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TILT STABILITY IN NONLINEAR PROGRAMMING
UNDER MANGASARIAN–FROMOVITZ CONSTRAINT
QUALIFICATION

Boris S. Mordukhovich∗and Jiř́ı V. Outrata†

The paper concerns the study of tilt stability of local minimizers in standard problems of
nonlinear programming. This notion plays an important role in both theoretical and numer-
ical aspects of optimization and has drawn a lot of attention in optimization theory and its
applications, especially in recent years. Under the classical Mangasarian–Fromovitz Constraint
Qualification, we establish relationships between tilt stability and some other stability notions
in constrained optimization. Involving further the well-known Constant Rank Constraint Qual-
ification, we derive new necessary and sufficient conditions for tilt-stable local minimizers.

Keywords: variational analysis, second-order theory, generalized differentiation, tilt sta-
bility

Classification: 49J52, 90C30, 90C31

1. INTRODUCTION

It has been well recognized in modern variational analysis that appropriate stability
concepts play a fundamental role in almost all areas of optimization theory and its
applications; see, e. g., the books [2, 5, 7, 15, 22] and the references therein. Among the
most important and attractive stability notions are those related to Lipschitzian stability
that provide not only qualitative but also quantitative amount of information needed,
in particular, for the justification of numerical algorithms.

In this paper we focus on the study of tilt stability of local minimizers introduced by
Poliquin and Rockafellar [28] in the general extended-real-valued framework of uncon-
strained optimization. This remarkable type of Lipschitzian stability, primarily moti-
vated by supporting computational work, prevents the disproportional change of a local
minimizer or threatening its uniqueness under tilt perturbations of the objective; see Sec-
tion 2 below for the precise definition. The main result of [28] provides a very impressive
characterization of tilt-stable local minimizers for a broad class of extended-real-valued
objectives in terms of positive-definiteness of the second-order subdifferential/generalized

∗Research of this author was partly supported by the USA National Science Foundation under grant
DMS-1007132.

†Research of this author was partly supported by grant P201/12/0671 of the Grant Agency of the
Czech Republic and the Australian Research Council, project DP110102011.
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Hessian in the sense of Mordukhovich [21]. Furthermore, by developing new second-
order subdifferential calculus rules and computing the aforementioned constructions in
the settings of interest (cf. also [9, 22, 23, 24]), Mordukhovich and Rockafellar [25] have
recently obtained efficient characterizations of tilt-stable minimizers for some special
classes of problems in constrained optimization entirely in terms of their initial data.
Among them are usual C2 problems of nonlinear programming (NLP) with equality and
inequality constraints, where tilt stability is fully characterized by [25, Theorem 5.2] via
the classical Strong Second-Order Sufficient Condition (SSOSC), provided the validity of
the Linear Independence Constraint Qualification (LICQ). As a consequence of this re-
sult and previously known developments in nonlinear programming, tilt stability of local
minimizers for NLP has proved to be equivalent [25, Corollary 5.3] to Robinson’s strong
regularity [31] of the associated Karush–Kuhn–Tucker (KKT) system – again under the
validity of LICQ.

In the other lines of developments, Lewis and Zhang [18, Theorem 6.3 and Propo-
sition 7.2] and Drusvyatskiy and Lewis [6, Theorem 3.3]1 have recently characterized
tilt stability of local minimizers for general classes of extended-real-valued functions in
terms of strong metric regularity of the limiting subdifferential mappings as well as via a
certain uniform quadratic growth condition imposed on the objective. The latter char-
acterization is similar to that in Bonnans and Shapiro [2, Theorem 5.36] obtained for a
particular class of problems; cf. also Aragón Artacho and Geoffroy [1, Corollary 3.9 and
Theorem 3.10] for the case of convex objective functions.

This paper concerns the study of tilt-stable local minimizers for problems of nonlin-
ear programming with C2 data. Although our major results hold in the general NLP
setting with both inequality and equality constraints of the C2 type, we primarily fo-
cus on nonlinear programs with only inequality constraints, which reflect the essence
of our new developments. Among the main motivations for our study was the desire
to relax the rather restrictive LICQ requirement in the aforementioned characterization
of tilt stability established in [25]. In this way we first obtain, imposing only MFCQ,
a characterization of tilt-stable local minimizers via strong metric regularity of a cer-
tain set-valued mapping associated with the first-order stationarity conditions for the
NLP under consideration with no explicit Lagrange multipliers, i. e., not in terms of
the corresponding Karush–Kuhn–Tucker (KKT) system. Then imposing in addition the
Constant Rank Constraint Qualification (CRCQ) allows us to derive necessary and suf-
ficient conditions for tilt-stable minimizers formulated entirely via the initial program
data. The results obtained in this paper significantly extend, in particular, those derived
in [25] for C2 nonlinear program satisfying LICQ at the reference optimal solutions.

It is worth mentioning that, although we consider NLP only with twice continuously
differentiable data and the corresponding stationarity conditions do not include anything
but classical normals to the simplest convex cones, the main variational machinery of
this paper is based on nonconvex tools of generalized differentiation briefly discussed in
the next section together with some other preliminaries.

The rest of the paper is organized as follows. Section 2 contains some basic definitions
and preliminaries from variational analysis widely used in the paper. We also give here

1We got familiar with the latter preprint when this paper was basically completed. The main results
of [6, 18] are complement to those presented here.
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an implementation of the aforementioned generalized Hessian characterization of tilt
stability from [28] for the case of NLP models, which is the starting point of our study.
Section 3 is devoted to deriving our main results on necessary and sufficient conditions
for tilt stability of local minimizers in NLP under various constraint qualifications in
terms of the problem data. Section 4 presents two examples illustrating the results
obtained and relationships between them. Concluding remarks are given in Section 5,
where we also discuss some topics of our future research in this direction.

