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KYB ERNET IK A — VO LUME 4 9 ( 2 0 1 3 ) , NUMBER 2 , PAGES 3 4 1 – 3 5 8

OBSERVER DESIGN FOR A CLASS OF NONLINEAR
DISCRETE-TIME SYSTEMS WITH TIME-DELAY

Yali Dong, Jinying Liu and Shengwei Mei

The problem of observer design for a class of nonlinear discrete-time systems with time-
delay is considered. A new approach of nonlinear observer design is proposed for the class of
systems. Based on differential mean value theory, the error dynamic is transformed into linear
parameter variable system. By using Lyapunov stability theory and Schur complement lemma,
the sufficient conditions expressed in terms of matrix inequalities are obtained to guarantee the
observer error converges asymptotically to zero. Furthermore, the problem of observer design
with affine gain is investigated. The computing method for observer gain matrix is given and
it is also demonstrated that the observer error converges asymptotically to zero. Finally, an
illustrative example is given to validate the effectiveness of the proposed method.

Keywords: observer design, stability, time-delay, differential mean value theory,
Lyapunov–Krasovskii functional

Classification: 93C55, 93D05, 93D20, 93C83

1. INTRODUCTION

Time-delay frequently occurs in various practical systems, such as chemical engineer-
ing systems, neural networks and population dynamic model. The existence of the
time-delay can significantly affect performances or even causes instability in dynamic
systems. Thus, the stability problem of nonlinear systems with time-delay, especially
the observer-based synthesis problem of nonlinear systems, has been paid much attention
in the control community. In recent years, the observer design methods for nonlinear
continuous-time systems with delays have been widely investigated [2, 5, 6, 14, 17].
However, there is relatively little research on observer design for nonlinear discrete-time
systems with time-delay. In [3], a new state observer design methodology for linear time-
varying multi-output systems was presented. The same methodology was also extended
to a class of multi-output nonlinear systems and some sufficient conditions for the exis-
tence of the proposed observer were obtained. In [11], based on linear matrix inequality
technique, the robust H∞ observer design for a class of Lipsichtz nonlinear discrete-time
systems with time-delay was investigated. In [7], nonlinear observers were designed for a
class of dynamical discrete-time systems with both constant and time-varying delay non-
linearities by transforming the nonlinear system into a linear time-delay system. In [10],
Lu addressed the issues of observer design for a class of Lipschitz nonlinear discrete-
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time systems with time-delay and disturbance input, where the Lipschitz vector was
bounded in a component-wise manner rather than in an aggregated manner as in [11].
In [13], based on a time-scaled block triangular observer form, an observer design for
uncontrolled nonlinear multi-output continuous-time systems was presented. In [9], the
nonlinear discrete-time partial state observer design problem for rigid spacecraft systems
was investigated. In [12], the observer design for a class of Lipschitz nonlinear dynamical
systems was considered. In [4], via state transformation and the constructive use of a
Lyapunov function, the new observer design approach was addressed by introducing a
parameter ε in the observer. Some sufficient conditions which guarantee the estimation
error to converge asymptotically to zero were given. In [1], a new approach to robust H∞
filtering for a class of nonlinear systems with time-varying uncertainties was proposed
in the LMI framework based on a general dynamical observer structure.

This paper investigates the problem of observer design for a class of nonlinear discrete-
time systems with time-delay. By using differential mean value theory and constructing
the Lyapunov–Krasovskii functional, a new approach of nonlinear observer design is pro-
posed. The sufficient conditions that guarantee the observer error converges asymptoti-
cally to zero are given. Furthermore, under some reasonable assumptions, an approach
of observer design with affine gain is presented, and it is demonstrated that the observer
error converges asymptotically to zero.

References [10, 12] deal with the Lipschitz nonlinear systems. Compared with [10, 12],
the observer design methods proposed in this paper includes a large variety of systems
already studied in literature, namely the class of Lipschitz nonlinear systems. Thus, the
methods proposed in this paper have wider applications in control theory and practice.
Compared with [15], our systems include the system in [15], for which, the observer
is the standard Luenberger form and the observer gain is a constant. By contrast, our
observers have the additional term with delayed output. We need to design two observer
gains and consider the function observer gain. Hence our results are less conservative
than those in [15].

This paper is organized as follows. In Section 2, a class of nonlinear discrete-time sys-
tems with delayed state is studied and the corresponding observer is introduced. Based
on differential mean value theory, the error dynamic is transformed into linear parame-
ter variable system. The sufficient conditions expressed as inequalities that guarantees
the observer error converges asymptotically to zero are established. In Section 3, the
problem of the observer design with affine gain for a class of nonlinear discrete-time
systems with delayed state is considered and the computing method for observer gain
matrix is obtained. The sufficient conditions that guarantee the observer error converges
asymptotically to zero are presented. In Section 4, a numerical example is given to show
the performances of our method. Finally, some conclusions are drawn in Section 5.

