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EQUATIONS WITH STOCHASTIC ALTERNATING DIRECTION

EXPLICIT METHODS
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Abstract. The numerical solutions of stochastic partial differential equations of Itô type
with time white noise process, using stable stochastic explicit finite difference methods are
considered in the paper. Basically, Stochastic Alternating Direction Explicit (SADE) finite
difference schemes for solving stochastic time dependent advection-diffusion and diffusion
equations are represented and the main properties of these stochastic numerical methods,
e.g. stability, consistency and convergence are analyzed. In particular, it is proved that
when stable alternating direction explicit schemes for solving linear parabolic PDEs are
developed to the stochastic case, they retain their unconditional stability properties ap-
plying to stochastic advection-diffusion and diffusion SPDEs. Numerically, unconditional
stable SADE techniques are significant for approximating the solutions of the proposed
SPDEs because they do not impose any restrictions for refining the computational do-
mains. The performance of the proposed methods is tested for stochastic diffusion and
advection-diffusion problems, and the accuracy and efficiency of the numerical methods are
demonstrated.

Keywords: stochastic partial differential equation, finite difference method, alternating
direction method, Saul’yev method, Liu method, convergence, consistency, stability
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1. Introduction and preliminaries

The extensive application of random effects in describing some practical sciences

like engineering and mathematical finance has developed with the theory of stochas-

tic partial differential equations, or SPDEs. Thus, providing applicable numerical
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techniques and high accuracy computational methods is of great importance for ap-

proximating the solution of stochastic problems. Many effective researches for solving

stochastic differential equations as well as their strong and weak approximation have

been implemented by Kloeden and Platen [6], Komori and Mitsui [7], Milstein [10]

and Rößler [11].

In recent years, some main numerical methods for solving PDEs like finite differ-

ence and finite element schemes [1], [4], [9] and some practical techniques like the

method of lines [12], [9] for boundary value problems have been applied to the lin-

ear stochastic partial differential equations, and the results of these approaches have

been experimented numerically.

In [17], the authors considered the approximation of stochastic parabolic equa-

tions with real valued Brownian motion using two various finite difference methods,

and investigated their numerical results. In other words, the fundamental notions of

deterministic methods have been applied to the stochastic case with approximation

of one dimensional white noise. This article provides several alternating direction

explicit methods for solving stochastic heat-diffusion and time dependent advection-

diffusion equations with one dimensional white noise process. These schemes are

unconditionally stable and explicit in nature and can considerably reduce the nec-

essary computation in higher dimensions in comparison with other unconditionally

stable methods which are mostly implicit.

Our concern in the current work is on approximating the solutions of the Itô

stochastic partial differential equations of the following form:

(1)
∂u

∂t
(x, t) + ν

∂u

∂x
(x, t) = γ

∂2u

∂x2
(x, t) + σu(x, t)Ẇ (t), 0 6 t 6 T,

u(x, 0) = u0(x), 0 6 x 6 1,

with respect to an R1-valued Wiener process (W (t), Ft)t∈[0,T ] defined on a complete

probability space (Ω, F, P ), adapted to the standard filtration (Ft)t∈[0,T ]. The pa-

rameter γ is the viscosity coefficient and ν is the phase speed, and both are assumed

to be positive.

Clearly, in the absence of the advection term the stochastic partial differential

equation will be reduced to the stochastic diffusion equation of the form

(2)
∂u

∂t
(x, t) = γ

∂2u

∂x2
(x, t) + σu(x, t)Ẇ (t), 0 6 t 6 T.

The performance of stochastic ADE methods will be illustrated for both the diffusion

and advection-diffusion equations and their main qualifications will be studied.

This paper is organized as follows: the deterministic theory of several alternat-

ing direction methods, in particular, Saul’yev, Liu and Saul’yev/Robert and Weiss

440



schemes for solving deterministic heat-diffusion and advection-diffusion equations are

reviewed in Section 2. In Section 3, stochastic Saul’yev, Liu and Saul’yev/Robert

and Weiss schemes for approximating the diffusion and advection-diffusion SPDEs

are presented. In the next section some general considerations for stochastic differ-

ence methods are given. Sections 5, 6, and 7 contain the analysis of the stability, con-

sistency and convergence of the proposed stochastic alternating direction methods,

respectively. The computational performance of the stochastic difference methods

and their numerical results are demonstrated in Section 8. Section 9 contains some

concluding remarks.

2. Alternating direction deterministic schemes

Basically, partial differential equations have considerable applications in different

areas of science and engineering. In this section, we consider the approximation of

the solution of deterministic heat diffusion and advection diffusion equations using

deterministic ADE finite difference schemes. Numerically, finite difference methods

have vast applications in approximating the solution of partial differential equations

(PDEs). These schemes discretize continuous space and time into an evenly dis-

tributed grid system, and the values of the state variables are evaluated at each

node of the grid. Considering a uniform space grid ∆x and time grid ∆t in the time-

space lattice, we can estimate the solution of the equation at the points of this lattice.

The value of the approximate solution at the point (k∆x, n∆t) will be denoted by

un
k , where n, k are integers [19].

Alternating direction explicit finite-difference methods are essentially based on the

two approximations that are implemented for computations proceeding in alternating

directions, e.g., from left to right and from right to left [2], [3]. These methods were

first introduced by Saul’yev [15], [16] for solving initial value problems involving the

one-dimensional heat diffusion equation and then developed to the other cases. In

these schemes, the computation process in two opposite directions follows the imple-

mentation of explicit finite difference methods. The Saul’yev and Liu techniques for

solving the linear parabolic heat equation are unconditionally stable explicit methods

that do not require the solution of large systems of simultaneous equations at each

time step like most other unconditionally stable methods.

An important characteristic of these approaches, in addition to their unconditional

stability, is that they have truncations error of opposite sign. So, by appropriate

combination it may be possible to construct combined solutions having the properties

of accuracy, stability and simplicity. In the following subsection, the formulations of

Saul’yev and Liu schemes for the diffusion equation and Saul’yev/Robert and Weiss

schemes for the advection-diffusion equations are reviewed:
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2.1. Alternating direction methods for diffusion equation.

2.1.1. Saul’yev schemes. The Saul’yev scheme approximates the diffusion equa-

tion by

(3) (1 + γ̺)Un+1
k = (1 − γ̺)Un

k + γ̺(Un+1
k−1 + Un

k+1),

with the calculation proceeding from the left boundary to the right (L-R Saul’yev),

and

(4) (1 + γ̺)Un+1
k = (1 − γ̺)Un

k + γ̺(Un+1
k+1 + Un

k−1),

with the calculation proceeding from the right boundary to the left (R-L Saul’yev),

where ̺ = ∆t/∆x2. The Saul’yev schemes can be shown to be unconditionally stable

using the Von Neumann method of stability analysis [2], [3].

2.1.2. Liu schemes. Liu [8] used a higher order approximation and obtained the

L-R Liu difference equation

(5) (3γ̺+ 2)Un+1
k = 2(1 − 2γ̺)Un

k + γ̺(Un
k−1 + 3Un

k+1 − Un+1
k−2 + 4Un+1

k−1 ),

and the R-L Liu algorithm by

(6) (3γ̺+ 2)Un+1
k = 2(1 − 2γ̺)Un

k + γ̺(Un
k+1 + 3Un

k−1 − Un+1
k+2 + 4Un+1

k+1 ).

They are analogous to the Saul’yev schemes except that the first point on any line

(either from left to right or in the reverse direction) must be obtained by some other

methods. Liu schemes in both cases are unconditionally stable for approximating

the solution of the heat equation. Basically, separate use of left to right and right to

left Saul’yev algorithm at a certain time and the following calculation of the average

of the solutions at the gridpoints of the lattice can lead to a better approximation

because of the truncation error cancellation. Of course, such a combination can also

be applied to the Liu algorithm [2].

2.2. Alternating direction methods for advection-diffusion equation.

2.2.1. The Saul’yev/Robert and Weiss schemes. This method is based on an

alternative approximation for the first derivative in the advection diffusion equation.

Combined with the Saul’yev’s discretization for the diffusion term, the first space
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derivative is approximated using the alternating direction explicit schemes of Robert

and Weiss [3]. The discretization is

(7)
∂u

∂x
≈
un+1

j + un
j+1 − un+1

j−1 − un
j

2∆x

in the left to right step and

(8)
∂u

∂x
≈
un+1

j+1 + un
j − un+1

j − un
j−1

2∆x

in the right to left step.

Applying the Robert and Weiss and Saul’yev discretizations to the first and second

space derivatives respectively, we have

(9)
(

1 + γ̺+
νλ

2

)

un+1
j =

(

1 − γ̺+
νλ

2

)

un
j +

(

γ̺+
νλ

2

)

un+1
j−1 +

(

γ̺− νλ

2

)

un
j+1

in the L-R step and

(10)
(

1 + γ̺− νλ

2

)

un+1
j =

(

1− γ̺− νλ

2

)

un
j +

(

γ̺− νλ

2

)

un+1
j+1 +

(

γ̺+
νλ

2

)

un
j−1

in the R-L step where λ = ∆t/∆x and ̺ = ∆t/∆x2. In the stability analysis, the

L-R Saul’yev/Robert and Weiss scheme is unconditionally stable and can be used

with no stability restriction on the time step size. But, the R-L Saul’yev/Robert and

Weiss scheme is conditionally stable and a sufficient condition for stability is νλ 6 1

applying to advection-diffusion equations [3].