2. BASIC CONSTRUCTIONS AND PRELIMINARIES FROM VARIATIONAL
ANALYSIS AND TILT STABILITY

The main object under consideration in this paper is the following nonlinear program:

minimize f0(x) with x ∈ Rn

subject to qi(x) ≤ 0 for i = 1, . . . , s,
(2.1)

where all the functions f0, qi : Rn → R are assumed to be twice continuously differen-
tiable (C2) around the points in question. Denote the set of feasible solutions to (2.1)
by

Γ :=
{
x ∈ Rn

∣∣ qi(x) ≤ 0, i = 1, . . . , s
}
. (2.2)

The original NLP problem (2.1) can be obviously rewritten in the unconstrained form:

minimize f(x) := f0(x) + δΓ(x), x ∈ Rn, (2.3)

where δΓ(x) is the indicator function of the set Γ, which is equal to 0 for x ∈ Γ and to
∞ for x /∈ Γ. The fundamental stability notion studied below is formulated for arbitrary
extended-real-valued functions f : Rn → R := (−∞,∞] as follows [28].

Definition 2.1. (tilt stability) A point x̄ ∈ Rn is said to give a tilt-stable local
minimum of the function f : Rn → R if the value f(x̄) is finite and there exists a number
% > 0 such that the mapping

M : p 7→ argmin
‖x−x̄‖≤%

[
f(x)− f(x̄)− 〈p, x− x̄〉

]
is single-valued and Lipschitzian on some neighborhood of p = 0 with M(0) = {x̄}.

Applying Definition 2.1 to the function f in (2.3), we clearly specify that x̄ ∈ Γ. De-
noting further q(x) := (q1(x), . . . , qs(x)), recall that the classical Mangasarian–Fromovitz
Constraint Qualification (MFCQ) at x̄ ∈ Γ for problem (2.1) amounts to the implication

(∇q
(
x̄)
)T

λ = 0

λ ∈ NRs
−

(
q(x̄)

)} =⇒ λ = 0, (2.4)

where “T” indicates the matrix transposition, and where NRs
−

stands for the standard
normal cone of convex analysis. It is easy to verify that the validity of MFCQ (2.4)
ensures that the feasible set Γ in (2.2) is fully amenable at x̄ in the sense of [33, Def-
inition 10.23], and hence the indicator function δΓ is prox-regular and subdifferentially
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continuous on O ∩ Γ, where O is a neighborhood of x̄; see [33, Proposition 13.32]. The
latter two properties are the major assumptions needed for the characterization of tilt-
stable local minimizers of a general function f : Rn → R in [28, Theorem 1.3]. This
allows us to employ the aforementioned characterization to our NLP setting (2.3) under
the standing MFCQ (2.4); see Theorem 2.2 and its proof below for more details.

To proceed with adopting the main result of [28] in the framework of our problem
(2.3), we need some generalized differential constructions of variational analysis used
throughout the whole paper. Recall first the (Painlevé–Kuratowski) outer limit of a
set-valued mapping F : Rn ⇒ Rm as x → x̄ defined by

Lim sup
x→x̄

F (x) :=
{
v ∈ Rm

∣∣ ∃xk → x̄, vk → v with vk ∈ F (xk) as k ∈ N
}
, (2.5)

where N := {1, 2, . . .}. Given further a nonempty set A ∈ Rn, the (Bouligand–Severi)
contingent cone to A at x̄ ∈ A is

TA(x̄) := Lim sup
t↓0

A− x̄

t
=
{
d ∈ Rm

∣∣ ∃ tk ↓ 0, dk → d with x̄ + tkdk ∈ A, k ∈ N
}
.

(2.6)
The (Fréchet) regular normal cone to A at x̄ ∈ A is given equivalently by

N̂A(x̄) := (TA(x̄))0 =
{

v ∈ Rn
∣∣∣ lim sup

x
A→x̄

〈v, x− x̄〉
‖x− x̄‖

≤ 0
}

, (2.7)

where T 0 stands for the negative polar of the cone T , and the symbol x
A→ x̄ signifies

that x → x̄ with x ∈ A. The (Mordukhovich) limiting normal cone to A at x̄ ∈ A can
be equivalently defined via the outer limit (2.5) by

NA(x̄) := Lim sup
A

x→x̄

N̂A(x) = Lim sup
x→x̄

{
cone

[
x−ΠA(x)

]}
(2.8)

in the case of locally closed sets A in the second representation, where ΠA stands for the
Euclidean projector onto the set A, and where the symbol “cone” indicates the (noncon-
vex) conic hull of the set in question. Invoking our basic normal cone construction (2.8),
we define the (first-order) subdifferential ∂f(x̄) of f at x̄ for an extended-real-valued
function f : Rn → R, finite at x̄, and the coderivative D∗Φ(x̄, ȳ) of a set-valued mapping
Φ: Rn ⇒ Rm at (x̄, ȳ) ∈ gphΦ := {(x, y) ∈ Rn × Rm| y ∈ Φ(x)} by, respectively,

∂f(x̄) :=
{
v ∈ Rn

∣∣ (v,−1) ∈ Nepi f

(
x̄, f(x̄))

}
, (2.9)

D∗Φ(x̄, ȳ)(u) :=
{
v ∈ Rn

∣∣ (v,−u) ∈ Ngph Φ(x̄, ȳ)
}
, u ∈ IRm, (2.10)

with epi f := {(x, µ) ∈ Rn × R| µ ≥ f(x)} in (2.9). We always omit ȳ = Φ(x̄) in
the coderivative notation when Φ is single-valued. Note that ∂f(x̄) = {∇f(x̄)} if f is
smooth near x̄ while the coderivative (2.10) reduces to the adjoint (transposed) Jacobian
operator

