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Abstract. The Alternating Nonnegative Least Squares (ANLS) method is commonly used
for solving nonnegative tensor factorization problems. In this paper, we focus on algorithmic
improvement of this method. We present a Proximal ANLS (PANLS) algorithm to enforce
convergence. To speed up the PANLS method, we propose to combine it with a periodic
enhanced line search strategy. The resulting algorithm, PANLS/PELS, converges to a
critical point of the nonnegative tensor factorization problem under mild conditions. We
also provide some numerical results comparing the ANLS and PANLS/PELS methods.
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1. Introduction

The PARAFAC model [15], also called CANDECOMP [5], decomposes a tensor as

the sum of outer products of vectors. It has proved to be a very useful tool to analyze

multidimensional data arising in a variety of applications [2], [17], [30], [31]. In some

cases, the data tensor is nonnegative and the factors are required to be nonnegative

[9], [17]. This leads to the so-called Nonnegative Tensor Factorization (NTF) model,

which can be stated as:

Let A ∈ R
I1×I2×...×IN

+ be an order-N (N > 3) nonnegative tensor andK a positive

integer. The NTF finds nonnegative matrix factors Xn ∈ R
In×K
+ (n = 1, 2, . . . , N)

such that

(1.1) A ≈ [[X1, X2, . . . , XN ]]

1 Corresponding author
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where [[X1, X2, . . . , XN ]] is the Kruskal operator [9], [17]

(1.2) [[X1, X2, . . . , XN ]] =

K∑

i=1

x
i
1 ◦ x

i
2 ◦ . . . ◦ x

i
N ,

in which x
i
n is the ith (i = 1, 2, . . . , K) column vector of the matrix Xn and the

symbol “◦” denotes the vector outer product.

The NTF model can also be regarded as an extension of the Nonnegative Matrix

Factorization (NMF) [18], [24] from order-2 to higher order arrays. This model has

recently found a number of important applications involving multidimensional data.

For a comprehensive introduction of NTF and NMF, we refer the reader to the

recently published book [9] and the references therein.

For a given nonnegative tensor A, currently there is no direct method to find

nonnegative matrix factors X1, X2, . . . , XN for N > 3. It is typical to reformulate

(1.1) as an optimization problem which minimizes some type of distance between A

and [[X1, X2, . . . , XN ]] and the most widely used distance is the Euclidean distance.

From now on, we call the following nonnegatively constrained minimization problem

(1.3) min
X1>0,...,XN >0

f(X1, X2, . . . , XN) =
1

2
‖A− [[X1, X2, . . . , XN ]]‖2

the NTF problem, where the tensor norm is defined as

(1.4) ‖B‖2 =

I1,I2,...,IN∑

i1=1,i2=1,...,iN=1

b2
i1,i2,...,iN

for a tensor B = (bi1,i2,...,iN
) ∈ R

I1×I2×...×IN . In [19], Lim and Comon proved that

the problem (1.3) always has a global minimizer. It is worth mentioning that the

approximation problem without nonnegativity constraints

min
1

2
‖A− [[X1, X2, . . . , XN ]]‖2

is ill-posed when N > 3 [19]. This gives another motivation to study NTF and its

solutions.

Several algorithms have been proposed to solve (1.3) (see, for example, [3], [6], [7],

[8], [11], [12], [16], [21], [23], [28], [29]). An attractive approach is the Alternating

Nonnegative Least Squares (ANLS) method. This method takes the advantage of

the decoupled structure of the objective function and often works well in practice [3],

[9], [11], [16]. However, it lacks a satisfactory convergence theory. In fact, Grippo
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and Sciandrone [13] gave a counter-example showing that a block nonlinear Gauss-

Seidel method does not converge to a critical point if the number of blocks is greater

or equal to three. The ANLS method for NTF is a special case of the Gauss-Seidel

method considered in [13]. Therefore, this method may not converge to a critical

point of (1.3) when N > 3.