Throughout this paper, I denotes an identity matrix of appropriate dimension. AT

stands for the transpose of A. Es = {es(i)|es(i) = (0, . . . , 0, 1, 0, . . . , 0)T , i = 1, . . . , s}
represents the canonical basis of the vector space Rs for all s ≥ 1. For a square matrix
P , P > 0 (< 0, ≤ 0, ≥ 0) means that this matrix is positive (negative, semi-negative,
semi-positive) definite. The set Co(x, y) = {λx+(1−λ)y|0 ≤ λ ≤ 1)} is the convex hull
of{x, y}, and the symbol

∑q,n
i,j=1 denotes

∑q
i=1

∑n
j=1.
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2. NONLINEAR OBSERVER DESIGN

Consider a class of nonlinear discrete-time systems with delayed state as follows:

x(k + 1) = Ax(k) + Adx(k − d) + Bf(x(k), x(k − d), y(k), y(k − d)),
y(k) = Cx(k),
x(k) = x0(k), k = 0,−1, . . . ,−d,

(1)

where x(k) ∈ Rn is the state vector and y(k) ∈ Rp is the output vector. A,Ad, B and
C are constant matrices of appropriate dimensions. f : Rn × Rn × Rp × Rp → Rq is a
nonlinear vector assumed to be differentiable. d is a positive integer for delay time, and
x0(k) is an initial value at k.

A state observer for (1) is given by:

x̂(k + 1) = Ax̂(k) + Adx̂(k − d) + Bf(x̂(k), x̂(k − d), y(k), y(k − d))
+L(y(k)− ŷ(k)) + Ld(y(k − d)− ŷ(k − d)),

ŷ(k) = Cx̂(k),
(2)

where x̂(k) ∈ Rn is the estimate of the state x(k), L, Ld ∈ Rn×p are gain matrices.

Remark 2.1. The observer (2) is not in the standard Luenberger form. The amending
term Ld(y(k − d) − ŷ(k − d)) is added, which improves the convergence. The design
method comes from [16, 18].

Our objective is to find the matrices L and Ld such that the corresponding estimation
error

e(k) = x(k)− x̂(k), (3)

is asymptotically stable.

The following lemmas will play an important role in the paper.

Lemma 2.2. (Zemouche et al. [17]) Let f : R2n → Rq. Let a =
(

a1

a2

)
, b =

(
b1
b2

)
∈

R2n with ai, bi ∈ Rn for i = 1, 2. We assume that f(x1, x2, . . . , xn, y1, y2, . . . , yn) is
differentiable on Co(a, b). Then, there are constant vectors c1, c2, . . . , cq ∈ Co(a, b), ci 6=
a, ci 6= b, for i = 1, 2, . . . , q, such that:

f(a)− f(b) = (
q,n∑

i,j=1

eq(i)eT
n (j)

∂fi

∂xj
(ci))(a1 − b1) + (

q,n∑
i,j=1

eq(i)eT
n (j)

∂fi

∂yj
(ci))(a2 − b2).

Lemma 2.3. (Schur complement lemma) (Kwon and Park [8]) Given constant sym-
metric matrices S1, S2, S3, and S1 = ST

1 < 0, S3 = ST
3 > 0, then S1 + S2S

−1
3 ST

2 < 0 if
and only if (

S1 S2

ST
2 −S3

)
< 0.

From (1) and (2), the dynamics of the estimation error is given by

e(k + 1) = (A− LC)e(k) + (Ad − LdC)e(k − d) + Bδf(k), (4)
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where δf(k) = f(x(k), x(k − d), y(k), y(k − d))− f(x̂(k), x̂(k − d), y(k), y(k − d)).

Using the notations

X(k) =
(

xT (k) xT (k − d)
)T

, X̂(k) =
(

x̂T (k) x̂T (k − d)
)T

,

and Lemma 2.2, there exist vectors zi(k) ∈ Co(X(k), X̂(k)) for all i = 1, . . . , q, such
that:

δf(k) = Sq,n(k)e(k) + Sd
q,n(k)e(k − d), (5)

where

Sq,n(k) =
q,n∑

i,j=1

eq(i)eT
n (j)

∂fi

∂xj(k)
(zi(k), y(k), y(k − d)),

and

Sd
q,n(k) =

q,n∑
i,j=1

eq(i)eT
n (j)

∂fi

∂xj(k − d)
(zi(k), y(k), y(k − d)).

By using of the following notations:

hij(k) = ∂fi

∂xj(k) (zi(k), y(k), y(k − d)), i = 1, . . . , q, j = 1, . . . , n,

h(k) = (h11(k), . . . , h1n(k), . . . , hqn(k)),

hd
ij(k) = ∂fi

∂xj(k−d) (zi(k), y(k), y(k − d)), i = 1, . . . , q, j = 1, . . . , n,

hd(k) = (hd
11(k), . . . , hd

1n(k), . . . , hd
qn(k)),

Ā(h(k)) = A + BSq,n(k), and Ād(hd(k)) = Ad + BSd
q,n(k)

the estimation error dynamics (4) can be rewritten as:

e(k + 1) = (Ā(h(k))− LC)e(k) + (Ād(hd(k))− LdC)e(k − d). (6)

Now, we introduce the following assumption.