3. Stochastic alternating direction schemes

3.1. Stochastic Saul’yev and Liu schemes.

We extend the proposed unconditional stable finite difference schemes for ap-

proximating the solutions of the stochastic diffusion equations of the form (2) and

investigate their performance in the stochastic cases.

First, we introduce L-R stochastic Saul’yev methods using the approximation of

the white noise process Ẇ (t) for stochastic parabolic equation (2):

(11) un+1
k = un

k + γ
∆t

∆x2 [un
k+1 − un

k − un+1
k + un+1

k−1 ] + σun
k∆Wn,

where ∆Wn = W ((n+ 1)∆t) −W (n∆t). This equation can also be written as

(12) (1 + γ̺)un+1
k = γ̺un

k+1 + (1 − γ̺)un
k + γ̺un+1

k−1 + σun
k∆Wn,
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where ̺ = ∆t/∆x2 and un
k is intended as an approximation to u(k∆x, n∆t). A

similar stochastic difference method can be rewritten for the stochastic R-L Saul’yev

technique. In the same way, the stochastic Liu scheme can be considered as

(13) (3γ̺+2)un+1
k = 2(1−2γ̺)un

k +γ̺(un
k−1 +3un

k+1−un+1
k−2 +4un+1

k−1)+σun
k∆Wn.

We want to approximate the solution of (2) by the random variable un
k defined by

(12) and (13), which are respectively the stochastic version of the Saul’yev and Liu

methods. For all proposed schemes, the increments of Wiener process are assumed

independent of the state un
k .

3.2. Stochastic Saul’yev/Robert and Weiss schemes.

Applying the Saul’yev/Robert and Weiss schemes for discretizing the advection

and diffusion terms in equation (1) and using the discrete time approximation of

continuous time white noise, we obtain

(14)
(

1 + γ̺+
νλ

2

)

un+1
k =

(

1 − γ̺+
νλ

2

)

un
k +

(

γ̺+
νλ

2

)

un+1
k−1

+
(

γ̺− νλ

2

)

un
k+1 + σun

k∆Wn

for the L-R stochastic Saul’yev/Robert and Weiss scheme, and

(15)
(

1 + γ̺− νλ

2

)

un+1
k =

(

1 − γ̺− νλ

2

)

un
k +

(

γ̺− νλ

2

)

un+1
k+1

+
(

γ̺+
νλ

2

)

un
k−1 + σun

k∆Wn

for the R-L stochastic Saul’yev/Robert and Weiss scheme, where

∆Wn = W ((n+ 1)∆t) −W (n∆t), λ =
∆t

∆x
and ̺ =

∆t

∆x2
.

4. Some general considerations for stochastic schemes

In this section, we present some basic definitions which are indeed stochastic ver-

sions of the main concepts of the deterministic finite difference schemes.

Essentially, it is extremely important for the solution of stochastic difference

schemes (SDS) to converge to the solution of the stochastic partial differential equa-

tions or SPDEs. First, consider a stochastic partial differential equation:

Lv = G,
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where L denotes the differential operator and G ∈ L2(R) is an inhomogeneity. As-

suming un
k is the solution that is approximated by a stochastic finite difference

scheme denoted by Ln
k , and applying the stochastic scheme to the SPDE, we have

Ln
ku

n
k = Gn

k , whereby G
n
k is the approximation of the inhomogeneity.

We refer to Roth [13], [14] for the following definitions, but first we introduce

for sequences u = {. . . , u−1, u0, u1, . . .} the ℓ2,∆x-norm |u|2,∆x =
√

∑+∞

k=−∞
|uk|2∆x

and the sup-norm |u|∞ =
√

supk |xk|2.

Definition 1 (Convergence of an SDS). A stochastic difference scheme Ln
ku

n
k =

Gn
k approximating the stochastic partial differential equation Lv = G is convergent

in mean square at time t if, as (n+ 1)∆t converges to t,

(16) E‖un+1 − vn+1‖2 → 0 for (n+ 1)∆t = t, and ∆x→ 0,

where un+1 and vn+1 are infinite dimensional vectors

un+1 = (. . . , un+1
k−2 , u

n+1
k−1 , u

n+1
k , un+1

k+1 , u
n+1
k+2 , . . .)

T,

vn+1 = (. . . , vn+1
k−2 , v

n+1
k−1 , v

n+1
k , vn+1

k+1 , v
n+1
k+2 , . . .)

T.

Definition 2 (Consistency of an SDS). The finite stochastic difference scheme

Ln
ku

n
k = Gn

k is pointwise consistent with the stochastic partial differential equation

Lv = G at a point (x, t), if for any continuously differentiable function Φ = Φ(x, t),

(17) E‖(LΦ −G)n
k − [Ln

kΦ(k∆x, n∆t) −Gn
k ]‖2 → 0

in mean square as ∆x→ 0,∆t = t, and (k∆x, (n+ 1)∆t) converges to (x, t).

Definition 3 (Stability of an SDS). A stochastic difference scheme is said to be

stable with respect to a norm in mean square if there exist positive constants ∆x0

and ∆t0 and non negative constants K and β such that

(18) E‖un+1‖2 6 KeβtE‖u0‖2

for all 0 6 t = (n+ 1)∆t, 0 6 ∆x 6 ∆x0, 0 6 ∆t 6 ∆t0.

R em a r k 1 (Stability analysis of a stochastic scheme using the Fourier-trans-

formation).

Von Neumann [18] introduces a method to prove stability using Fourier analysis so

that it can give a necessary and sufficient condition for the stability of deterministic

finite difference schemes.
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Assuming ûn+1 is the Fourier transformation of un+1, the Fourier-inversion-

formula gives us

(19) un+1
m =

1√
2π

∫

π/∆x

−π/∆x

eim∆xξûn+1(ξ) dξ,

where

(20) ûn+1 =
1√
2π

m=∞
∑

m=−∞

e−im∆xξun+1
m ∆x,

and ξ is a real variable. Substituting in a stochastic difference scheme, we have

(21) ûn+1(ξ) = g(∆xξ,∆t,∆x)ûn(ξ),

where g(∆xξ,∆t,∆x) is the amplification factor of the stochastic difference scheme.

The decision whether a scheme is stable or not, can be simplified by the aid of

amplification factor. Like the deterministic case, we get the following necessary and

sufficient condition, for a scheme’s stability via its amplification factor, see Roth [13]:

(22) E|g(∆xξ,∆t,∆x)|2 6 1 +K∆t.

5. Stability analysis of stochastic ADE schemes

5.1. Stability of stochastic Saul’yev and Liu schemes for stochastic dif-

fusion equations.

Theorem 1. The stochastic Saul’yev schemes are unconditionally stable accord-

ing to the Fourier-transformation analysis for the stochastic diffusion equation.

P r o o f. According to the Fourier-inversion-formula, un
m has the transformation

un
m =

1√
2π

∫

π/∆x

−π/∆x

eim∆xξûn(ξ) dξ.

Substituting in L-R stochastic Saul’yev scheme, we have

(1+γ̺)ûn+1(ξ)−(γ̺)e−i∆xξûn+1(ξ) = (γ̺)ei∆xξûn(ξ)+(1−γ̺)ûn(ξ)+σûn(ξ)∆Wn.

Then we get

[(1 + γ̺) − (γ̺)e−i∆xξ]ûn+1(ξ) = [(γ̺)ei∆xξ + (1 − γ̺)]ûn(ξ) + σûn(ξ)∆Wn,
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and

ûn+1(ξ) =
{ 1 − γ̺+ γ̺ei∆xξ

1 + γ̺− γ̺e−i∆xξ
+

σ∆Wn

1 + γ̺− γ̺e−iξ

}

ûn(ξ).

Therefore, the amplification factor of the stochastic Saul’yev scheme is

g(∆xξ,∆t,∆x) :=
{ 1 − γ̺+ γ̺ei∆xξ

1 + γ̺− γ̺e−i∆xξ
+

σ∆Wn

1 + γ̺− γ̺e−i∆xξ

}

.

So, we get

E|g(∆xξ,∆t,∆x)|2 = E
∣

∣

∣

1 − γ̺+ γ̺ei∆xξ

1 + γ̺− γ̺e−i∆xξ
+

σ∆Wn

1 + γ̺− γ̺e−i∆xξ

∣

∣

∣

2

= E
∣

∣

∣

1 − γ̺+ γ̺ei∆xξ

1 + γ̺− γ̺e−i∆xξ

∣

∣

∣

2

+ E
∣

∣

∣

σ∆Wn

1 + γ̺− γ̺e−i∆xξ

∣

∣

∣

2

+ 2E
∣

∣

∣

1 − γ̺+ γ̺ei∆xξ

1 + γ̺− γ̺e−i∆xξ
× σ∆Wn

1 + γ̺− γ̺e−i∆xξ

∣

∣

∣
.