D∗Φ(x̄)(u) =
{
∇Φ(x̄)T u

}
for all u ∈ IRm
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for smooth single-valued mappings. However, even in the simplest cases of nonconvex
functions f and nonsmooth mappings Φ, the subdifferential (2.9) and the coderivative
(2.10) cannot be dual/adjoint to any derivative-like constructions in primal spaces due
to the intrinsic nonconvexity of the generated limiting normal cone (2.8); see, e. g.,
the case of f = −|x| and Φ(x) = |x| at x̄ = 0 ∈ R, respectively. Nevertheless, the
normal cone (2.8) and the corresponding subdifferential and coderivative constructions
(2.9) and (2.10) are robust and enjoy full calculi in the general frameworks due to
the extremal/variational principles and related techniques of variational analysis. We
refer the reader to the books [22, 33] and the bibliographies therein for comprehensive
developments.

The main result of [28] characterizes tilt-stability of local minimizers of f : Rn → R
from Definition 2.1 via the positive-definiteness of the second-order subdifferential (or
generalized Hessian) of f at (x̄, v̄) ∈ gph ∂f defined in [21] by

∂2f(x̄, v̄)(w) := (D∗∂f)(x̄, v̄)(w), w ∈ Rn, (2.11)

which reduces to the classical (symmetric) Hessian

∂2f(x̄)(w) =
{
∇2f(x̄)w

}
, w ∈ Rn, (2.12)

when f ∈ C2 around x̄; see [22, Proposition 1.119]. If f in (2.11) is the indicator function
δΓ of the set Γ, then we have

∂2δ(x̄, v̄)(w) = D∗NΓ(x̄, v̄)(w), w ∈ Rn, (2.13)

whenever x̄ ∈ Γ and v̄ ∈ NΓ(x̄). It is more convenient for us to use in this paper the
“coderivative-of-the-normal-cone” expression (2.13) for the generalized Hessian of the
set indicator function instead of the second-order subdifferential notation (2.11).

Now we are ready to present an implementation of the tilt-stability characterization
from [28, Theorem 1.3] for the case of nonlinear program (2.1) with C2 data.

Theorem 2.2. (tilt stability in NLP via generalized Hessians) Let x̄ ∈ Γ be a
feasible solution to (2.1) such that MFCQ (2.4) holds at x̄ and that

0 ∈ ∇f0(x̄) + NΓ(x̄). (2.14)

Then x̄ is a tilt-stable local minimizer of (2.1) if and only if

〈w,∇2f0(x̄)w〉 > −〈z, w〉 whenever z ∈ D∗NΓ

(
x̄,−∇f0(x̄)

)
(w), w 6= 0. (2.15)

P r o o f . As mentioned above, the validity of MFCQ ensures that the indicator function
of the feasible set Γ is prox-regular and subdifferentially continuous at x̄ ∈ Γ. It is well
known that these properties are preserved when a C2 function is added. Thus applying
[28, Theorem 1.3] to the function f defined in (2.3) tells us that the point x̄ having
0 ∈ ∂f(x̄) is a tilt-stable local minimizer for (2.3) if and only if

〈z, w〉 > 0 whenever z ∈ ∂2f(x̄, 0)(w), w 6= 0. (2.16)



Tilt stability in nonlinear programming 451

Since f0 is smooth in (2.3), it follows from the elementary first-order subdifferential
sum rule (see, e. g., [22, Proposition 1.107]) that the stationarity condition 0 ∈ ∂f(x̄) is
equivalent to (2.14). Employing now in (2.3) the second-order subdifferential sum rule
from [22, Proposition 1.121] with taking relationships (2.12)–(2.14) into account, we get

∂2(f0 + δΓ)(x̄, 0)(w) = ∇2f0(x̄)w + D∗NΓ

(
x̄,−∇f0(x̄)

)
(w), w ∈ Rn,

which justifies the equivalence between the second-order conditions (2.16) and (2.15)
and thus completes the proof of the theorem. �

Note that characterization (2.15) of tilt-stable minimizers is given not in terms of the
initial data of the NLP (2.1) under consideration while involving the generalized Hessian
of the indicator function to the feasible set Γ. This is just our starting point to derive
verifiable necessary and sufficient conditions for tilt stability in Section 3. Meantime we
observe that due to the robustness of MFCQ there is a neighborhood O of x̄ such that
the first-order equality chain rule

NΓ(x) =
(
∇q(x)

)T
NRs

−

(
q(x)

)
(2.17)

holds for all x ∈ O; see, e. g., [33]. Thus the stationarity condition

0 ∈ ∇f0(x) + NΓ(x)

is locally equivalent to the generalized equation (GE)

0 ∈ ∇f0(x) +
(
∇q(x)

)T
NRs

−

(
q(x)

)
. (2.18)

By the straightforward description of the normal cone

λ ∈ NRs
−

(
q(x)

)
⇐⇒ q(x) ≤ 0, λ ≥ 0, 〈λ, q(x)〉 = 0,

the introduced GE (2.18) amounts to the standard KKT system

0 = ∇xL(x, λ),
q(x) ≤ 0, λ ≥ 0, 〈λ, q(x)〉 = 0,

(2.19)

where λ ∈ Rs is the corresponding Lagrange multiplier, and where

L(x, λ) := f0(x) + 〈λ, q(x)〉, x ∈ Rn,

is the Lagrangian associated with program (2.1).
Consider further the active index set given by

I(x̄) :=
{
i ∈ 1, . . . , s

∣∣ qi(x̄) = 0
}

and recall that the Constant Rank Constraint Qualification (CRCQ) holds at x̄ if there
is a neighborhood W of x̄ such that the system of gradient vectors {∇qi(x)| i ∈ J}
has constant rank in W for any index set J ⊂ I(x̄). Note that CRCQ at x̄ neither
implies nor is implied by MFCQ at x̄. Being introduced a long time ago [13], CRCQ
and its variants have recently gained a lot of attention in nonlinear optimization; see,
e. g., [19, 20].