Assumption 2.4. The functions hij(k) and hd
ij(k) are bounded for i = 1, . . . , q, j =

1, . . . , n, i. e.,
sup

k
|hij(k)| < ∞, sup

k
|hd

ij(k)| < ∞.

Remark 2.5. Although some functions do not satisfy Assumption 2.4, the class of sys-
tems satisfying Assumption 2.4 includes a large variety of systems already studied in
literature, namely the class of differential Lipschitz nonlinear systems. The Assump-
tion 2.4 is equivalent to the Assumption 1 in [18].

Under Assumption 2.4, the parameter vector h(k) remains in a bounded domain Hq,n

of which 2qn vertices are defined by:

VHq,n = {α = (α11, . . . , α1n, . . . , αqn)|αij ∈ {hij , h̄ij}},
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where hij = infk(hij(k)) and h̄ij = supk(hij(k)).
The parameter vector hd(k) evolves in a bounded domain Hd

q,n of which 2qn vertices
are defined by:

VHd
q,n

= {β = (β11, . . . , β1n, . . . , βqn)|βij ∈ {hd
ij , h̄

d
ij}},

where hd
ij = infk(hd

ij(k)) and h̄d
ij = supk(hd

ij(k)).

Now, we can state our main result about new matrix inequality conditions for the
observer synthesis problem.

Theorem 2.6. Suppose that Assumption 2.4 is satisfied. Then, the estimation error
(3) converges asymptotically towards zero if there exist matrices 0 < P ∈ Rn×n, 0 ≤
Q ∈ Rn×n, M ∈ R(2n)×n, N ∈ Rp×n and Rd ∈ Rp×n such that the following matrix
inequality holds:(

ζ1 + ζ2 + ζT
2 + ζ3 Σ1

ΣT
1 −Σ2

)
< 0, ∀α ∈ VHq,n , ∀β ∈ VHd

q,n
, (7)

where

ζ1 =
(
−P + Q 0

0 −Q

)
, ζ2 =

(
M −M

)
, ζ3 = dMP−1MT ,

Σ1 =
(

ĀT (α)P − CT N dĀT (α)P − dCT N − dP
ĀT

d (β)P − CT Rd dĀT
d (β)P − dCT Rd

)
, Σ2 =

(
P 0
0 dP

)
.

Moreover, the gain matrices L and Ld are given respectively by L = P−1NT , Ld =
P−1RT

d .

P r o o f . To prove this, we use the following Lyapunov–Krasovskii functional:

V (k) = V1(k) + V2(k) + V3(k), (8)

where

V1(k) = eT (k)Pe(k), V2(k) =
k−1∑

l=k−d

eT (l)Qe(l), V3(k) =
−1∑

i=−d

k−1∑
m=k+i

ηT (m)Pη(m),

η(k) = e(k + 1)− e(k) = (Ā(h(k))− LC − I)e(k) + (Ād(hd(k))− LdC)e(k − d).

Let λ(k) =
(

eT (k) eT (k − d)
)T

. Then, we have

∆V1(k) = V1(k + 1)− V1(k)
= eT (k + 1)Pe(k + 1)− eT (k)Pe(k)
= {(Ā(h(k))− LC)e(k) + (Ād(hd(k))− LdC)e(k − d)}T P

×{(Ā(h(k))− LC)e(k) + (Ād(hd(k))− LdC)e(k − d)}
−eT (k)Pe(k)

= λT (k)
(

Ā(h(k))− LC Ād(hd(k))− LdC
)T

P
×

(
Ā(h(k))− LC Ād(hd(k))− LdC

)
λ(k)− eT (k)Pe(k),

(9)
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∆V2(k) = V2(k + 1)− V2(k) =
k∑

l=k+1−d

eT (l)Qe(l)−
k−1∑

l=k−d

eT (l)Qe(l)

= eT (k)Qe(k)− eT (k − d)Qe(k − d),
(10)

∆V3(k) = V3(k + 1)− V3(k)

=
−1∑

i=−d

k∑
m=k+1+i

ηT (m)Pη(m)−
−1∑

i=−d

k−1∑
m=k+i

ηT (m)Pη(m)

=
−1∑

i=−d

{ηT (k)Pη(k)− ηT (k + i)Pη(k + i)}

= dηT (k)Pη(k)−
−1∑

i=−d

ηT (k + i)Pη(k + i)

= dλT (k)
(

Ā(h(k))− LC − I Ād(hd(k))− LdC
)T

P
×

(
Ā(h(k))− LC − I Ād(hd(k))− LdC

)
λ(k)

−
k−1∑

l=k−d

ηT (l)Pη(l).