Because of the independence of the Wiener process, we have

E|g(∆xξ,∆t,∆x)|2 =
( 1 − γ̺+ γ̺ei∆xξ

1 + γ̺− γ̺e−i∆xξ

)2

+
( σ

1 + γ̺− γ̺e−i∆xξ

)2

∆t.

Since for every γ, ̺ and ∆x we have

∣

∣

∣

1 − γ̺+ γ̺ei∆xξ

1 + γ̺− γ̺e−i∆xξ

∣

∣

∣
6 1,

( σ

1 + γ̺− γ̺e−i∆xξ

)2

6 K,

therefore

E|g(∆xξ,∆t,∆x)|2 6 1 +K∆t.

So the stochastic Saul’yev scheme is unconditionally stable. �

By a similar argument it can be proved that the stochastic right to left Saul’yev

method is unconditionally stable when applied to the stochastic diffusion equations.

Theorem 2. The stochastic Liu schemes are unconditionally stable according to

the Fourier-transformation analysis for the stochastic diffusion equation.

P r o o f. We give a proof for the stability condition of the L-R Liu stochastic

scheme. Applying the stochastic L-R Liu scheme to the equation (2), we have

(2 + 3γ̺)ûn+1 + (γ̺)e−2i∆xξûn+1 − 4(γ̺)e−i∆xξûn+1

= 2(1 − 2γ̺)ûn + γ̺(e−i∆xξ + 3ei∆xξ)ûn + σûn(ξ)∆Wn.
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Therefore,

[(2 + 3γ̺) + (γ̺)e−2i∆xξ − 4γ̺e−i∆xξ]ûn+1

= [2(1 − 2γ̺) + γ̺e−i∆xξ + 3(γ̺)ei∆xξ]ûn + σûn(ξ)∆Wn,

and

ûn+1(ξ) =
{ 2(1 − 2γ̺) + γ̺e−i∆xξ + 3γ̺ei∆xξ

(2 + 3γ̺) + γ̺e−2i∆xξ − 4γ̺e−i∆xξ

+
σ∆Wn

(2 + 3γ̺) + γ̺e−2i∆xξ − 4γ̺e−i∆xξ

}

ûn(ξ).

Therefore, the amplification factor of the stochastic L-R Liu scheme is

g(∆xξ,∆t,∆x) =
2(1 − 2γ̺) + γ̺e−i∆xξ + 3γ̺ei∆xξ

(2 + 3γ̺) + γ̺e−2i∆xξ − 4γ̺e−i∆xξ

+
σ∆Wn

(2 + 3γ̺) + γ̺e−2i∆xξ − 4γ̺e−i∆xξ
.

Applying E| · |2 to the amplification factor, we have

E|g(∆xξ,∆t,∆x)|2 = E
∣

∣

∣

2(1 − 2γ̺) + γ̺e−i∆xξ + 3γ̺ei∆xξ

(2 + 3γ̺) + γ̺e−2i∆xξ − 4γ̺e−i∆xξ

+
σ∆Wn

(2 + 3γ̺) + γ̺e−2i∆xξ − 4γ̺e−i∆xξ

∣

∣

∣

2

.

So,we get

E|g(∆xξ,∆t,∆x)|2 = E
∣

∣

∣

2(1 − 2γ̺) + γ̺e−i∆xξ + 3γ̺ei∆xξ

(2 + 3γ̺) + γ̺e−2i∆xξ − 4γ̺e−i∆xξ

∣

∣

∣

2

+ E
∣

∣

∣

σ∆Wn

(2 + 3γ̺) + γ̺e−2i∆xξ − 4γ̺e−i∆xξ

∣

∣

∣

2

+ 2E
∣

∣

∣

2(1 − 2γ̺) + γ̺e−i∆xξ + 3γ̺ei∆xξ

(2 + 3γ̺) + γ̺e−2i∆xξ − 4γ̺e−i∆xξ

× σ∆Wn

(2 + 3γ̺) + γ̺e−2i∆xξ − 4γ̺e−i∆xξ

∣

∣

∣
.

Since the increments of a Wiener process are independent, we have

E|g(∆xξ,∆t,∆x)|2 =
( 2(1 − 2γ̺) + γ̺e−i∆xξ + 3γ̺ei∆xξ

(2 + 3γ̺) + γ̺e−2i∆xξ − 4γ̺e−i∆xξ

)2

+
( σ

(2 + 3γ̺) + γ̺e−2i∆xξ − 4γ̺e−i∆xξ

)2

∆t.
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For every γ, ̺ and ∆x,

∣

∣

∣

2(1 − 2γ̺) + γ̺e−i∆xξ + 3γ̺ei∆xξ

(2 + 3γ̺) + γ̺e−2i∆xξ − 4γ̺e−i∆xξ

∣

∣

∣
6 1,

∣

∣

∣

σ

(2 + 3γ̺) + γ̺e−2i∆xξ − 4γ̺e−i∆xξ

∣

∣

∣

2

6 K.

So,

E|g(∆xξ,∆t,∆x)|2 6 1 +K∆t.

Therefore, the stochastic L-R Liu scheme is unconditionally stable for the stochastic

diffusion equation. It can be proved that the stochastic R-L Liu method is also

unconditionally stable for approximating the solutions of SPDE (2). �

5.2. Stability of stochastic Saul’yev/Robert and Weiss schemes for

stochastic advection-diffusion equation.

Theorem 3. The L-R stochastic Saul’yev/Robert and Weiss scheme is uncon-

ditionally stable according to the Fourier-transformation analysis for the stochastic

advection-diffusion equation.

P r o o f. Substituting the Fourier transformation of un+1 in the L-R stochastic

Saul’yev/Robert and Weiss scheme, we get

(

1 + γ̺+
λν

2

)

ûn+1(ξ) =
(

1 − γ̺+
λν

2

)

ûn(ξ) +
(

γ̺+
λν

2

)

e−i∆xξûn+1(ξ)

+
(

γ̺− λν

2

)

ei∆xξûn(ξ) + σûn(ξ)∆Wn.

Consequently, we have

[(

1 + γ̺+
λν

2

)

−
(

γ̺+
λν

2

)

e−i∆xξ
]

ûn+1(ξ)

=
[(

1 − γ̺+
λν

2

)

+
(

γ̺− λν

2

)

ei∆xξ
]

ûn(ξ) + σûn(ξ)∆Wn,

and

ûn+1(ξ) =
{ (1 − γ̺+ λν/2) + (γ̺− λν/2)ei∆xξ

(1 + γ̺+ λν/2) − (γ̺+ λν/2)e−i∆xξ

+
σ∆Wn

(1 + γ̺+ λν/2) − (γ̺+ λν/2)e−i∆xξ

}

ûn(ξ).
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Therefore, the amplification factor of the L-R stochastic Saul’yev/Robert and Weiss

scheme is

g(∆xξ,∆t,∆x) =
{ (1 − γ̺+ λν/2) + (γ̺− λν/2)ei∆xξ

(1 + γ̺+ λν/2) − (γ̺+ λν/2)e−i∆xξ

+
σ∆Wn

(1 + γ̺+ λν/2) − (γ̺+ λν/2)e−i∆xξ

}

.

Further,

E|g(∆xξ,∆t,∆x)|2 = E
∣

∣

∣

(1 − γ̺+ λν/2) + (γ̺− λν/2)ei∆xξ

(1 + γ̺+ λν/2) − (γ̺+ λν/2)e−i∆xξ

+
σ∆Wn

(1 + γ̺+ λν/2) − (γ̺+ λν/2)e−i∆xξ

∣

∣

∣

2

= E
∣

∣

∣

(1 − γ̺+ λν/2) + (γ̺− λν/2)ei∆xξ

(1 + γ̺+ λν/2) − (γ̺+ λν/2)e−i∆xξ

∣

∣

∣

2

+ E
∣

∣

∣

σ∆Wn

(1 + γ̺+ λν/2) − (γ̺+ λν/2)e−i∆xξ

∣

∣

∣

2

=
[ (1 − γ̺+ λν/2) + (γ̺− λν/2)ei∆xξ

(1 + γ̺+ λν/2) − (γ̺+ λν/2)e−i∆xξ

]2

+
σ2∆t

[(1 + γ̺+ λν/2) − (γ̺+ λν/2)e−i∆xξ]2
.

The condition
∣

∣

∣

∣

(1 − γ̺+ λν/2) + (γ̺− λν/2)ei∆xξ

(1 + γ̺+ λν/2) − (γ̺+ λν/2)e−i∆xξ

∣

∣

∣

∣

2

6 1

is satisfied if and only if

∣

∣

∣
1 + γ̺(ei∆xξ − 1) +

λν

2
(1 − e−i∆xξ)

∣

∣

∣
6

∣

∣

∣
1 + γ̺(1 − e−i∆xξ) +

λν

2
(1 − e−i∆xξ)

∣

∣

∣
,

and we have

−1 − γ̺(1 − e−i∆xξ) − λν

2
(1 − e−i∆xξ) 6 1 + γ̺(ei∆xξ − 1) +

λν

2
(1 − e−i∆xξ)

6 1 + γ̺(1 − e−i∆xξ) +
λν

2
(1 − e−i∆xξ).