We conclude this section with recalling an abstract version of Robinson’s strong reg-
ularity [31] formulated in [3] and used in what follows.
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Definition 2.3. (strong metric regularity) A set-valued mapping Φ: Rn ⇒ Rm is
called strongly metrically regular at (x̄, ȳ) ∈ gphΦ if its inverse mapping Φ−1 has a
Lipschitzian single-valued localization around (x̄, ȳ), i. e., there are neighborhoods U of
x̄ and V of ȳ and a single-valued Lipschitz continuous mapping ϕ : V → U such that we
have ϕ(ȳ) = x̄ and

Φ−1(y) ∩ U =
{
ϕ(y)

}
for all y ∈ V.

3. NECESSARY AND SUFFICIENT CONDITIONS FOR TILT-STABLE
MINIMIZERS IN NLP

We start this section with characterizing tilt-stable local minimizers of (2.1) via the
strong metric regularity of a set-valued mapping associated with the generalized equation
(2.18) under the validity of MFCQ. Denote

Ψ(x) := ∇f0(x) +
(
∇q(x)

)T
NRs

−

(
q(x)

)
, x ∈ Rn, (3.1)

which is the right-hand side of the GE in (2.18). We first present the following lemma
of its own interest that is sorted out from [4, Lemma 2.5] while the underlying result
goes back to [14, Theorem 1] and [32, Theorem 4.3]. Recall that a local minimizer x̄ of
f is isolated if there are no other local minimizers of f in some neighborhood of x̄.

Lemma 3.1. (isolated local minimizers under MFCQ) Let x̄ be an isolated local
minimizer of (2.1) under the validity of MFCQ at x̄. Then the mapping X : Rn ⇒ Rn,
which assigns to each p ∈ Rn the set of optimal solutions to the perturbed program

minimize f0(x)− 〈p, x− x̄〉
subject to q(x) ≤ 0,

enjoys the following property: For every neighborhood M of x̄ there is a neighborhood
N of 0Rn with

X(p) ∩M 6= ∅ whenever p ∈ N .

Now we are ready to derive the aforementioned characterization of tilt stability in
(2.1) via the strong metric regularity of mapping (3.1), with no explicit involvement of
Lagrange multipliers.

Theorem 3.2. (tilt stability versus strong metric regularity of GE under
MFCQ) Let x̄ be a local minimizer in (2.1) satisfying MFCQ. Then x̄ is a tilt-stable
local minimizer of (2.1) if and only if the mapping Ψ in (3.1) is strongly metrically
regular at (x̄, 0).

P r o o f . We first justify the sufficiency of strong metric regularity of Ψ at (x̄, 0) for x̄
to be a tilt-stable local minimizer in (2.1). To proceed in this way, observe that

M(p) ∩W = X(p) ∩W whenever W ⊂ int B(x̄; ρ), p ∈ Rn, (3.2)

where the mappings M and X are taken from Definition 2.1 and Lemma 3.1, respectively.
Choose ρ > 0 so small that B(x̄; ρ) ⊂ O with the neighborhood O of x̄ coming from
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(2.17) due to robustness of MFCQ. It follows by the construction of Ψ that each solution
x ∈ X(p)∩B(x̄; γ) with γ ∈ (0, ρ) satisfies the relation p ∈ Ψ(x). Furthermore, the strong
metric regularity of Ψ at (x̄, 0) ensures the existence of neighborhoods U of 0 and V of
x̄ and a Lipschitzian single-valued mapping σ : U → V such that σ(0) = x̄ and

Ψ−1(p) ∩ V =
{
σ(p)

}
for all p ∈ U .

Shrinking these neighborhoods if necessary so that V ⊂ B(x̄; γ), we get

X(p) ∩ V ⊂ Ψ−1(p) ∩ V =
{
σ(p)

}
for all p ∈ U .

This gives us X(0) ∩ V = {x̄}, and hence x̄ is an isolated local minimizer of (2.1). We
can thus apply Lemma 3.1 and, by taking (3.2) into account, conclude that there is a
neighborhood Ũ ⊂ U of x̄ such that

M(p) ∩ V = X(p) ∩ V =
{
σ(p)

}
for all p ∈ Ũ .

This shows that x̄ is a tilt-stable minimizer in (2.1).
To justify the converse implication in the theorem, recall that the tilt stability of a

local minimizer x̄ for a lower semicontinuous, prox-regular, and subdifferentially contin-
uous function f : Rn → R yields the strong metric regularity of the subgradient mapping
∂f at (x̄, 0) by [18, Proposition 7.2] and [6, Theorem 3.3]. In the case of our function f
from (2.3) the aforementioned assumptions on f are satisfied due to the imposed MFCQ
at x̄. Furthermore, applying in (2.3) the first-order subdifferential sum rule from [22,
Proposition 1.107] with the smooth function f0 gives us

∂f(x) = ∇f0(x) + ∂δΓ(x) = Ψ(x) for all x near x̄,

which ensures therefore the strong metric regularity of the mapping Ψ at (x̄, 0) and thus
completes the proof of the theorem. �

Note that the strong metric regularity characterization of tilt-stable local minimizers
in Theorem 3.2 is not expressed via the initial data of the nonlinear program (2.1) under
consideration. To derive verifiable necessary and sufficient condition for tilt stability
entirely in terms of the program data, we have to involve additional assumptions and
arguments. The next result obtained in this direction provides sufficient conditions for
tilt stability in (2.1) by adding the constant rank qualification to our standing MFCQ
(2.4) imposed in Theorem 3.2 and by invoking Lagrange multipliers. We are based here
on Theorem 2.2 and calculus results of variational analysis.