(11)

Note that
k−1∑

l=k−d

η(l) =
k−1∑

l=k−d

[e(l + 1)− e(l)] = e(k)− e(k − d), (12)

then

e(k)− e(k − d)−
k−1∑

l=k−d

η(l) = 0.

Hence, the following equation holds for the arbitrary parameter matrix M of appro-
priate dimension:

2λT (k)M [e(k)− e(k − d)−
k−1∑

l=k−d

η(l)] = 0. (13)

From (9), (10), (11) and (13), we get

∆V (k) = V (k + 1)− V (k)

= ∆V1(k) + ∆V2(k) + ∆V3(k) + 2λT (k)M
[
e(k)− e(k − d)−

k−1∑
l=k−d

η(l)
]

= ∆V1(k) + ∆V2(k) + ∆V3(k) + 2λT (k)
(

M −M
)
λ(k)

−
k−1∑

l=k−d

2λT (k)Mη(l)

= ∆V1(k) + ∆V2(k) + ∆V3(k) + 2λT (k)
(

M −M
)
λ(k)

+dλT (k)MP−1MT λ(k)−
k−1∑

l=k−d

[2λT (k)Mη(l) + λT (k)MP−1MT λ(k)]
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= λT (k)
{(

Q− P 0
0 −Q

)
+

(
M −M

)
+

(
M −M

)T + dMP−1MT

+
(

(Ā(h(k))− LC)T (Ā(h(k))− LC)T − I
(Ād(hd(k))− LdC)T (Ād(hd(k))− LdC)T

) (
P 0
0 dP

)

×
(

Ā(h(k))− LC Ād(hd(k))− LC
Ā(h(k))− LC − I Ād(hd(k))− LdC

) }
λ(k)

−
k−1∑

l=k−d

{ηT (l)Pη(l) + 2λT (k)Mη(l) + λT (k)MP−1MT λ(k)}.

Let Ξ1 = Ā(h(k))− LC, Ξ2 = Ād(hd(k))− LdC, then

∆V (k) = λT (k)
{

ζ1 + ζ2 + ζT
2 + ζ3 +

(
ΞT

1 P dΞT
1 P − dP

ΞT
2 P dΞT

2 P

) (
P 0
0 dP

)−1

×
(

PΞ1 PΞ2

dPΞ1 − dP dPΞ2

) }
λ(k)

−
k−1∑

l=k−d

{λT (k)M + ηT (l)P}P−1{MT λ(k) + Pη(l)}

≤ λT (k)H1(h(k), hd(k))λ(k),

where

H1(h(k), hd(k)) = ζ1 + ζ2 + ζT
2 + ζ3 +

(
ΞT

1 P dΞT
1 P − dP

ΞT
2 P dΞT

2 P

) (
P 0
0 dP

)−1

×
(

PΞ1 PΞ2

dPΞ1 − dP dPΞ2

)
.

Using the convexity principle and Lemma 2.3, if the condition (7) is satisfied, then
we have

H1(h(k), hd(k)) < 0, ∀h(k) ∈ Hq,n, ∀hd(k) ∈ Hd
q,n.

It follows that ∆V (k) < 0. This completes the proof. �

Note that the matrix inequality (7) is not linear inequality due to the existence of the
nonlinear term ζ3. Thus it is inconvenient to be used in practice. The following theorem
is an improved result.

Theorem 2.7. Suppose that Assumption 2.4 is satisfied. Then the estimation error (3)
converges asymptotically towards zero if there exist matrices 0 < P ∈ Rn×n, 0 ≤ Q ∈
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Rn×n, M ∈ R(2n)×n, N ∈ Rp×n and Rd ∈ Rp×n such that the following linear matrix
inequality holds: (

Π1 Π2

ΠT
2 −Π3

)
< 0, ∀α ∈ VHq,n , ∀β ∈ VHd

q,n
, (14)

where

Π1 =
(

ζ1 0
0 ζ2 + ζT

2

)
, ζ1 =

(
−P + Q 0

0 −Q

)
, ζ2 =

(
M −M

)
,

Π2 =

 Ā(α)P − CT N dĀT (α)P − dCT N − dP 0
ĀT

d (β)P − CT Rd dĀT
d (β)P − dCT Rd 0

0 0 M

 ,

Π3 =

 P 0 0
0 dP 0
0 0 (1/d)P

 .

Moreover, the gain matrices L and Ld are given respectively by L = P−1NT , Ld =
P−1RT

d .

P r o o f . Consider the candidate Lyapunov–Krasovskii functional (8). Let

µ(k) =
(

eT (k) eT (k − d) λT (k)
)T

.

From the proof of Theorem 2.6, we get

∆V (k) ≤ λT (k)
{(

Q− P 0
0 −Q

)
+

(
M −M

)
+

(
M −M

)T

+dMP−1MT +
(

(Ā(h(k))− LC)T (Ā(h(k))− LC)T − I
(Ād(hd(k))− LdC)T (Ād(hd(k))− LdC)T

)

×
(

P 0
0 dP

) (
Ā(h(k))− LC Ād(hd(k))− LdC

Ā(h(k))− LC − I Ād(hd(k))− LdC

) }
λ(k).

