
r dΩ −

∫

Ω
nk
Ca

\Ωe
Ca

[∂Φnk

∂x

∂ϕ

∂x
+
∂Φnk

∂r

∂ϕ

∂r

]
r dΩ = 0.

We substitute ϕ = Φ − Φnk and get

∫

Ωe
Ca

∩Ω
nk
Ca

[(∂(Φ − Φnk)

∂x

)2

+
(∂(Φ − Φnk)

∂r

)2]
r dΩ

+

∫

Ωe
Ca

\Ω
nk
Ca

[∂Φ

∂x

∂(Φ − Φnk)

∂x
+
∂Φ

∂r

∂(Φ − Φnk)

∂r

]
r dΩ

−

∫

Ω
nk
Ca

\Ωe
Ca

[∂Φnk

∂x

∂(Φ − Φnk)

∂x
+
∂Φnk

∂r

∂(Φ − Φnk)

∂r

]
r dΩ = 0.
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The last two integrals on the left hand side have zero limit for Ωnk → Ω because we

integrate bounded functions Φ ∈ H1
r (Ω

e
Ca) and Φnk ∈ H1

r (Ω
nk

Ca) over the regions with

meas (ΩeCa \ Ωnk

Ca) → 0 and meas (Ωnk

Ca \ ΩeCa) → 0. In the first integral we integrate

a nonnegative function and thus

∫

Ωe
Ca

∩Ω
nk
Ca

[(∂(Φ − Φnk)

∂x

)2

+
(∂(Φ − Φnk)

∂r

)2]
r dΩ

=

∫

Ωe
Ca

∩Ω
nk
Ca

[(
w1 − wnk

1

)2

+
(
w2 − wnk

2

)2]
r dΩ → 0.

From the Hölder inequality we get

(1.48)

∫

Ωe
Ca

∩Ω
nk
Ca

(wi − wnk

i )r dΩ 6

∫

Ωe
Ca

∩Ω
nk
Ca

|wi − wnk

i |r dΩ

6

( ∫

Ωe
Ca

∩Ω
nk
Ca

(wi − wnk

i )2r dΩ

)1/2

meas (ΩeCa ∩ Ωnk

Ca) → 0

for i = 1, 2 and thus wnk

i → wi in L
2
r(Ω

e
Ca ∩ Ωnk

Ca).

The variational formulation of the state problem in the region Ωnk has the form

(1.49) AΩnk (ϑnk ,wnk , ψ) = FΩnk (ψ) ∀ψ ∈ H0(Ω
nk).

We subtract (1.49) from (1.36) and obtain

cv̺2

∫

Ωe
Ca

∩Ω
nk
Ca

[∂ϑ2

∂x
w1ψ −

∂ϑnk

2

∂x
wnk

1 ψ +
∂ϑ2

∂r
w2ψ −

∂ϑnk

2

∂r
wnk

2 ψ
]
r dΩ

+ k0

∫

Ωe
Pl

∩Ω
nk
Pl

[∂(ϑ0 − ϑnk

0 )

∂x

∂ψ

∂x
+
∂(ϑ0 − ϑnk

0 )

∂r

∂ψ

∂r

]
r dΩ

+ k1

∫

ΩGl

[∂(ϑ1 − ϑnk

1 )

∂x

∂ψ

∂x
+
∂(ϑ1 − ϑnk

1 )

∂r

∂ψ

∂r

]
r dΩ

+ k2

∫

Ωe
Ca

∩Ω
nk
Ca

[∂(ϑ2 − ϑnk

2 )

∂x

∂ψ

∂x
+
∂(ϑ2 − ϑnk

2 )

∂r

∂ψ

∂r

]
r dΩ

+ k3

∫

ΩMo

[∂(ϑ3 − ϑnk

3 )

∂x

∂ψ

∂x
+
∂(ϑ3 − ϑnk

3 )

∂r

∂ψ

∂r

]
r dΩ
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+ α

∫

Γ7

(ϑ3|Γ7
− ϑnk

3 |Γ7
)ψr dΓ

+

∫

Ωe
Ca

∩Ω
nk
Pl

[(
k2
∂ϑ2

∂x
− k0

∂ϑnk

0

∂x

)∂ψ
∂x

+
(
k2
∂ϑ2

∂r
− k0

∂ϑnk

0

∂r

)∂ψ
∂r

+ cv̺2

(∂ϑ2

∂x
w1 +

∂ϑ2

∂r
w2

)
ψ

]
r dΩ

+

∫

Ωe
Pl
∩Ω

nk
Ca

[(
k0
∂ϑ0

∂x
− k2

∂ϑnk

2

∂x

)∂ψ
∂x

+
(
k0
∂ϑ0

∂r
− k2

∂ϑnk

2

∂r

)∂ψ
∂r

− cv̺2

(∂ϑnk

2

∂x
wnk

1 +
∂ϑnk

2

∂r
wnk

2

)
ψ

]
r dΩ = 0.