The first inequality does not impose any condition on ∆t and ∆x, and for the second

inequality we get

γ̺(ei∆xξ − 1) − γ̺(1 − e−i∆xξ) 6
λν

2
(1 − e−i∆xξ) − λν

2
(1 − e−i∆xξ)
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which means that

−γ̺[2 − 2 cos∆xξ] 6 0.

This inequality is satisfied for all ∆x, also we have

1

[(1 + γ̺+ λν/2) − (γ̺+ λν/2)e−i∆xξ]2
6 1.

Therefore,

E|g(∆xξ,∆t,∆x)|2 6 1 + σ2∆t.

The L-R stochastic Saul’yev/Robert and Weiss scheme is unconditionally stable for

solving SPDE (2), with K = σ2. �

Theorem 4. The R-L stochastic Saul’yev/Robert and Weiss scheme with λν <

γ̺+λν/2 < 1 is stable in mean square with respect to the | · |∞ =
√

supk | · |2-norm
for the stochastic advection-diffusion equation.

P r o o f. Applying E| · |2 to the R-L stochastic Saul’yev/Robert and Weiss
scheme, we get

E
∣

∣

∣

(

1 + γ̺− λν

2

)

un+1
k −

(

γ̺− λν

2

)

un+1
k+1

∣

∣

∣

2

= E
∣

∣

∣

(

1 − γ̺− λν

2

)

un
k +

(

γ̺+
λν

2

)

un
k−1 + σun

k∆Wn

∣

∣

∣

2

.

Using the assumption γ̺ + λν/2 6 1 and the independence of the Wiener process

increments, we have

E
∣

∣

∣

(

1 + γ̺− λν

2

)

un+1
k −

(

γ̺− λν

2

)

un+1
k+1

∣

∣

∣

2

= E
∣

∣

∣

(

1 − γ̺− λν

2

)

un
k +

(

γ̺+
λν

2

)

un
k−1

∣

∣

∣

2

+ σ2∆tE|un
k |2

6

(
∣

∣

∣
1 − γ̺− λν

2

∣

∣

∣
+

∣

∣

∣
γ̺+

λν

2

∣

∣

∣

)2

sup
k
E|un

k |2 + σ2∆t sup
k
E|un

k |2

6 (1 + σ2∆t) sup
k
E|un

k |2.

Since this holds for all k, we have

sup
k
E

∣

∣

∣

(

1 + γ̺− λν

2

)

un+1
k −

(

γ̺− λν

2

)

un+1
k+1

∣

∣

∣

2

6 (1 + σ2∆t) sup
k
E|un

k |2.
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Assuming 1 + γ̺− λν/2 > 0 and γ̺− λν/2 > 0, we get

sup
k
E

∣

∣

∣

(

1 + γ̺− λν

2

)

un+1
k −

(

γ̺− λν

2

)

un+1
k+1

∣

∣

∣

2

>

(∣

∣

∣
1 + γ̺− λν

2

∣

∣

∣
−

∣

∣

∣
γ̺− λν

2

∣

∣

∣

)

sup
k
E|un+1

k |2

> sup
k
E|un+1

k |2.

So we have
‖un+1‖2

∞
6 (1 + σ2∆t)‖un‖2

∞
,

‖un+1‖2
∞

6

(

1 + σ2 t

n+ 1

)n+1

‖u0‖2
∞
,

‖un+1‖∞ 6

(

1 +
σ2t

n+ 1

)(n+1)/2

‖u0‖∞,

‖un+1‖∞ 6 eσ2t/2‖u0‖∞.

So the R-L stochastic Saul’yev/Robert and Weiss scheme is stable for

λν < γ̺+
λν

2
< 1.

�

6. Consistency conditions of stochastic ADE schemes

Theorem 5. The stochastic L-R Liu scheme is consistent in mean square for

approximating the solution of stochastic diffusion equation (2).

P r o o f. If ϕ(x, t) is a smooth function, then we have

L(Φ)|nk = Φ(k∆x, (n + 1)∆t) − Φ(k∆x, n∆t)

− γ

∫ (n+1)∆t

n∆t

Φxx(k∆x, s) ds− σ

∫ (n+1)∆t

n∆t

Φ(k∆x, s) dW (s)

and

Ln
k (Φ) = Φ(k∆x, (n+ 1)∆t) − Φ(k∆x, n∆t)

− γ
∆t

2∆x2
[Φ((k − 1)∆x, n∆t) + 3Φ((k + 1)∆x, n∆t)

− Φ((k − 2)∆x, (n+ 1)∆t) + 4Φ((k − 1)∆x, (n+ 1)∆t)

− 3Φ(k∆x, (n+ 1)∆t) − 4Φ(k∆x, n∆t)] − σΦ(k∆x, n∆t)∆Wn.
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Therefore, we get in mean square

E|L(Φ)|nk − Ln
k (Φ)|2 6 2γ2E

∣

∣

∣

∣

∫ (n+1)∆t

n∆t

Φxx(k∆x, s)

− 1

2∆x2
[Φ((k − 1)∆x, n∆t) + 3Φ((k + 1)∆x, n∆t)

− Φ((k − 2)∆x, (n+ 1)∆t) + 4Φ((k − 1)∆x, (n+ 1)∆t)

− 3Φ(k∆x, (n+ 1)∆t) − 4Φ(k∆x, n∆t)] ds

∣

∣

∣

∣

2

+ 2σ2E

∣

∣

∣

∣

∫ (n+1)∆t

n∆t

(Φ(k∆x, s) − Φ(k∆x, n∆t)) dW (s)

∣

∣

∣

∣

2

,

E|L(Φ)|nk − Ln
k (Φ)|2 6 2γ2E

∣

∣

∣

∣

∫ (n+1)∆t

n∆t

Φxx(k∆x, s)

− 1

2∆x2
[Φ((k − 1)∆x, n∆t) + 3Φ((k + 1)∆x, n∆t)

− Φ((k − 2)∆x, (n+ 1)∆t) + 4Φ((k − 1)∆x, (n+ 1)∆t)

− 3Φ(k∆x, (n+ 1)∆t) − 4Φ(k∆x, n∆t)] ds

∣

∣

∣

∣

2

+ 2σ2

∫ (n+1)∆t

n∆t

|Φ(k∆x, s) − Φ(k∆x, n∆t)|2 ds;

if Φ(x, t) is a deterministic function, we get

E|L(Φ)|nk − Ln
k(Φ)| → 0,

when n, k → ∞. This proves the consistency. So, the stochastic L-R Liu scheme is
consistent in mean square. �

Theorem 6. The L-R stochastic Saul’yev/Robert and Weiss scheme is consis-

tent in mean square for approximating the solution of stochastic advection-diffusion

equation (1).

P r o o f. Assuming ϕ(x, t) is a smooth function, we have

L(Φ)|nk = Φ(k∆x, (n+ 1)∆t) − Φ(k∆x, n∆t)

− ν

∫ (n+1)∆t

n∆t

Φx(k∆x, s) ds− γ

∫ (n+1)∆t

n∆t

Φxx(k∆x, s) ds

− σ

∫ (n+1)∆t

n∆t

Φ(k∆x, s) dW (s)
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and
Ln

k (Φ) = Φ(k∆x, (n+ 1)∆t) − Φ(k∆x, n∆t)

− ν
∆t

2∆x
[Φ(k∆x, (n+ 1)∆t) + Φ((k + 1)∆x, n∆t)

− Φ((k − 1)∆x, (n+ 1)∆t) − Φ(k∆x, n∆t)]

− γ
∆t

∆x2
[Φ((k + 1)∆x, n∆t) − Φ(k∆x, n∆t)

− Φ(k∆x, (n+ 1)∆t) + Φ((k − 1)∆x, (n+ 1)∆t)]

− σΦ(k∆x, n∆t)∆Wn.

In mean square, we obtain

E|L(Φ)|nk − Ln
k(Φ)|2 6 2ν2E

∣

∣

∣

∣

∫ (n+1)∆t

n∆t

Φx(k∆x, s)

− 1

2∆x
[Φ(k∆x, (n+ 1)∆t) + Φ((k + 1)∆x, n∆t)

− Φ((k − 1)∆x, (n+ 1)∆t) − Φ(k∆x, n∆t)] ds

∣

∣

∣

∣

2

+ 2γ2E

∣

∣

∣

∣

∫ (n+1)∆t

n∆t

Φxx(k∆x, s)

− 1

∆x2
[Φ((k + 1)∆x, n∆t) − Φ(k∆x, n∆t)

− Φ(k∆x, (n+ 1)∆t) + Φ((k − 1)∆x, (n+ 1)∆t)] ds

∣

∣

∣

∣

2

+ 2σ2

∫ (n+1)∆t

n∆t

|Φ(k∆x, s) − Φ(k∆x, n∆t)|2 ds.

Since ϕ(x, t) is assumed to be deterministic, for ∆t,∆x→ 0 we have

E|L(Φ)|nk − Ln
k (Φ)|2 → 0.

�

7. Convergence of stochastic ADE schemes

7.1. Convergence of stochastic Liu schemes for stochastic diffusion equa-

tions.