Let Ξ1 = Ā(h(k))− LC, Ξ2 = Ād(hd(k))− LdC then

∆V (k) ≤ µT (k)
{ Q− P 0 0

0 −Q 0
0 0

(
M −M

)
+

(
M −M

)T



+

 ΞT
1 ΞT

1 − I 0
ΞT

2 ΞT
2 0

0 0 M

  P 0 0
0 dP 0
0 0 I


×

 Ξ1 Ξ2 0
Ξ1 − I Ξ2 0

0 0 dP−1MT

 }
µ(k)

= µT (k)H2(h(k), hd(k))µ(k),

(15)
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where

H2(h(k), hd(k)) =
(

ζ1 0
0 ζ2 + ζT

2

)
+

 ΞT
1 P dΞT

1 P − dP 0
ΞT

2 P dΞT
2 P 0

0 0 M



×

 P 0 0
0 dP 0
0 0 (1/d)P

−1  PΞ1 PΞ2 0
dPΞ1 − dP dPΞ2 0

0 0 MT

 .

By the convexity principle and Lemma 2.3, if the condition (14) is satisfied, then we
have

H2(h(k), hd(k)) < 0, ∀h(k) ∈ Hq,n, ∀hd(k) ∈ Hd
q,n.

It follows that ∆V (k) < 0. This completes the proof. �

Remark 2.8. The free weighting matrix M is used to describe the relationships between
terms e(k), e(k − d) and

∑k−1
l=k−d η(l), and the condition (7) is delay-dependent, which

reduces their conservatism. When the observer gain matrix Ld in (2) vanishes, we can
obtain the following stable result immediately from Theorem 2.6.

Corollary 2.9. Consider the observer (2) with Ld = 0. Suppose that Assumption 2.4 is
satisfied. Then, the estimation error (3) converges asymptotically towards zero if there
exist matrices 0 < P ∈ Rn×n, 0 ≤ Q ∈ Rn×n,M ∈ R(2n)×n and N ∈ Rp×n such that
the following matrix inequality holds:(

ζ1 + ζ2 + ζT
2 + ζ3 Σ̄1

Σ̄T
1 −Σ2

)
< 0, ∀α ∈ VHq,n , ∀β ∈ VHd

q,n
, (16)

where

ζ1 =
(
−P + Q 0

0 −Q

)
, ζ2 =

(
M −M

)
, ζ3 = dMP−1MT ,

Σ̄1 =
(

ĀT (α)P − CT N dĀT (α)P − dCT N − dP
ĀT

d (β)P dĀT
d (β)P

)
, Σ2 =

(
P 0
0 dP

)
.

Moreover, the matrix L is given by L = P−1NT .

Remark 2.10. When the observer gain L in (2) vanishes, we can obtain the following
stable result immediately according to Theorem 2.6.

Corollary 2.11. Consider the observer (2) with L = 0. Suppose that Assumption 2.4
is satisfied. Then, the estimation error (3) converges asymptotically towards zero if there
exist matrices 0 < P ∈ Rn×n, 0 ≤ Q ∈ Rn×n,M ∈ R(2n)×n and Rd ∈ Rp×n such that
the following matrix inequality holds:(

ζ1 + ζ2 + ζT
2 + ζ3 Σ̃1

Σ̃T
1 −Σ2

)
< 0, ∀α ∈ VHq,n , ∀β ∈ VHd

q,n
, (17)
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where

ζ1 =
(
−P + Q 0

0 −Q

)
, ζ2 =

(
M −M

)
, ζ3 = dMP−1MT ,

Σ̃1 =
(

ĀT (α)P dĀT (α)P − dP
ĀT

d (β)P − CT Rd dĀT
d (β)P − dCT Rd

)
, Σ2 =

(
P 0
0 dP

)
.

Moreover, the matrix Ld is given by Ld = P−1RT
d .

Remark 2.12. Compared with Corollary 2.9 and Corollary 2.11, Theorem 2.6 is less
conservative.

Remark 2.13. Using LMI Toolbox for (14), we can solve matrices P,Q,M,N, Rd. If
the linear matrix inequality (14) is feasible, using P,N, Rd, we can get the observer gain
matrices L and Ld.

3. OBSERVER DESIGN WITH AFFINE GAIN

In previous sections, the observer gain matrices L and Ld are constant matrices. In this
section, we use affine observer gains matrices L and Ld under an additional assumption,
which is given as follows.