Theorem 3.3. (sufficient coderivative condition for tilt stability under MFCQ
and CRCQ) Let x̄ ∈ Γ be a feasible solution to (2.1) satisfying the first-order station-
arity condition (2.14). Assume further that both MFCQ and CRCQ hold at x̄ and that
for all Lagrange multipliers λ ∈ Rs

+ satisfying the KKT relationships

∇xL(x̄, λ) = 0 and 〈q(x̄), λ〉 = 0 (3.3)

and all vectors w ∈ Rn \ {0} we have the sufficient coderivative condition

〈w,∇2
xxL(x̄, λ)w〉 > −〈z,∇q(x̄)w〉 whenever z ∈ D∗NRs

−

(
q(x̄), λ

)(
∇q(x̄)w

)
. (3.4)

Then x̄ is a tilt-stable local minimizer in the nonlinear program (2.1).
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P r o o f . It follows from Theorem 2.2 above that, under the assumed first-order sta-
tionarity condition (2.14) and MFCQ (2.4) at the point x̄ ∈ Γ, its local optimality and
tilt stability in (2.1) follow from the fulfillment of the second-order condition (2.15). To
check the validity of condition (2.15) under the additional assumptions of this theorem,
we use the second-order calculus formula

D∗NΓ(x̄, v̄)(u) ⊂
⋃

λ∈NRs
−

(q(x̄))

v̄=(∇q(x̄))T λ

{ ( s∑
i=1

λi∇2qi(x̄)
)
u

+
(
∇q(x̄)

)T
D∗NRs

−

(
q(x̄), λ

)(
∇q(x̄)u

)}
,

(3.5)

where v̄ = −∇f0(x̄), and where u is an arbitrary vector from Rn. While this formula
was originated in [23, Theorem 3.4] and then developed in [24, Theorem 3.1], its most
recent version used here was proved in [9, Theorem 3.3] under the calmness assumption
on the set-valued mappings MJ : R|J| ⇒ Rn for J ⊂ I(x̄) defined by

MJ(ϑ) :=
{
x ∈ Rn

∣∣ qi(x) = ϑi, i ∈ J
}

at (0, x̄), meaning that for each J ⊂ I(x̄) there exist neighborhoods NJ of 0R|J| and MJ

of x̄ as well as a real number L ≥ 0 such that

MJ(ϑ) ∩MJ ⊂ MJ(0) + L‖ϑ‖ for all ϑ ∈ NJ .

It has been recently shown in [20, Theorem 1] that the calmness of a perturbed system of
equalities and inequalities is implied by CRCQ at the respective point. Since the imposed
CRCQ assumption at x̄ is valid (by the definition) also for all subsystems generating
the maps MJ , J ⊂ I(x̄), we may conclude that the maps MJ indeed do possess the
required calmness property. To complete the proof of the theorem, it remains to insert
the inclusion (3.5) into condition (2.15). �

Next we proceed with deriving necessary conditions for tilt-stable local minimizers of
(2.1) involving Lagrange multipliers under both MFCQ and CRCQ. In what follows Λ
stands for the set of all Lagrange multipliers λ ∈ Rs satisfying the relationships in (3.3).
Denote by

K := TΓ(x̄) ∩
{
∇f0(x̄)

}⊥ (3.6)

the critical cone to the feasible set Γ at x̄ ∈ Γ with respect to ∇f0(x̄), where TΓ(x̄) is
the contingent cone to Γ at x̄ defined in (2.6).

Theorem 3.4. (necessary coderivative condition for tilt stability under MFCQ
and CRCQ) Let x̄ be a tilt-stable local minimizer of the nonlinear program (2.1), where
both MFCQ and CRCQ hold. Then the necessary coderivative condition

〈w,∇2
xxL(x̄, λ)w〉+ 〈z, w〉 > 0 whenever z ∈ D∗NK(0, 0)(w) (3.7)

is satisfied for any λ ∈ Λ and any w ∈ Rn \ {0}.
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P r o o f . It has been recently shown in [11, Theorem 5] that, under the validity of both
MFCQ and CRCQ, the contingent cone (2.6) to the graph of the normal cone mapping
to the feasible set (2.2) is represented by

Tgph NΓ(x̄, v̄) = Tgph bNΓ
(x̄, v̄) =

{
(a, b) ∈ Rn × Rn

∣∣∣∣∣b ∈
(

m∑
i=1

λi∇2qi(x̄)

)
a + NK(a)

}
,

(3.8)
where λ is an arbitrary multiplier satisfying the KKT conditions (3.3) with v̄ = −∇f0(x̄).
Furthermore, it follows from [33, Proposition 6.27] and the form of the set Γ in (2.2)
that

Ngph NΓ(x̄, v̄)⊃NTgph NΓ (x̄,v̄)(0, 0)=


 u−

(
m∑

i=1

λi∇2qi(x̄)
)

y

y

∣∣∣∣∣∣u∈D∗NK(0, 0)(−y)

 ,

(3.9)
where deriving the equality benefits from [33, Exercise 6.7]. Putting w := −y in (3.9)
gives us the implication

z ∈

(
m∑

i=1

λi∇2qi(x̄)

)
w + D∗NK(0, 0)(w) =⇒ z ∈ D∗NΓ(x̄, v̄)(w).