Theorem 7. Let v ∈ H1, H3. The stochastic L-R Liu scheme is convergent for

the ‖.‖∞-norm for 0 6 γ(∆t/∆x2) =: γ̺ 6 1
2 for approximating the solution of the

stochastic diffusion equation (2).
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P r o o f. The stochastic L-R Liu scheme is given by

(3γ̺+ 2)un+1
k = 2(1 − 2γ̺)un

k + γ̺(un
k−1 + 3un

k+1 − un+1
k−2 + 4un+1

k−1) + σun
k∆Wn,

which can be represented by

un+1
k = un

k +
γ̺

2
{−un+1

k−2 + 4un+1
k−1 − 3un+1

k + un
k−1 − 4un

k + 3un
k+1} + σun

k∆Wn.

Considering the Taylor expansion vxx(x, s) with respect to the space variable, the

solution vn+1
k can be written as

vn+1
k = vn

k + γ

∫ (n+1)∆t

n∆t

vxx(x, s)|x=xk
ds+ σ

∫ (n+1)∆t

n∆t

v(x, s)|x=xk
dW (s)

= vn
k + γ

∫ (n+1)∆t

n∆t

−vn+1
k−2 + 4vn+1

k−1 − 3vn+1
k + vn

k−1 − 4vn
k + 3vn

k+1

2∆x2

+
∆x

2 × 3!
((3vxxx((k + α1)∆x, s) − vxxx((k + α2)∆x, s)

− 4vxxx((k + β1)∆x, s+ ∆t)) + 8vxxx((k + β2)∆x, s+ ∆t)

− ∆t

∆x2
vxt(k∆x, s+ η∆t)) ds+ σ

∫ (n+1)∆t

n∆t

v(x, s)|x=xk
dW (s),

where α1, α2, β1, β2 ∈ (0, 1). Assuming rn
k = vn

k − un
k , we have

rn+1
k = rn

k + γ

∫ (n+1)∆t

n∆t

{−vn+1
k−2 + 4vn+1

k−1 − 3vn+1
k + vn

k−1 − 4vn
k + 3vn

k+1

2∆x2

−
−un+1

k−2 + 4un+1
k−1 − 3un+1

k + un
k−1 − 4un

k + 3un
k+1

2∆x2

+
∆x

2 × 3!
((3vxxx((k + α1)∆x, s) − vxxx((k + α2)∆x, s)

− 4vxxx((k + β1)∆x, s + ∆t)) + 8vxxx((k + β2)∆x, s+ ∆t)

− γ̺vxxx(k∆x, s+ η∆t))
}

ds

− ∆x

2 × 3!
σγ̺

∫ (n+1)∆t

n∆t

vx(x, s)|x=xk
dW (s)

+ σ

∫ (n+1)∆t

n∆t

(v(x, s)|x=xk
− un

k ) dW (s),
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where ̺ = ∆t/∆x2. Consequently, we get

(

1 − 3γ̺

2

)

rn+1
k + 2γ̺rn+1

k−1 − γ̺

2
rn+1
k−2 = rn

k +
γ̺

2
(un

k−1 − 4un
k + 3un

k+1)

+
∆x

2 × 3!

∫ (n+1)∆t

n∆t

{((3vxxx((k + α1)∆x, s) − vxxx((k + α2)∆x, s)

− 4vxxx((k + β1)∆x, s + ∆t)) + 8vxxx((k + β2)∆x, s+ ∆t)

− γ̺vxxx(k∆x, s+ η∆t))} ds

− ∆x

2 × 3!
σγ̺

∫ (n+1)∆t

n∆t

vx(x, s)|x=xk
dW (s)

+ σ

∫ (n+1)∆t

n∆t

(v(x, s)|x=xk
− un

k ) dW (s).

Applying E| · |2 to this equality we obtain

E
∣

∣

∣

(

1 − 3γ̺

2

)

rn+1
k + 2γ̺rn+1

k−1 − γ̺

2
rn+1
k−2

∣

∣

∣

2

6 2E

∣

∣

∣

∣

rn
k +

γ̺

2
(un

k−1 − 4un
k + 3un

k+1)

+
∆x

2 × 3!

∫ (n+1)∆t

n∆t

{((3vxxx((k + α1)∆x, s) − vxxx((k + α2)∆x, s)

− 4vxxx((k + β1)∆x, s+ ∆t)) + 8vxxx((k + β2)∆x, s + ∆t)

− γ̺vxxx(k∆x, s+ η∆t))} ds

− ∆x

2 × 3!
σγ̺

∫ (n+1)∆t

n∆t

vx(x, s)|x=xk
dW (s)

∣

∣

∣

∣

2

+ 2σ2E

∣

∣

∣

∣

∫ (n+1)∆t

n∆t

(v(x, s)|x=xk
− un

k ) dW (s)

∣

∣

∣

∣

2

,

which can be written as

E
∣

∣

∣

(

1 − 3γ̺

2

)

rn+1
k + 2γ̺rn+1

k−1 − γ̺

2
rn+1
k−2

∣

∣

∣

2

6 2E

∣

∣

∣

∣

rn
k +

γ̺

2
(rn

k−1 − 4rn
k + 3rn

k+1)

+
∆x

2 × 3!

∫ (n+1)∆t

n∆t

{((3vxxx((k + α1)∆x, s) − vxxx((k + α2)∆x, s)

− 4vxxx((k + β1)∆x, s+ ∆t)) + 8vxxx((k + β2)∆x, s + ∆t)

− γ̺vxxx(k∆x, s+ η∆t))} ds

− ∆x

2 × 3!
σγ̺

∫ (n+1)∆t

n∆t

vx(x, s)|x=xk
dW (s)

∣

∣

∣

∣

2

+ 4σ2

∫ (n+1)∆t

n∆t

E|(v(x, s)|x=xk
− vn

k )|2 ds

+ 4σ2

∫ (n+1)∆t

n∆t

E|(vn
k − un

k )|2 ds.
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It follows that

E
∣

∣

∣

(

1 − 3γ̺

2

)

rn+1
k + 2γ̺rn+1

k−1 − γ̺

2
rn+1
k−2

∣

∣

∣

2

6 4E
∣

∣

∣
(1 − 2γ̺)rn

k +
γ̺

2
(rn

k−1 + 3rn
k+1)

∣

∣

∣

2

+ 8
( ∆x

2 × 3!

)2

E

∣

∣

∣

∣

∫ (n+1)∆t

n∆t

{((3vxxx((k + α1)∆x, s)

− vxxx((k + α2)∆x, s) − 4vxxx((k + β1)∆x, s+ ∆t))

+ 8vxxx((k + β2)∆x, s + ∆t) − γ̺vxxx(k∆x, s+ η∆t))} ds

∣

∣

∣

∣

2

+ 8
( ∆x

2 × 3!

)2

E

∣

∣

∣

∣

σγ̺

∫ (n+1)∆t

n∆t

vx(x, s)|x=xk
dW (s)

∣

∣

∣

∣

2

+ 4σ2

∫ (n+1)∆t

n∆t

E|(v(x, s)|x=xk
− vn

k )|2 ds

+ 4σ2∆tE|rn
k |2

and consequently

E
∣

∣

∣

(

1 − 3γ̺

2

)

rn+1
k + 2γ̺rn+1

k−1 − γ̺

2
rn+1
k−2

∣

∣

∣

2

6 4
(

|1 − 2γ̺| +
∣

∣

∣

γ̺

2

∣

∣

∣
+

∣

∣

∣

3γ̺

2

∣

∣

∣
+ σ2∆t

)

sup
k
E|rn

k |2

+ 8
( ∆x

2 × 3!

)2

sup
k
E

∣

∣

∣

∣

∫ (n+1)∆t

n∆t

{((3vxxx((k + α1)∆x, s)

− vxxx((k + α2)∆x, s) − 4vxxx((k + β1)∆x, s+ ∆t))

+ 8vxxx((k + β2)∆x, s+ ∆t) − γ̺vxxx(k∆x, s+ η∆t))} ds

∣

∣

∣

∣

2

+ 8
( ∆x

2 × 3!

)2

(σγ̺)2 sup
k

∫ (n+1)∆t

n∆t

E|vx(x, s)|x=xk
|2 ds

+ 4σ2 sup
k

∫ (n+1)∆t

n∆t

E|(v(x, s)|x=xk
− vn

k )|2 ds.

Assuming γ̺ 6 1
2 , introducing the notation ϕ1k = vxxx((k + α1)∆x, s) < ∞,

ϕ2k = vxxx((k + α2)∆x, s) < ∞, ϕ3k = vxxx((k + β1)∆x, s + ∆t) < ∞, ϕ4k =

vxxx((k + β2)∆x, s+ ∆t) <∞, ϕ5k = vxxx(k∆x, s+ η∆t) <∞, ϕ6k = vx(x, s) <∞
and also considering

∫ (n+1)∆t

n∆t

E|(v(x, s)|x=xk
− vn

k )|2 ds = E

∫ (n+1)∆t

n∆t

|(v(x, s)|x=xk
− vn

k )|2 ds

6 sup
s∈[n∆t,(n+1)∆t]

|v(x, s)|x=xk
− v(k∆x, n∆t)|2∆t 6 ϕ′∆t,
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we get

sup
k
E

∣

∣

∣

(

1 − 3γ̺

2

)

rn+1
k + 2γ̺rn+1

k−1 − γ̺

2
rn+1
k−2

∣

∣

∣

2

6 4(1 + σ2∆t) sup
k
E|rn

k |2

+ 8
( ∆x

2 × 3!