We add and subtract the terms ∂ϑnk

2 /∂xw1ψ and ∂ϑ
nk

2 /∂rw2ψ in the first integral.

Then we substitute ψ = ϑ− ϑnk and get

cv̺2

∫

Ωe
Ca

∩Ω
nk
Ca

[∂(ϑ2 − ϑnk

2 )

∂x
w1(ϑ2 − ϑnk

2 ) +
∂(ϑ2 − ϑnk

2 )

∂r
w2(ϑ2 − ϑnk

2 )
]
r dΩ

+ k0

∫

Ωe
Pl
∩Ω

nk
Pl

[(∂(ϑ0 − ϑnk

0 )

∂x

)2

+
(∂(ϑ0 − ϑnk

0 )

∂r

)2]
r dΩ

+ k1

∫

ΩGl

[(∂(ϑ1 − ϑnk

1 )

∂x

)2

+
(∂(ϑ1 − ϑnk

1 )

∂r

)2]
r dΩ

+ k2

∫

Ωe
Ca

∩Ω
nk
Ca

[(∂(ϑ2 − ϑnk

2 )

∂x

)2

+
(∂(ϑ2 − ϑnk

2 )

∂r

)2]
r dΩ

+ k3

∫

ΩMo

[(∂(ϑ3 − ϑnk

3 )

∂x

)2

+
(∂(ϑ3 − ϑnk

3 )

∂r

)2]
r dΩ

+ α

∫

Γ7

(ϑ3|Γ7
− ϑnk

3 |Γ7
)2r dΓ

+ cv̺2

∫

Ωe
Ca

∩Ω
nk
Ca

[∂ϑnk

2

∂x
(w1 − wnk

1 ) (ϑ2 − ϑnk

2 ) +
∂ϑnk

2

∂r
(w2 − wnk

2 ) (ϑ2 − ϑnk

2 )
]
r dΩ

+

∫

Ωe
Ca

∩Ω
nk
Pl

[(
k2
∂ϑ2

∂x
− k0

∂ϑnk

0

∂x

)∂(ϑ2 − ϑnk

0 )

∂x
+

(
k2
∂ϑ2

∂r
− k0

∂ϑnk

0

∂r

)∂(ϑ2 − ϑnk

0 )

∂r

+ cv̺2

(∂ϑ2

∂x
w1 +

∂ϑ2

∂r
w2

)
(ϑ2 − ϑnk

0 )
]
r dΩ

+

∫

Ωe
Pl

∩Ω
nk
Ca

[(
k0
∂ϑ0

∂x
− k2

∂ϑnk

2

∂x

)∂(ϑ0 − ϑnk

2 )

∂x
+

(
k0
∂ϑ0

∂r
− k2

∂ϑnk

2

∂r

)∂(ϑ0 − ϑnk

2 )

∂r

− cv̺2

(∂ϑnk

2

∂x
wnk

1 +
∂ϑnk

2

∂r
wnk

2

)
(ϑ0 − ϑnk

2 )
]
r dΩ = 0.

The last two integrals on the left hand side have the zero limit for Ωnk → Ω be-

cause we integrate bounded functions over regions with meas(ΩeCa ∩ Ωnk

Pl ) → 0 and

meas(ΩePl∩Ωnk

Ca) → 0. The last but two integral has the zero limit because ∂ϑnk

2 /∂x,
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∂ϑnk

2 /∂r, ϑ2, ϑ
nk

2 are bounded functions and w
nk → w (see (1.48)). The first six

integrals are positive and converge to AΩ(ϑ− ϑnk ,w, ϑ− ϑnk).

From the H-ellipticity of AΩ(ϑ,w, ψ) (see (1.41)) we get

(1.50) ‖ϑ− ϑnk‖2
H

6 CAΩ(ϑ− ϑnk ,w, ϑ− ϑnk) → 0

and thus ϑnk → ϑ in H(Ω). We have to verify that

J S(F e) 6 lim inf
n→∞

J S(F enk
),

but this is true because the square of the norm ‖w|Γ1
‖0,r,Γ1

is a weak lower semicon-

tinuous functional. �
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