Assumption 3.1. There exist subsets S ⊂ {1, . . . , q} × {1, . . . , n} and Sd ⊂ {1, . . . ,
q} × {1, . . . , n} such that

∂fi

∂xj(k)
(x(k), x(k − d), y(k), y(k − d)) = gij(y(k), y(k − d)), ∀ (i, j) ∈ S, (18)

∂fl

∂xm(k − d)
(x(k), x(k − d), y(k), y(k − d)) = gd

lm(y(k), y(k − d)), ∀ (l,m) ∈ Sd. (19)

This Assumption 3.1 means that

∂fi

∂xj(k)
(x(k), x(k − d), y(k), y(k − d)), ∀ (i, j) ∈ S,

and
∂fl

∂xm(k − d)
(x(k), x(k − d), y(k), y(k − d)), ∀ (l,m) ∈ Sd,

are independent in x(k) and x(k − d).
Consider the following state observer for system (1)

x̂(k + 1) = Ax̂(k) + Adx̂(k − d) + Bf(x̂(k), x̂(k − d), y(k), y(k − d))
+L(k)(y(k)− ŷ(k)) + Ld(k)(y(k − d)− ŷ(k − d)),

ŷ(k) = Cx̂(k),
(20)

where x̂(k) is the estimate of the state x(k), L(k) = L0 +∑
(i,j)∈S gij(y(k), y(k − d))Lij , Ld(k) = Ld

0 +
∑

(l,m)∈Sd gd
lm(y(k), y(k − d))Ld

lm.
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In this section we try to find the matrices L0, Lij for all (i, j) ∈ S and Ld
0, L

d
ij for all

(l,m) ∈ Sd such that the estimation error

e(k) = x(k)− x̂(k), (21)

converges asymptotically toward to zero.
From (1) and (20), the dynamics of the estimation error is expressed as follows:

e(k + 1) = (A− L(k)C)e(k) + (Ad − Ld(k)C)e(k − d) + B[f(x(k), x(k − d), y(k),
y(k − d))− f(x̂(k), x̂(k − d), y(k), y(k − d))].

(22)
By taking again the notations of section 2, the equation (22) can be written as:

e(k + 1) = (Ā(h(k))− L(k)C)e(k) + (Ād(hd(k))− Ld(k)C)e(k − d). (23)

Note that here we have

hij(k) = gij(y(k), y(k − d)), (i, j) ∈ S,

and
hd

lm(k) = gd
lm(y(k), y(k − d)), (l,m) ∈ Sd.

Then, for α ∈ VHq,n we have αij ∈ {gij
, ḡij} for all (i, j) ∈ S, and for β ∈ VHd

q,n
we have

βlm ∈ {gd
lm

, ḡd
lm} for all (l,m) ∈ Sd, where

g
ij

= min
k

(gij(k)), ḡij = max
k

(gij(k)), gd
ij

= min
k

(gd
ij(k)), ḡd

ij = max
k

(gd
ij(k)).

Now, we state the following theorem.

Theorem 3.2. Suppose that Assumption 2.4 and Assumption 3.1 are satisfied. Then
the estimation error (21) converges asymptotically towards zero if there exist matrices
P > 0, Q ≥ 0,M,R0, R

d
0, Rij and Rd

lm of appropriate dimensions for (i, j) ∈ S, (l, m) ∈
Sd such that the following linear matrix inequality holds:(

Π1 Π4

ΠT
4 −Π3

)
< 0, ∀α ∈ VHq,n , ∀β ∈ VHd

q,n
, (24)

where

Π1 =
(

ζ1 0
0 ζ2 + ζT

2

)
, Π3 =

 P 0 0
0 dP 0
0 0 (1/d)P

 ,

ζ1 =
(
−P + Q 0

0 −Q

)
, ζ2 =

(
M −M

)
,

Π4 =

 ĀT (α)P − CT w(R0, Rij) dĀT (α)P − dCT w(R0, Rij)− dP 0
ĀT

d (β)P − CT wd(Rd
0, R

d
lm) dĀT

d (β)P − dCT wd(Rd
0, R

d
lm) 0

0 0 M

 .
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w(R0, Rij) = R0 +
∑

(i,j)∈S

αijRij , wd(Rd
0, R

d
lm) = Rd

0 +
∑

(l,m)∈Sd

βlmRd
lm.

Moreover, the observer gain matrices are given by:

L0 = P−1RT
0 , Lij = P−1RT

ij , ∀ (i, j) ∈ S,

Ld
0 = P−1(Rd

0)
T , Ld

lm = P−1(Rd
lm)T , ∀ (l,m) ∈ Sd.

Remark 3.3. Note the affine observer gains in Section 3 are functions, but the ob-
server gain matrices in Section 2 are constant matrices. Comparing Theorem 3.2 with
Theorem 2.7, we can see that the number of variables in Theorem 3.2 is greater than
that in Theorem 2.7. Thus Theorem 3.2 is less conservative than Theorem 2.7. If As-
sumption 3.1 holds only when S = Φ and Sd = Φ, where Φ denotes an empty set, then
Theorem 3.2 degenerates to Theorem 2.7.

4. NUMERICAL EXAMPLE

In this subsection, a numerical example is provided to show the high performance of the
proposed approach.