It has been found that the Alternating Least Squares (ALS) algorithm for tensor

decomposition can be slow in some cases, for example, when two factors are almost

collinear [3], [15], [20]. Several strategies have been proposed to speed up the ALS

method (see for example, [3], [25], [26]). In particular, Rajih, Comon, and Harshman

[25] proposed an enhanced line search strategy which can often significantly improve

the performance of the ALS method. As an extention of the ALS method to the

NTF model, the ANLS method is expected to be slow sometimes. Therefore, an

acceleration scheme is desirable for speeding up this method.

In this paper, we focus on algorithmic improvement of the ANLS method. To

enforce convergence, we propose a framework that incorporates a proximal point

scheme into the ANLS method. This leads to the so-called PANLS method. We also

propose to use an enhanced line search periodically to accelerate the PANLS method.

We prove that the resulting PANLS/PELS method converges to a critical point of

the nonnegative tensor factorization problem under mild conditions. We provide

some numerical results to compare the ANLS and PANLS/PELS algorithms.

The paper is organized as follows. We give necessary conditions for a local mini-

mizer of (1.3) in Section 2, which can be used to terminate an algorithm for NTF. In

Section 3, we present the proximal ANLS (PANLS) framework for NTF and provide

its convergence properties. Then in Section 4, we present Algorithm PANLS/PELS

which combines the PANLS method with a periodic enhanced line search scheme.

We also provide a convergence result for this algorithm. We describe an implemen-

tation of PANLS/PELS and provide some numerical results in Section 5. Some final

remarks are given in Section 6. Our notations are similar to those used in [9], [17].

2. Necessary conditions for optimality

Let A(n) ∈ R
In×I1...In−1In+1...IN denote the mode-n unfolding matrix of tensor A

and X⊙−n the Khatri-Rao product

(2.1) X⊙−n = XN ⊙ . . . ⊙ Xn+1 ⊙ Xn−1 ⊙ . . . ⊙ X1,

for n = 1, 2, . . . , N . Then the objective function in (1.3) can be rewritten in matrix

form

(2.2) f(X1, X2, . . . , XN) =
1

2
‖A(n) − Xn(X⊙−n)T ‖2

F , n = 1, 2, . . . , N,
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where the matrix norm ‖ · ‖F is the Frobenius norm. The partial gradient of f with

respect to Xn (n = 1, 2, . . . , N) is

(2.3) ∇Xn
f(X1, . . . , XN) = −A(n)X⊙−n + Xn[(X⊙−n)T X⊙−n] ∈ R

In×K .

For a point (X1, . . . , XN) ∈ R
I1×K × R

I2×K × . . . × R
In×K
+ × . . . × R

IN×K , we

denote the projected partial gradient with respect to RIn×K
+ by P(n)∇Xn

f , which is

defined as

(2.4) [P(n)∇Xn
f(X1, . . . , XN )]ij =

{
[∇Xn

f ]ij if [Xn]ij > 0,

min{0, [∇Xn
f ]ij} if [Xn]ij = 0,

for n = 1, 2, . . . , N .

Problem (1.3) is an optimization problem with nonnegativity constraints. The

following lemma gives necessary conditions for its local minimizers, which can be

used to terminate an algorithm for NTF. These conditions are equivalent to the

Karush-Kuhn-Tucker conditions.

Lemma 1. If (X1, X2, . . . , XN ) ∈ R
I1×K
+ × R

I2×K
+ × . . . × R

IN×K
+ is a local

minimizer of the problem (1.3), then

(2.5) P(n)∇Xn
f(X1, . . . , XN ) = 0,

for n = 1, 2, . . . , N .

We call a point (X1, X2, . . . , XN ) satisfying (2.5) a critical point of the problem

(1.3).