)2

sup
k
E

∣

∣

∣

∣

∫ (n+1)∆t

n∆t

{3ϕ1k − ϕ2k − 4ϕ3k + 8ϕ4k − γ̺ϕ5k} ds

∣

∣

∣

∣

2

+ 8
( ∆x

2 × 3!

)2

(σγ̺)2 sup
k

∫ (n+1)∆t

n∆t

E|ϕ6k|2 ds+ 4σ2ϕ′∆t.

Therefore, we obtain

(∣

∣

∣
1 − 3γ̺

2

∣

∣

∣
+ |2γ̺| −

∣

∣

∣

γ̺

2

∣

∣

∣

)

sup
k
E|rn+1

k |2 6 4(1 + σ2∆t) sup
k
E|rn

k |2

+ 8
( ∆x

2 × 3!

)2

sup
k
E|Φ1∆t|2 + 8

( ∆x

2 × 3!

)2

(σγ̺)2 sup
k
E|Φ2|2∆t+ Φ3∆t,

and

sup
k
E|rn+1

k |2 6 4(1 + σ2∆t) sup
k
E|rn

k |2 + Φ∆t.

It follows that

E‖rn+1‖2
∞

6 4{1 + σ2∆t}E‖rn‖2
∞

+ Φ∆t

6

{

1 + σ2 t

n+ 1

}n+1 n
∑

i=1

(4Φ∆t)i + Φ∆t

6 eσ2t
n

∑

i=1

(4Φ∆t)i + Φ∆t.

When the time step ∆t tends to zero, we have

E‖rn+1‖2
∞

6 (n− 1)eσ2t(4Φ∆t)2 + 4eσ2tΦ∆t+ Φ∆t

6 teσ2t(4Φ)2∆t+ 4eσ2tΦ∆t+ Φ∆t

= (teσ2t(4Φ)2 + 4eσ2tΦ + Φ)∆t,

and consequently

E‖rn+1‖2
∞

→ 0.

�
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R em a r k 2. If v ∈ H1, H3, the stochastic R-L Liu scheme is convergent for the

‖.‖∞-norm for γ(∆t/∆x2) =: γ̺ > 1
2 for approximating the solution of the stochastic

diffusion equation (2).

7.2. Convergence of stochastic Saul’yev/Robert and Weiss schemes for

stochastic advection-diffusion equations.

Theorem 8. Let v ∈ H1, H2, H3, H4. The stochastic L-R Saul’yev/Robert and

Weiss scheme is convergent for the ‖.‖∞-norm for νλ/2 6 γ̺ 6 1+ νλ/2 for approx-

imating the solution of the stochastic advection-diffusion equation (1).

P r o o f. The L-R stochastic Saul’yev/Robert and Weiss scheme is given by

(

1 + γ̺+
νλ

2

)

un+1
k =

(

1 − γ̺+
νλ

2

)

un
k +

(

γ̺+
νλ

2

)

un+1
k−1

+
(

γ̺− νλ

2

)

un
k+1 + σun

k∆Wn.

Considering the solution vn
k , and using the Taylor expansion of vx(x, s) and vxx(x, s)

with respect to the space expansion, we get

vn+1
k = vn

k − ν

∫ (n+1)∆t

n∆t

vx(x, s)|x=xk
ds

+ γ

∫ (n+1)∆t

n∆t

vxx(x, s)|x=xk
ds

+ σ

∫ (n+1)∆t

n∆t

v(x, s)|x=xk
dW (s)

= vn
k − ν

∫ (n+1)∆t

n∆t

{vn+1
k + vn

k+1 − vn+1
k−1 − vn

k

2∆x

− ∆x

4
(vxx((k + α1)∆x, s) − vxx((k + α2)∆x, s+ ∆t))

}

ds

+ γ

∫ (n+1)∆t

n∆t

{vn+1
k−1 − vn

k + vn
k+1 − vn+1

k

∆x2

− ∆x

3!
(vxxx((k + β1)∆x, s) − vxxx((k + β2)∆x, s+ ∆t))

− ∆t

∆x
vxt(k∆x, s+ δ1∆t) +

∆t

2
vxxt(k∆x, s+ δ2∆t)

}

ds

+ σ

∫ (n+1)∆t

n∆t

v(x, s)|x=xk
dW (s),
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where α1, α2, β1, β2, δ1, δ2 ∈ (0, 1). Therefore, we have

vn+1
k = vn

k − ν

∫ (n+1)∆t

n∆t

vn+1
k + vn

k+1 − vn+1
k−1 − vn

k

2∆x

− ∆x

4
(vxx((k + α1)∆x, s) − vxx((k + α2)∆x, s+ ∆t)) ds

+ γ

∫ (n+1)∆t

n∆t

{vn+1
k−1 − vn

k + vn
k+1 − vn+1

k

∆x2

− ∆x

3!
(vxxx((k + β1)∆x, s) − vxxx((k + β2)∆x, s+ ∆t))

+ ν
∆t

∆x
vxx(k∆x, s+ δ1∆t) − γ

∆t

∆x
vxxx(k∆x, s+ δ1∆t)

− ν
∆t

2
vxxx(k∆x, s+ δ2∆t) + γ

∆t

2
vxxxx(k∆x, s+ δ2∆t)

}

ds

− γσ
∆t

∆x

∫ (n+1)∆t

n∆t

vx(x, s)|x=xk
dW (s)

− γσ
∆t

2

∫ (n+1)∆t

n∆t

vxx(x, s)|x=xk
dW (s)

+ σ

∫ (n+1)∆t

n∆t

v(x, s)|x=xk
dW (s).

Assuming rn
k = vn

k − un
k , we get

rn+1
k = rn

k − νλ

2
(rn+1

k + rn
k+1 − rn+1

k−1 − rn
k ) + γ̺(rn+1

k−1 − rn
k + rn

k+1 − rn+1
k )

+ ν

∫ (n+1)∆t

n∆t

∆x

4
(vxx((k + α1)∆x, s) − vxx((k + α2)∆x, s+ ∆t)) ds

+

∫ (n+1)∆t

n∆t

{

− γ
∆x

3!
(vxxx((k + β1)∆x, s) − vxxx((k + β2)∆x, s+ ∆t))

+
∆t

∆x
vxxx(k∆x, s+ δ1∆t) − ν

∆t

2
vxxx(k∆x, s+ δ2∆t)

}

ds

+ ν

∫ (n+1)∆t

n∆t

∆t

∆x
vxx(k∆x, s+ δ1∆t) ds

+

∫ (n+1)∆t

n∆t

γ
∆t

2
vxxxx(k∆x, s+ δ2∆t) ds

− γσ
∆t

∆x

∫ (n+1)∆t

n∆t

vx(x, s)|x=xk
dW (s)

− γσ
∆t

2

∫ (n+1)∆t

n∆t

vxx(x, s)|x=xk
dW (s)

+ σ

∫ (n+1)∆t

n∆t

(v(x, s)|x=xk
− un

k ) dW (s)
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where ̺ = ∆t/∆x2 and λ = ∆t/∆x. Consequently,

(

1 +
νλ

2
+ γ̺

)

rn+1
k −

(νλ

2
+ γ̺

)

rn+1
k−1 =

(

1 +
νλ

2
− γ̺

)

rn
k +

(

γ̺− νλ

2

)

rn
k+1

+ ν

∫ (n+1)∆t

n∆t

{∆x

4
(vxx((k + α1)∆x, s) − vxx((k + α2)∆x, s+ ∆t))

}

ds

+

∫ (n+1)∆t

n∆t

{

− γ
∆x

3!
(vxxx((k + β1)∆x, s) − vxxx((k + β2)∆x, s+ ∆t))

+
∆t

∆x
vxxx(k∆x, s+ δ1∆t) − ν

∆t

2
vxxx(k∆x, s+ δ2∆t)

}

ds

+ ν

∫ (n+1)∆t

n∆t

∆t

∆x
vxx(k∆x, s+ δ1∆t) ds+

∫ (n+1)∆t

n∆t

γ
∆t

2
vxxxx(k∆x, s+ δ2∆t) ds

− γσ
∆t

∆x

∫ (n+1)∆t

n∆t

vx(x, s)|x=xk
dW (s) − γσ

∆t

2

∫ (n+1)∆t

n∆t

vxx(x, s)|x=xk
dW (s)

+ σ

∫ (n+1)∆t

n∆t

(v(x, s)|x=xk
− un

k ) dW (s),

and applying E| · |2 to this equality, we obtain

E
∣

∣

∣

(

1 +
νλ

2
+ γ̺

)

rn+1
k −

(νλ

2
+ γ̺

)

rn+1
k−1

∣

∣

∣

2

6 4E
∣

∣

∣

(

1 +
νλ

2
− γ̺

)

rn
k +

(

γ̺− νλ

2

)

rn
k+1

∣

∣

∣

2

+ 8E

∣

∣

∣

∣

ν

∫ (n+1)∆t

n∆t

{∆x

4
(vxx((k + α1)∆x, s) − vxx((k + α2)∆x, s + ∆t))

}

ds

+

∫ (n+1)∆t

n∆t

{

− γ
∆x

3!
(vxxx((k + β1)∆x, s) − vxxx((k + β2)∆x, s+ ∆t))

+
∆t

∆x
vxxx(k∆x, s+ δ1∆t) − ν

∆t

2
vxxx(k∆x, s+ δ2∆t)

}

ds

+ ν

∫ (n+1)∆t

n∆t

∆t

∆x
vxx(k∆x, s+ δ1∆t) ds

+

∫ (n+1)∆t

n∆t

γ
∆t

2
vxxxx(k∆x, s+ δ2∆t) ds

∣

∣

∣

∣

2

+ 16(γσ)2E

∣

∣

∣

∣

∆t

∆x

∫ (n+1)∆t

n∆t

vx(x, s)|x=xk
dW (s)

∣

∣

∣

∣

2

+ 16(γσ)2E

∣

∣

∣

∣

∆t

2

∫ (n+1)∆t

n∆t

vxx(x, s)|x=xk
dW (s)

∣

∣

∣

∣

+ 4σ2

∫ (n+1)∆t

n∆t

E|vn
k − un

k |2 ds+ 4σ2

∫ (n+1)∆t

n∆t

E|v(x, s)|x=xk
− vn

k |2.