Substituting this implication into the generalized Hessian characterization (2.15) of tilt-
stable local minimizers in Theorem 2.2, we arrive at the coderivative condition (3.7),
which is therefore necessary for the tilt stability of x̄. �

Observe the similarity (Hessian of the Lagrangian) and the difference (coderivatives of
the different normal cone mappings) in sufficient (3.4) and necessary (3.7) second-order
conditions for tilt-stable minimizers obtained under the same constraint qualifications
MFCQ and CRCQ. It can also be seen that both conditions (3.4) and (3.7) contain-
ing coderivatives are not fully in terms of the initial problem data of (2.1). However,
to express them entirely via the problem data, we can employ the available calcula-
tions of the coderivatives of the normal mappings involved (i. e., the second-order sub-
differentials/generalized Hessians of the corresponding indicator functions); see, e. g.,
[3, 8, 9, 25, 26] and the references therein.

Alternatively, we can proceed with elaborating the characterization of tilt stability
from Theorem 3.2 by involving verifiable conditions for the strong metric regularity of
the GE mapping (3.1) at (x̄, 0). It follows from [29, Theorem 2] that this mapping Ψ
is strongly metrically regular at (x̄, 0) if in addition to MFCQ and CRCQ the classical
Strong Second-Order Sufficient Condition (SSOSC) holds at x̄: for all λ ∈ Λ we have

〈w,∇2
xxL(x̄, λ)w〉 > 0 whenever (3.10)

〈∇qi(x̄), w〉 = 0 for all i ∈ I+(x̄, λ) :=
{
j ∈ {1, . . . , s}

∣∣ λj > 0
}

and w 6= 0.

The next result of its own interest shows that the coderivative condition (3.4) of
Theorem 3.3 is in fact equivalent to the SSOSC defined in (3.10), and hence the latter
condition ensures the tilt stability of a local minimizer x̄ in (2.1) under the validity of
MFCQ and CRCQ at this point due to either Theorem 3.2 or Theorem 3.3.
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Theorem 3.5. (tilt stability from SSOSC under MFCQ and CRCQ) Take any
vector λ ∈ Λ. Then the coderivative condition (3.4) in Theorem 3.3 holds if and only if
SSOSC (3.10) is fulfilled. Thus x̄ is a tilt-stable local minimizer in (2.1) provided that
all the three conditions MFCQ, CRCQ, and SSOSC are satisfied at x̄.

P r o o f . Assume without loss of generality that I(x̄) = {1, . . . , s} and denote by

I0(x̄, λ) := I(x̄) \ I+(x̄, λ)

the index set of weakly active inequality constraints. For simplicity we omit in what fol-
lows the arguments (x̄, λ) in the index notation I+ and I0. It is proved in [26, Lemma 2.2]
that {

w ∈ Rn
∣∣ D∗NRs

−

(
q(x̄), λ

)(
∇q(x̄)w

)
6= ∅
}

= ker∇qI+(x̄). (3.11)

By virtue of SSOSC (3.10) and (3.11) one has that

〈w,∇2
xxL(x̄, λ)w〉 > 0

for all w 6= 0 such that D∗NRs
−
(q(x̄), λ)(∇q(x̄)w) 6= ∅. From the monotonicity result in

[28, Theorem 2.1] one has that for any vector w ∈ Rn the real number

ϑ :=
〈
∇q
(
x̄
)
w,D∗NRs

−

(
q(x̄), λ

)(
∇q(x̄)w

)〉
is nonnegative. Hence, the implication SSOSC=⇒(3.4) holds true. To justify the con-
verse implication (3.4)=⇒SSOSC, observe that

ϑ =

〈∇qI0(x̄)w, z〉

∣∣∣∣∣∣
zi ≥ 0 when 〈∇qi(x̄), w〉 > 0
zi ∈ R when 〈∇qi(x̄), w〉 = 0,
zi = 0 when 〈∇qi(x̄), w〉 < 0

i ∈ I0

 (≥ 0). (3.12)

Furthermore, for every w ∈ ker∇qI+(x̄) there is a vector z ∈ D∗NRs
−
(q(x̄), λ)(∇q(x̄)w)

such that ϑ = 0. Thus condition (3.4) yields that

〈w,∇2
xxL(x̄, λ)w〉 > 0 for all w ∈ ker∇qI+(x̄) \ {0},

justifying (3.4)=⇒SSOSC and so the equivalence between these two conditions.
The sufficiency of SSOSC for the tilt stability of x̄ in (2.1) follows now from Theo-

rem 3.3 under the validity of MFCQ and CRCQ at x̄. On the other hand, it is also a
consequence of Theorem 3.2 due the aforementioned result of [29, Theorem 2] on the
strong metric regularity at (x̄, 0) of the mapping Ψ from (3.1). �

The last theorem of this section concerns the relationship between tilt stability of local
minimizers for the nonlinear program and a special variant of the calmness property2 of
the canonically perturbed KKT system(

a

b

)
∈ Φ(x, λ), (3.13)

2For the definition of the ”standard” calmness property, cf., e. g., [5, Chapter 3H].
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where the mapping Φ: Rn × Rs ⇒ Rn × Rs is defined by

Φ(x, λ) :=
[
∇xL(x, λ)
−q(x)

]
+ NRn×Rs

+
(x, λ). (3.14)

Note that, in contrast to Ψ from (3.1), the defined mapping Φ in (3.14) depends on
Lagrange multipliers. It is easy to see that

p ∈ Ψ(x) ⇐⇒ ∃λ such that
(

p
0

)
∈ Φ(x, λ).

Now we are ready to show that the tilt stability of local minimizers in (2.1) im-
plies, under the validity of both MFCQ and CRCQ, a calmness-type property of the
canonically perturbed KKT system (3.13).