Consider the following nonlinear discrete-time system:

x(k + 1) = Ax(k) + Adx(k − d) + Bf(x(k), x(k − d)),
y(k) = Cx(k),
x(k) = 1, k = 0,−1,

(25)

where

A =
(
−0.5 0

1 0.5

)
, Ad =

(
1 0
1 0

)
, B =

(
1 0
0 1

)
,

f(x(k), x(k − d)) =
(

0.25 arctanx2(k)
0.2 sinx2(k − 1)

)
, C =

(
1 0

)
, d = 1.

Then, using our approach, we obtain:

h12(k) =
0.25

1 + x2
2(k)

, hd
22(k) = 0.2 cos x2(k − 1),

h11(k) = h21(k) = h22(k) = hd
11(k) = hd

12(k) = hd
21(k) = 0.

Therefore, the vertex sets can be obtained as follows:

VHq,n
= {(0, 0, 0, 0), (0, 0.25, 0, 0)}, VHd

q,n
= {(0, 0, 0, 0.2), (0, 0.25, 0,−0.2)}.

Using LMI Toolbox to solve the inequality (14), we get:

P =
(

454430 0
0 469860

)
, N =

(
−454430 469860

)
, Rd =

(
454430 469860

)
.
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Thus, the observer gain matrices L and Ld can be taken as:

L = P−1NT =
(
−1 1

)T
and Ld = P−1RT

d =
(

1 1
)T

. (26)

The state observer for (25) is given by:

x̂(k + 1) =
(
−0.5 0

1 0.5

)
x̂(k) +

(
1 0
1 0

)
x̂(k − 1)

+
(

0.25 arctan x̂2(k)
0.2 sin x̂2(k − 1)

)
+

(
−1
1

)
(x1(k)− x̂1(k))

+
(

1
1

)
(x1(k − 1)− x̂1(k − 1)),

ŷ(k) = x̂1(k).

(27)

The dynamics of the estimation error is:

e(k + 1) = 0.5e(k) +
(

0.25 arctanx2(k)− 0.25 arctan x̂2(k)
0.2 sinx2(k − 1)− 0.2 sin x̂2(k − 1)

)
,

where

e(k) =
(

e1(k)
e2(k)

)
= x(k)− x̂(k) =

(
x1(k)− x̂1(k)
x2(k)− x̂2(k)

)
. (28)

It is seen from Figure 1 that the estimation error (28) converges asymptotically towards
zero.

Fig. 1. The estimation error behavior.
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5. CONCLUSIONS

This paper investigates the problem of observer design for a class of nonlinear discrete-
time systems with time-delay. Based on differential mean value theory, the error dynamic
is transformed into linear parameter variable system. By using Lyapunov stability theory
and Schur complement lemma, a new approach of nonlinear observer design is proposed.
Sufficient conditions that guarantee the observer error converges asymptotically to zero
are given. The corresponding computing method for observer gain matrix is presented.
Moreover, the method obtained is generalized to the observer design with affine gain.
The approach of observer design with affine gain is proposed and it is also demonstrated
that the observer error converges asymptotically to zero under appropriate conditions.

APPENDIX

P r o o f o f Th e o r e m 3.2. Similar to the proof in Theorem 1, we choose the following
Lyapunov–Krasovskii functional:

V (k) = V1(k) + V2(k) + V3(k),

V1(k) = eT (k)Pe(k), V2(k) =
k−1∑

l=k−d

eT (l)Qe(l), V3(k) =
−1∑

i=−d

k−1∑
m=k+i

ηT (m)Pη(m),

η(k) = e(k + 1)− e(k) = (Ā(h(k))− L(k)C − I)e(k) + (Ād(hd(k))− Ld(k)C)e(k − d).
(29)

The difference of Vi(k), i = 1, 2, 3, along the trajectories of system (1) is calculated
as follows:

∆V1(k) = V1(k + 1)− V1(k)
= {(Ā(h(k))− L(k)C)e(k) + (Ād(hd(k))− Ld(k)C)e(k − d)}T P

×{(Ā(h(k))− L(k)C)e(k) + (Ād(hd(k))− Ld(k)C)e(k − d)}
−eT (k)Pe(k)

= λT (k)
(

Ā(h(k))− L(k)C Ād(hd(k))− Ld(k)C
)T

P
×

(
Ā(h(k))− L(k)C Ād(hd(k))− Ld(k)C

)
λ(k)− eT (k)Pe(k),

(30)

∆V2(k) = V2(k + 1)− V2(k) =
k∑

l=k+1−d

eT (l)Qe(l)−
k−1∑

l=k−d

eT (l)Qe(l)

= eT (k)Qe(k)− eT (k − d)Qe(k − d),
(31)

∆V3(k) = V3(k + 1)− V3(k)

=
−1∑

i=−d

k∑
m=k+1+i

ηT (m)Pη(m)−
−1∑

i=−d

k−1∑
m=k+i

ηT (m)Pη(m)

=
−1∑

i=−d

{ηT (k)Pη(k)− ηT (k + i)Pη(k + i)}

= dηT (k)Pη(k)−
−1∑

i=−d

ηT (k + i)Pη(k + i)

= dλT (k)
(

Ā(h(k))− L(k)C − I Ād(hd(k))− Ld(k)C
)T

P
×

(
Ā(h(k))− L(k)C − I Ād(hd(k))− Ld(k)C

)
λ(k)

−
k−1∑

l=k−d

ηT (l)Pη(l).