Considering ψ1 = vxx((k+α1)∆x, s) <∞, ψ2 = vxx((k+α2)∆x, s+∆t) <∞, ψ3 =

vxxx((k + β1)∆x, s) < ∞, ψ4 = vxxx((k + β2)∆x, s + ∆t) < ∞, ψ5 = vxxx(k∆x, s +

461



δ1∆t) < ∞, ψ6 = vxxx(k∆x, s + δ2∆t) < ∞, ψ7 = vxx(k∆x, s + δ1∆t) < ∞,
ψ8 = vxxxx(k∆x, s + δ2∆t) < ∞, ψ′

1 = vx(x, s) < ∞, ψ′

2 = vxx(x, s) < ∞, ψ1 6 ∞,
we have

E
∣

∣

∣

(

1 +
νλ

2
+ γ̺

)

rn+1
k −

(νλ

2
+ γ̺

)

rn+1
k−1

∣

∣

∣

2

6 4E
∣

∣

∣

(

1 +
νλ

2
− γ̺

)

rn
k +

(

γ̺− νλ

2

)

rn
k+1

∣

∣

∣

2

+ 8E

∣

∣

∣

∣

∫ (n+1)∆t

n∆t

{

ν
∆x

4
ψ1k − νψ2k − γ

∆x

3!
(ψ3k − ψ4k)

+
∆t

∆x
ψ5k − ν

∆t

2
ψ6k + ν

∆t

∆x
ψ7k + γ

∆t

2
ψ8k

}

ds

∣

∣

∣

∣

2

+ 16(γσ)2
∫ (n+1)∆t

n∆t

{( ∆t

∆x

)2

E|ψ′

1k|2 +
(∆t

2

)2

E|ψ′

2k|2
}

ds

+ 4σ2

∫ (n+1)∆t

n∆t

E|rn
k |2 ds+ 4σ2

∫ (n+1)∆t

n∆t

E|v(x, s)|x=xk
− vn

k |2,

and consequently, we get

E
∣

∣

∣

(

1 +
νλ

2
+ γ̺

)

rn+1
k −

(νλ

2
+ γ̺

)

rn+1
k−1

∣

∣

∣

2

6 4E
∣

∣

∣

(

1 +
νλ

2
− γ̺

)

rn
k +

(

γ̺− νλ

2

)

rn
k+1

∣

∣

∣

2

+ 8E
∣

∣

∣

∫ (n+1)∆t

n∆t

Ψ1 ds
∣

∣

∣

2

+ 16(γσ)2
∫ (n+1)∆t

n∆t

E|Ψ2|2 ds

+ 4σ2

∫ (n+1)∆t

n∆t

E|rn
k |2 ds+ 4σ2

∫ (n+1)∆t

n∆t

E|v(x, s)|x=xk
− vn

k |2 ds.

So it follows that

E
∣

∣

∣

(

1 +
νλ

2
+ γ̺

)

rn+1
k −

(νλ

2
+ γ̺

)

rn+1
k−1

∣

∣

∣

2

6 4
((

∣

∣

∣
1 +

νλ

2
− γ̺

∣

∣

∣
+

∣

∣

∣
γ̺− νλ

2

∣

∣

∣

)2

+ σ2∆t
)

sup
k
E|rn

k |2 + Ψ∆t.

Assuming 1 + νλ/2 − γ̺ > 0 and γ̺− νλ/2 > 0, we obtain

(∣

∣

∣
1 +

νλ

2
+ γ̺

∣

∣

∣
−

∣

∣

∣

νλ

2
+ γ̺

∣

∣

∣

)2

sup
k
E|rn+1

k |2 6 4(1 + σ2∆t) sup
k
E|rn

k |2 + Ψ∆t,

and considering γ, ν > 0, we arrive at

sup
k
E|rn+1

k |2 6 4(1 + σ2∆t) sup
k
E|rn

k |2 + Ψ∆t.
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So it follows that

E‖rn+1‖2
∞

→ 0.

�

R em a r k 3. Let v ∈ H1, H2, H3, H4. The stochastic R-L Saul’yev/Robert and

Weiss scheme is convergent for the ‖ · ‖∞-norm for νλ/2 6 γ̺ 6 1 − νλ/2 for

approximating the solution of the stochastic advection-diffusion equation (1).

R em a r k 4. Let v ∈ H1, H2, H3, H4. The stochastic R-L Saul’yev/Robert and

Weiss scheme is convergent for the ‖ · ‖∞-norm for νλ/2 6 γ̺ 6 1 − νλ/2 for

approximating the solution of the stochastic advection-diffusion equation (1).

R em a r k 5. Let v ∈ H1, H3. The stochastic Saul’yev schemes are convergent

for the ‖ · ‖∞-norm for 0 6 γ̺ 6 1 for approximating the solution of the stochastic

diffusion equation (2).

8. Numerical results

Computational efficiency is another important factor in evaluating the superiority

of numerical methods [5]. In this section, the performance of the presented numerical

techniques described in the previous sections for solving the proposed SPDEs is

considered and applied to some test problems. For computational purposes, it is

useful to consider discreted Brownian motion where W (t) is specified at discrete t

values.

8.1. Example 1. We examine the performance of the proposed stochastic

Saul’yev and Liu schemes for stochastic diffusion equation of the form

(23)
∂u

∂t
− γ

∂2u

∂x2
= σẆ (t)

subject to the initial condition

u(x, 0) = exp
(

−(x− 0.2)

γ

)

, x ∈ [0, 1],

and the boundary conditions

u(0, t) =
1√

4t+ 1
exp

(

− 0.04

γ(4t+ 1)

)

,

u(1, t) =
1√

4t+ 1
exp

(

− 0.64

γ(4t+ 1)

)

.
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The problem has an exact expected solution given by

u(x, t) =
1√

4t+ 1
exp

(

− x− 0.2

γ(4t+ 1)

)

.

The space domain of the interval D = [0, 1] is discretized into M uniform grid-

points. We carried out 10, 000 realizations for all tests, then we displayed the stochas-

tic mean solutions along with some selected simulations. In this example, we used

different values for the diffusion constant γ and the stochastic coefficient σ and the

qualification of Saul’yev and Liu stochastic difference methods are investigated for

various cases. In order to qualify the results for the stochastic diffusion equation (23),

we plot in Figure 1 the stochastic solutions using both the Saul’yev and Liu schemes

along with the deterministic numerical solution (σ = 0) on a mesh of 100 gridpoints,

γ = 0.005, σ = 5 and ∆t = 0.005.
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Figure 1. Mean and analytical solution of stochastic diffusion problem using Saul’yev and
Liu methods with 100 mesh points.

In Table 1, some numerical results for solving the stochastic diffusion equation (23)

using the unconditional stable alternating direction methods are presented. In all
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cases, time and space step sizes are considered to be ∆t = 0.01 and ∆x = 0.01, also

the value of diffusion and stochastic constants are γ = 0.005 and σ = 2.5. As is

shown in Table 1, the mean solutions of the considered SPDE are approximated by

the L-R and R-L Saul’yev schemes and the averaged solution of these two methods for

two opposite direction in each time step is presented. Similar computational results

are given for stochastic Liu methods. Because of the significant property of stability

of these stochastic explicit alternating direction methods, we have no limitation for

considering the time and step sizes and the refinement of the computational domain

does not impose any restriction on the stability conditions. So numerically explicit

and unconditional stability of these stochastic alternating direction methods makes

them applicable for approximating the solution of stochastic diffusion equations. The

numerical solution of the stochastic diffusion equation (23) using the stochastic L-R

Liu scheme is shown in Figure 2 on a 50 × 50 grid during the time interval [0, 1] for

γ = 0.005 and σ = 10.