Theorem 3.6. (calmness property of tilt-stable minimizers) Let x̄ be a tilt-
stable local minimizer in (2.1), where both MFCQ and CRCQ hold, and let λ̄ ∈ Λ.
Then there is a neighborhood V of (x̄, λ̄), a neighborhood U of (0Rn×0Rs) and a number
` ≥ 0 such that we have the estimate

dist
(
(x, λ), {x̄} × Λ

)
≤ `‖(a, b)‖ for all (x, λ, a, b) ∈ gphΦ, (x, λ) ∈ V and (a, b) ∈ U .

(3.15)

P r o o f . Pick any multiplier λ̄ ∈ Λ and by Theorem 3.4 get the necessary coderivative
condition (3.7) for the tilt-stable local minimizer x̄. Taking into account that the regular
normal cone (2.7) is always included in the limiting one, we conclude from (3.7) that

〈w,∇2
xxL(x̄, λ̄)w〉 > 0 (3.16)

for all w 6= 0 such that 〈z, w〉 = 0 and

(z,−w) ∈ N̂gphNK(0, 0), (3.17)

where K is the critical cone (3.6). Since K is a convex polyhedral cone with vertex at
0 and since the critical cone to it at 0 with respect to 0 again gives K, the Reduction
Lemma from [3] tells us that

TgphNK(0, 0) = gphNK.

Following further the proof of [3, Theorem 2], we arrive at the representation

N̂gphNK(0, 0) = K0 ×K.

From and (3.16) and (3.17) we now conclude, by choosing z = 0 ∈ K0 and w ∈ K, that

〈w,∇2
xxL(x̄, λ̄)w〉 > 0 when w ∈ K \ {0}. (3.18)

To conclude finally that the calmness property (3.15) holds and thus complete the proof
of the theorem, it remains to apply [12, Corollary 1] observing that the second-order
condition (3.18) implies the noncriticality of the multiplier λ̄, cf. [12, Remark 1]. �
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To summarize the results obtained in this paper on tilt stability of local minimizers
and its relationships with some other stability properties in nonlinear programming, let
us present the diagram depicted in Figure 1.

In this figure we can see various characterizations of tilt stability as well as suffi-
cient conditions and necessary conditions for this notion. Observe that none of these
relationships requires the uniqueness of the corresponding Lagrange multipliers. Such
a uniqueness is ensured by the Linear Independence Constraint Qualification (LICQ)
under which we obtain the following immediate consequence of the obtained results.
This corollary was first derived in the recent paper [25] by a different way. Recall that
LICQ holds at x̄ for the nonlinear program (2.1) if the gradient vectors ∇qi(x̄) of all the
constraint functions active at x̄ are linearly independent.

MFCQ
CRCQ

(3.4) ∀λ ∈ Λ)

MFCQ
CRCQ
SSOSC

x̄ is a tilt-stable
local mini-

mizer in (2.1)

Ψ is strongly
metrically reg-
ular at (x̄, 0)

(3.7) ∀λ ∈ Λ
Φ has the calmness

property (3.15)

Theorem 3.5

under MFCQ

under MFCQ + CRCQ under MFCQ+CRCQ

Fig. 1. Relationships of tilt stability with some conditions and

stability properties.

Corollary 3.7. (characterizations of tilt stability under LICQ) Let x̄ ∈ Γ be a
feasible solution to the nonlinear program (2.1), and let LICQ hold at x̄. Then x̄ is a tilt-
stable local minimizer of (2.1) if and only if SSOSC (3.10) is satisfied at x̄. Furthermore,
in this setting the tilt stability of x̄ is equivalent to Robinson’s strong regularity of Ψ at
(x̄, 0), which amounts to the strong metric regularity of the associated KKT mapping Φ
(3.14) at (x̄, λ̄, 0), where λ̄ is the corresponding unique Lagrange multiplier.
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P r o o f . It is easy to see that the set of KKT Lagrange multipliers Λ associated with
x̄ is a singleton Λ = {λ̄} and that we have the representation

D∗NΓ(x̄,−∇f(x̄))(u) =

(
s∑

i=1

λ̄i∇2qi(x̄)

)
u +

(
∇q(x̄)

)T
D∗NRs

−

(
q(x̄), λ̄

)(
∇q(x̄)u

)
=

(
s∑

i=1

λ̄i∇2qi(x̄)

)
u + D∗NK(0, 0)(u) for all u ∈ Rn; (3.19)

cf. [10, Proposition 2]. Combining now our results from Theorems 3.3–3.5 with that of
[3, Theorem 6], we justify all the statements of this corollary. �

4. ILLUSTRATIVE EXAMPLES

In this section we present two academic examples that illustrate some of the results on
tilt stability derived in Section 3 without the validity of LICQ.

Example 4.1. (violation of tilt stability under MFCQ and CRCQ) Consider
the following three-dimensional nonlinear program:

minimize 〈a, x〉+ 1
2 (x3)2 + (x1)3

subject to

x ∈ Γ :=
{
x ∈ R3

∣∣∣∣∣∣∣∣∣∣∣∣∣

− 1
2x2

1 + x1 − x3≤ 0,

− 1
2x2

1 − x1 − x3≤ 0,

− 1
2x2

2 + x2 − x3≤ 0,

− 1
2x2

2 − x2 − x3≤ 0,

− 1
4 (x2

1 + x2
2) + 1

2 (x1 + x2)− x3 ≤ 0


(4.1)

with a = (−0.3,−0.7, 1). It is not hard to check that x̄ = 0 is a solution to program (4.1)
and both MFCQ and CRCQ are fulfilled at x̄. To test whether x̄ is a tilt-stable local
minimizer in (4.1), let us apply the second-order necessary condition (3.7) obtained in
Theorem 3.4. To verify the underlying condition, we choose, e. g., λ̄=(0.3, 0, 0.7, 0, 0)∈Λ
and calculate the Hessian of the Lagrangian

∇2
xxL(x̄, λ̄) =

 −0.3 0 0
0 −0.7 0
0 0 1


as well as the critical cone (3.6) and its polar given by

K = R+(1, 1, 1)T and K0 =
{
(v1, v2, v3) ∈ R3

∣∣ v1 + v2 + v3 ≤ 0
}
.