(32)
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Note that
k−1∑

l=k−d

η(l) =
k−1∑

l=k−d

[e(l + 1)− e(l)] = e(k)− e(k − d), (33)

then

e(k)− e(k − d)−
k−1∑

l=k−d

η(l) = 0.

Hence, the following equation holds for the arbitrary parameter matrix M of appropriate
dimension

λT (k)M [e(k)− e(k − d)−
k−1∑

l=k−d

η(l)] = 0. (34)

Let µ(k) =
(

eT (k) eT (k − d) λT (k)
)T

. From (30), (31), (32) and (34), we get

∆V (k) = V (k + 1)− V (k)

= ∆V1(k) + ∆V2(k) + ∆V3(k) + 2λT (k)M [e(k)− e(k − d)−
k−1∑

l=k−d

η(l)]

= ∆V1(k) + ∆V2(k) + ∆V3(k) + 2λT (k)
(

M −M
)
λ(k)

−
k−1∑

l=k−d

2λT (k)Mη(l)

= ∆V1(k) + ∆V2(k) + ∆V3(k) + 2λT (k)
(

M −M
)
λ(k)

+dλT (k)MP−1MT λ(k)−
k−1∑

l=k−d

[2λT (k)Mη(l) + λT (k)MP−1MT λ(k)]

= µT (k)
{ Q− P 0 0

0 −Q 0
0 0

(
M M

)
+

(
M M

)T



+

 (Ā(h(k))− L(k)C)T (Ā(h(k))− L(k)C)T − I 0
(Ād(hd(k))− Ld(k)C)T (Ād(hd(k))− Ld(k)C)T 0

0 0 M



×

 P 0 0
0 dP 0
0 0 I



×

 Ā(h(k))− L(k)C Ād(hd(k))− Ld(k)C 0
Ā(h(k))− L(k)C − I Ād(hd(k))− Ld(k)C 0

0 0 dP−1MT

 }
µ(k)

−
k−1∑

l=k−d

[ηT (l)Pη(l) + 2λT (k)Mη(l) + λT (k)MP−1MT λ(k)]

= µT (k)
{(

ζ1 0
0 ζ2 + ζT

2

)
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+

 (Ā(h(k))− L(k)C)T P dĀ(h(k))− L(k)C)T P − dP 0
(Ād(hd(k))− Ld(k)C)T P dĀd(hd(k))− Ld(k)C)T P 0

0 0 M



×

 P 0 0
0 dP 0
0 0 (1/d)P

−1

×

 P (Ā(h(k))− L(k)C) P (Ād(hd(k))− Ld(k)C) 0
dP (Ā(h(k))− L(k)C)− dP dP (Ād(hd(k))− Ld(k)C) 0

0 0 MT

 }
µ(k)

−
k−1∑

l=k−d

[λT (k)M + ηT (l)P ]P−1[MT λ(k) + Pη(l)].

Let
Ξ3 = Ā(h(k))− (L0 +

∑
(i,j)∈S

hij(k)Lij)C,

Ξ4 = Ād(hd(k))− (Ld
0 +

∑
(l,m)∈Sd

hd
lm(k)Ld

lm)C,

then we have

∆V (k) ≤ µT (k)H3(h(k), hd(k))µ(k), ∀ (i, j) ∈ S, ∀ (l,m) ∈ Sd, (35)

where

H3(h(k), hd(k)) =
(

ζ1 0
0 ζ2 + ζT

2

)
+

 ΞT
3 P dΞT

3 P − dP 0
ΞT

4 P dΞT
4 P 0

0 0 M


×

 P 0 0
0 dP 0
0 0 (1/d)P

−1  PΞ3 PΞ4 0
dPΞ3 − dP dPΞ4 0

0 0 MT

 .

Note that the condition ∆V (k) < 0 is satisfied if we have

H3(h(k), hd(k)) < 0, ∀h(k) ∈ Hq,n, ∀hd(k) ∈ Hd
q,n.

Since the matrix function H3(h(k), hd(k)) is affine in h(k) and hd(k), using convexity
principle, we deduce that ∆V (k) < 0 if the following condition is satisfied

H3(α, β) < 0, ∀α ∈ Hq,n, ∀β ∈ Hd
q,n. (36)

Using the notation

L0 = P−1RT
0 , Lij = P−1RT

ij , ∀ (i, j) ∈ S,

Ld
0 = P−1(Rd

0)
T , Ld

lm = P−1(Rd
lm)T , ∀ (l,m) ∈ Sd,

the condition (36) is equivalent to (24) based on Lemma 2.3. It follows that ∆V (k) < 0.
This completes the proof of theorem. �
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