Stochastic Scheme E(u(0.3, 1)) E(u(0.4, 1)) E(u(0.5, 1)) E(u(0.6, 1))
L-R Saul’yev 0.31597 0.10496 0.01799 0.00170
R-L Saul’yev 0.33184 0.10505 0.01284 0.00054
Average of R-L
and R-L Saul’yev

0.32424 0.10372 0.01527 0.00106

L-R Liu 0.32562 0.10672 0.01534 0.000895
R-L Liu 0.32460 0.10670 0.01534 0.00089

Average of R-L
and R-L Liu

0.32460 0.10570 0.01493 0.00087

Table 1. Test of stochastic diffusion equation by the stochastic alternating direction meth-
ods.

For studying the performance of the proposed stochastic alternating direction

methods, we use the exact expected solution to evaluate the expected error function

at time tn as

en
i = 〈un

i 〉 − u(xi, tn),

where u(xi, tn) and 〈un
i 〉 are respectively the exact and expected numerical solutions

at the lattice points (xi, tn). So, the following spatial discrete error norms are defined:

‖e‖L1
s

= ∆x
∑

i

|ei|, ‖e‖L2
s

=
(

∆x
∑

i

|ei|2
)1/2

.

Similarly, to investigate the time accuracy of the methods, we define the following

temporal discrete error-norms:

‖e‖L1

t
= ∆t

∑

n

‖en‖L2
s
, ‖e‖L2

t
=

(

∆t
∑

n

‖en‖2
L2

s

)1/2

.
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where ‖ · ‖Lp
s

= ‖ · ‖Lp(D) and | · |Lp
t

= ‖ · ‖Lp([0,T )) denote the discrete L
p-norm in

the space domain D and the time interval [0, T ), respectively.
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Figure 2. Mean solution of stochastic diffusion equation using L-R Liu method for γ = 0.01
and σ = 10.

In Table 2, we summarize the spatial and temporal errors for the diffusion equation

(23) for the diffusion coefficient γ = 0.01, random coefficient σ = 4.5 and different

values of M and N using the stochastic L-R Liu difference method. Further, we

calculate the confidence interval with boundaries a and b to the level of 95 percent

for the estimated E(0.8).

M N ‖ e ‖L1
s

‖ e ‖L2
s

‖ e ‖L1

t
‖ e ‖L2

t
E(0.8) a b

50 50 3.983E−03 7.962E−03 2.310E−02 3.913E−02 4.512E−01 4.449E−01 4.576E−01
100 200 3.979E−03 7.398E−03 1.467E−02 2.224E−02 4.528E−01 4.488E−01 4.569E−01
200 800 3.484E−03 7.326E−03 9.922E−03 1.333E−02 4.523E−01 4.496E−01 4.550E−01
400 3200 3.251E−03 7.145E−03 6.896E−03 8.445E−03 4.508E−01 4.448E−01 4.568E−01

Table 2. Spatial and temporal error norms and confidence intervals for stochastic diffusion
L-R Liu method at time t = 1 with γ = 0.01 and σ = 4.5.

8.2. Example 2. In this example we investigate the efficiency of the stochastic

Saul’yev/Robert and Weiss schemes for approximating the solution of the stochastic
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advection-diffusion equation of the form

(24)
∂u

∂t
(x, t) + ν

∂u

∂x
(x, t) = γ

∂2u

∂x2
(x, t) + σu(x, t)Ẇ (t),

with the initial condition

u(x, 0) = exp
(

− (x− 0.5)2

γ

)

, x ∈ [0, 1],

and boundary conditions

u(0, t) =
1√

4t+ 1
exp

(

−(−0.5 − νt)2

γ(4t+ 1)

)

,

u(1, t) =
1√

4t+ 1
exp

(

−(0.5 − νt)2

γ(4t+ 1)

)

.

It is easy to verify that in the absence of the noise term, the exact solution is

u(x, t) =
1√

4t+ 1
exp

(

−(x− 0.5 − νt)2

γ(4t+ 1)

)

.

Numerical observations of the stability condition for the stochastic Saul’yev/Robert

and Weiss schemes uphold the investigations of the previous sections. Applying

the L-R stochastic Saul’yev/Robert and Weiss scheme to the stochastic initial value

problem (24), the time and spatial step sizes do not impose any restrictions on the

stability and convergence of the method.

Table 3 shows the spatial and temporal errors for the advection-diffusion equa-

tion (24) for γ = 0.005, ν = 0.5 and σ = 2.5 with several values of M and N using

the L-R stochastic Saul’yev/Robert and Weiss difference method. The coefficient of

the SPDE (24) and also the space and time step sizes are selected according to the

convergence condition of the difference method. In addition, the confidence intervals

with boundaries a and b to the level of 95 percent for the estimated E(0.8) are given.

M N ‖ e ‖L1
s

‖ e ‖L2
s

‖ e ‖L1

t
‖ e ‖L2

t
E(0.8) a b

25 50 2.109E-02 3.538E-02 1.403E-01 1.870E-01 5.135E-01 5.089E-01 5.181E-01
50 200 5.932E-03 1.135E-02 3.287E-03 1.348E-02 5.222E-01 5.136E-01 5.308E-01
100 800 1.822E-03 3.751E-03 3.026E-03 1.041E-02 5.312E-01 5.258E-01 5.367E-01
200 3200 8.480E-04 1.665E-03 2.961E-03 9.482E-03 5.380E-01 5.342E-01 5.418E-01

Table 3. Spatial and temporal error norms and confidence intervals for stochastic advection
diffusion L-R Saul’yev/Robert and Weiss method at time t = 0.6 with γ = 0.005,
ν = 0.5 and σ = 2.5.

Figure 3 shows the approximations of the stochastic advection-diffusion equation

using the L-R stochastic Saul’yev/Robert and Weiss scheme on a 100 by 100 grid

with γ = 0.005, ν = 0.5 and σ = 6 during the time interval [0, 1].
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Figure 3. Mean solution of stochastic diffusion equation using L-R Saul’yev/Robert and
Weiss method for γ = 0.005, ν = 0.5 and σ = 6.

In Table 4, we show the dependence of the error on the number of the realizations

for approximated solution of the SPDE (24) at the point (0.6, 1) with ∆x = 0.01 and

∆t = 0.005.

number of realization E(0.6) a b ‖ e ‖L1
s

‖ e ‖L1
s

10 2.665E-01 1.715E-01 3.614E-01 4.155E-02 6.437E-02
102 4.323E-01 3.602E-01 5.044E-01 7.954E-03 1.236E-02
103 4.369E-01 4.138E-01 4.599E-01 4.401E-03 6.422E-03
104 4.420E-01 4.346E-01 4.494E-01 3.447E-03 5.314E-03
105 4.429E-01 4.383E-01 4.476E-01 2.092E-03 2.896E-03
106 4.432E-01 4.425E-01 4.439E-01 1.998E-03 2.698E-03

Table 4. Confidence intervals for mean solution of SPDE (24) using L-R Saul’yev/Robert
and Weiss method at time T = 1 with γ = 0.01, ν = 0.1 and σ = 3.5.

Also, in Figure 4 the approximated solution of the stochastic advection-diffusion

(24) using the L-R stochastic Saul’yev/Robert and Weiss scheme is represented for

γ = 0.01, ν = 1.5 and σ = 8 during the time interval [0, 1]. As is shown in Figure 5,

applying the R-L stochastic Saul’yev/Robert and Weiss method to the stochastic

advection-diffusion equation (24) with γ̺ = 4, λν = 2 and σ = 1, the computational

results justify the theory of the stability conditions.
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Figure 4. Mean solution of stochastic diffusion equation using L-R Saul’yev/Robert and
Weiss method for γ = 0.01, ν = 1.5 and σ = 8.

9. Conclusion

In this paper, numerical solutions of stochastic advection-diffusion and diffusion

equations with real-valued Brownian motion are approximated using stochastic al-

ternating direction methods. When applied to stochastic diffusion equations, the two

Saul’yev and Liu SADE schemes retain their stability conditions with the calculation

proceeding from left to right in the computational domain or in the opposite direc-

tion. The stability, consistency and convergence of stochastic Saul’yev/Robert and

Weiss schemes are also investigated for solving stochastic advection-diffusion equa-

tions. Although the R-L Saul’yev/Robert and Weiss scheme is conditionally stable,

the R-L Saul’yev/Robert and Weiss scheme is unconditionally stable for approximat-

ing the solution of the stochastic advection-diffusion equation. Since the proposed

stochastic alternating direction methods are explicit in nature and because of the sta-

bility qualification of these stochastic difference schemes, they are computationally

applicable in the comparison with the other unconditionally stable methods most of

which are implicit and impose a large amount of computation to the algorithm, in

particular for the stochastic case.
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Figure 5. Representation of the unstability of the R-L Saul’yev/Robert and Weiss method
for γ̺ = 4, λν = 2 and σ = 1.

In fact, when unconditional alternating direction methods are developed for the

stochastic case with real-valued Brownian motions, the stochastic reformulated al-

ternating direction methods are also unconditionally stable for approximating the

stochastic partial differential equations. In numerical results, the performance of

the stochastic alternating direction methods for stochastic advection-diffusion and

diffusion equations is studied by computing discretized Brownian paths.

Another open question is how to extend such methods to SPDEs with space-time

white noise process and demonstrate the stability and other main properties of the

stochastic difference schemes.
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