3. A proximal ANLS framework for NTF

We start with a description of the ANLS method for NTF. This method starts from

initial nonnegative matrix factors X
(0)
1 , X

(0)
2 , . . . , X

(0)
N . At the kth iteration, assume

that (X
(k)
1 , X

(k)
2 , . . . , X

(k)
N ) is obtained. The method generates the next iteration by

alternately solving the subproblems

(3.1) min
Xn>0

Φ(k)
n (Xn) =

1

2
‖A(n) − Xn(X

(k)
⊙−n)T ‖2

F ,

where

(3.2) X
(k)
⊙−n = X

(k)
N ⊙ . . . ⊙ X

(k)
n+1 ⊙ X

(k+1)
n−1 ⊙ . . . ⊙ X

(k+1)
1 ,
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for n = 1, 2, . . . , N . Every subproblem (3.1) is a convex optimization problem and

therefore, each of its minimizers is a global minimizer. Moreover, Xn ∈ R
In×K
+ is a

minimizer of (3.1) if and only if

(3.3) ‖P∇Φ(k)
n (Xn)‖F = 0,

where

(3.4) ∇Φ(k)
n (Xn) = −A(n)X

(k)
⊙−n + Xn(X

(k)
⊙−n)T X

(k)
⊙−n

and

(3.5) [P∇Φ(k)
n (Xn)]ij =

{
[∇Φ

(k)
n (Xn)]ij if [Xn]ij > 0,

min{0, [∇Φ
(k)
n (Xn)]ij} if [Xn]ij = 0.

Algorithm 1 (ANLS)

Step 0. Initialization. Choose initial nonnegative matrices: X
(0)
1 , X

(0)
2 , . . . , X

(0)
N . Set

k = 0.

Step 1. Check Termination. If the termination criterion is met, stop.

Step 2. Main Iteration.

for n = 1 : N

Solve

(3.6) X(k+1)
n = argmin

Xn>0
Φ(k)

n (Xn)

end

Step 3. Set k = k + 1 and go to Step 1.

The ANLS method has been implemented in several papers (see, for example, [3],

[9], [11], [16]). The differences among these implementations are how the subproblems

(3.6) are solved. The ANLS method often works well in practice. However, it may

not converge to a critical point of (1.3) when N > 3 [13].

The proximal point method was proposed by Rockafellar [27]. It has been widely

used in optimization to enforce convergence. In [13], Grippo and Sciandrone showed

that a proximal point modification of their block Gauss-Seidel method has a nice

global convergence property. Motivated by the work of Grippo and Sciandrone, we

present a Proximal ANLS (PANLS) framework for NTF.

The PANLS method is similar to the ANLS method in structure. It alternately

solves the subproblems

(3.7) min
Xn>0

Ψ(k)
n (Xn),

497



for n = 1, 2, . . . , N , where β
(k)
n > 0 is a scalar, and

(3.8) Ψ(k)
n (Xn) =

1

2
‖A(n) − Xn(X

(k)
⊙−n)T ‖2

F +
β

(k)
n

2
‖Xn − X(k)

n ‖2
F .

We note that for β
(k)
n > 0, the subproblem (3.8) is a convex problem. If β

(k)
n > 0,

then the objective function Ψ
(k)
n is strictly convex and therefore (3.8) has a unique

minimizer. The factor Xn ∈ R
In×K
+ is the minimizer of (3.8) if and only if

(3.9) ‖P∇Ψ(k)
n (Xn)‖F = 0,

where

(3.10) ∇Ψ(k)
n (Xn) = −A(n)X

(k)
⊙−n + Xn(X

(k)
⊙−n)T X

(k)
⊙−n + β(k)

n (Xn − X(k)
n )

and P∇Ψ
(k)
n (Xn) is defined in a similar manner to (3.5).

Algorithm 2 (PANLS)

Step 0. Initialization. Choose initial nonnegative matrices: X
(0)
1 , X

(0)
2 , . . . , X

(0)
N . Set

k = 0.

Step 1. Check Termination. If the termination criterion is met, stop.

Step 2. Main Iteration. for n = 1 : N

Choose nonnegative β
(k)
n and solve

(3.11) X(k+1)
n = argmin

Xn>0
Ψ(k)

n (Xn),

end

Step 3. Set k = k + 1 and go to Step 1.