Due to the aforementioned relationships

K0 ×K = N̂gphNK(0, 0) ⊂ NgphNK(0, 0),
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we take, e. g., w̄ = (−1,−1,−1) ∈ −K, z̄ ∈ (1, 0,−1) ∈ K0 and get that

〈w̄,∇2
xxL(x̄, λ̄)w̄〉+ 〈z̄, w̄〉 = 0.

Thus we conclude by Theorem 3.4 that x̄ is not a tilt-stable local minimizer in the
nonlinear program (4.1).

Out[1]=

Fig. 2. Illustration of the feasible set Γ defined in (4.1) and the

critical cone K.

Our next example illustrates the usage of Theorem 3.5 for confirming tilt stability
without the validity of LICQ.

Example 4.2. (tilt stability from SSOSC) Consider the following program:

minimize 1
2‖x− a‖2

subject to
− 1

2x2
1 + x1 − x3 ≤ 0,

− 1
2x2

1 − x1 − x3 ≤ 0,
− 1

2x2
2 + x2 − x3 ≤ 0,

− 1
2x2

2 − x2 − x3 ≤ 0,

(4.2)

where a = (1, 0,−1). Observe that x̄ = 0 is a solution to (4.2), both MFCQ and CRCQ
are satisfied at x̄ = 0, and

Λ = {λ̃} with λ̃ = (1, 0, 0, 0).
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In this case we easily calculate that

∇2
xxL(x̄, λ̃) =

 0 0 0
0 1 0
0 0 1

 ,

and that the kernel of the gradient of the first inequality in the constraints at x̄ amounts
to the linear subspace L = {(w1, w2, w3)| w1 = w3}. Since for w ∈ L \ {0} we have

〈w,∇2
xxL(x̄, λ̄)w〉 = w2

2 + w2
3 > 0,

it follows from Theorem 3.5 that x̄ is a tilt-stable minimizer in program (4.2).

As mentioned above, LICQ does not hold at the solution points in both nonlinear
programs (4.1) and (4.2) in our Examples 4.1 and 4.2. Observe that the perturbed KKT
system associated with (4.2) has the form (3.13) with

Φ(x, λ) =

 x− a +
4∑

i=1

λi∇qi(x)

−q(x) + NR4
+
(λ)


with the corresponding constraint functions qi, i = 1, . . . , 4, defined in (4.2). By Theo-
rem 3.6 we claim that there is a neighborhood V of (x̄, λ̃), a neighborhood U of (0R3×0R4)
and a number ` ≥ 0 such that

‖x‖+ ‖λ− λ̃‖ ≤ `‖(a, b)‖ for all (x, λ, a, b) ∈ gphΦ, (x, λ) ∈ V and (a, b) ∈ U .

It means in that this perturbed KKT system exhibits the isolated calmness property at
(x̄, λ̃), which is even stronger than (3.15); see, e. g., [5, Section 3.I].

5. CONCLUDING REMARKS

It is shown in Theorem 3.2 that tilt stability of local minimizers for C2 nonlinear pro-
grams (2.1) can be equivalently described, under MFCQ, via strong metric regularity of
the auxiliary mapping Ψ defined in (3.1). This mapping and its strong metric regularity
property do not include Lagrange multipliers and are not directly connected with the
conventional KKT system in nonlinear programming. Our intention to describe tilt sta-
bility via Lagrange multiplies and eventually via second-order conditions in nonlinear
programming has led us to sufficient conditions of tilt stability obtained in Theorem 3.3
and necessary conditions for this property given in Theorem 3.4 via second-order gener-
alized differential constructions of variational analysis. Under the classical LICQ both
of these conditions reduce to the well-known SSOSC and thus allow us to give another
proof of the SSOSC characterization of tilt stability recently obtained in [25]. However,
it is not the case in the absence of LICQ, even when we replace it by the combination of
MFCQ and CRCQ. From the viewpoint of second-order subdifferential calculus this gap
is largely due to possible proper inclusions in second-order chain rule (3.5) as well as in
formula (3.9). It is strongly desirable to close this gap by adding some additional condi-
tions on the problem data. In [25, Theorem 4.3] the exact (equality type) second-order
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chain rule has been obtained in the general case of strongly amenable compositions with
piecewise linear outer functions. However, in the particular case of nonlinear program-
ming considered in this paper the second-order qualification condition

D∗NRs
−

(
q(x̄), λ

)
(0) ∩ ker (∇q

(
x̄)
)T = {0}

whenever λ ∈ NRs
−

(
q(x̄)

)
with (∇q(x̄))T λ = v̄,

imposed in [25], reduces to LICQ in our framework. Thus workable characterizations of
tilt stability in the absence of LICQ (and possibly in the absence of CRCQ as well) are
still very challenging even for standard C2 nonlinear programs.

Our other lines of research in this direction include the development of the meth-
ods proposed in this paper to the study of full stability of local minimizers in nonlinear
programming, which is a general and highly important stability concept in optimiza-
tion introduced in [17]. Furthermore, we plan to extend this research to problems of
conic programming; in particular, those related to descriptions via products of second-
order/Lorentz/ice-cream cones. Some second-order chain rules have been recently de-
rived in [27] for such settings; they can be useful in the frameworks of tilt and full
stability.
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