Similar to Proposition 7 in [13], we have the following convergence result for the

PANLS method.

Theorem 1 (Convergence of PANLS). Suppose that there exist constantsM and

m such that

0 < m 6 β(k)
n 6 M,

for n = 1, 2, . . . , N and for all k > 0. If the sequence {(X
(k)
1 , X

(k)
2 , . . . , X

(k)
N )}

generated by PANLS has limit points, then every limit point (X∗
1 , X∗

2 , . . . , X∗
N) is a

critical point of (1.3).
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4. Accelerating PANLS by Periodic Enhanced Line Search

To speed up the ALS method for PARAFAC, Rajih, Comon, and Harshman [25]

proposed an enhanced line search (ELS) technique: At the kth iteration, it introduces

∆
(k)
n = X

(k)
n −X

(k−1)
n for n = 1, 2, . . . , N , and does a line search along the direction

(∆
(k)
1 , ∆

(k)
2 , . . . , ∆

(k)
N ) by solving

(4.1) α(k) = argmin
α∈R

g(α),

where

g(α) = ‖A(1) − (X
(k−1)
1 + α∆

(k)
1 )((X

(k−1)
N + α∆

(k)
N ) ⊙ . . . ⊙ (X

(k−1)
2 + α∆

(k)
2 ))T ‖2

F .

The ELS strategy then defines X̃
(k)
n = X

(k−1)
n + α(k)∆

(k)
n and uses the ALS method

to update the matrix factors based on (X̃
(k)
1 , . . . , X̃

(k)
N ). Numerical experiments in

[25] show that using ELS can improve the performance of the ALS method. Recently

Nion and De Lathauwer [22] have applied the ELS strategy to solve complex-valued

tensor decomposition problems. Comon et al. [10], [28] have indicated that the ELS

strategy is applicable to any iterative optimization, and a collection of Matlab codes

is freely available [33].

The objective function g in (4.1) is a polynomial of α with a degree of 2N and

a positive leading coefficient. Solving the one-dimensional minimization problem

(4.1) for α(k) is a relatively easy task compared to the updating of matrix factors.

However, evaluating g can be time consuming for large scale problems. In this case,

using an enhanced line search at every iteration can take significant time. Moreover,

it is unnecessary to use an ELS when the updates (3.11) make a satisfactory progress.

Therefore, it seems beneficial to use the enhanced line search less frequently. In this

section, we extend the enhanced line search idea to the PANLS method for NTF. In

particular, the ELS is used after every T iterations for some positive integer T > 2.

We remark that the periodic execution of ELS in the standard ALS method has been

proposed in the literature, see for example, [10]. To avoid an excessively large step

size α(k), we impose some upper and lower bounds on α : α1 6 α 6 α2.

Algorithm 3 (PANLS/PELS)

Step 0. Initialization. Choose integer T > 2, α1 < 0, α2 > 0, and initial nonnegative

matrices: X
(0)
1 , X

(0)
2 , . . . , X

(0)
N . Set k = 0.

Step 1. Check Termination. If the termination criterion is met, stop.

Step 2. Periodic Enhanced Line Search. If k > T and mod(k, T ) = 0, compute α(k)

by solving

(4.2) α(k) = argmin
α∈[α1,α2]

g(α)
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and set X̃
(k)
n = X

(k−1)
n + α(k)∆

(k)
n ; otherwise, set X̃

(k)
n = X

(k)
n for n = 1, 2, . . . , N .

Step 3. Main Iteration.

for n = 1: N

Compute

X̃
(k)
⊙−n = X̃

(k)
N ⊙ . . . ⊙ X̃

(k)
n+1 ⊙ X

(k+1)
n−1 ⊙ . . . ⊙ X

(k+1)
1 .

Choose nonnegative β
(k)
n and find X

(k+1)
n by solving

(4.3) min
Xn>0

Θ(k)
n (Xn) =

1

2
‖A(n) − Xn(X̃

(k)
⊙−n)T ‖2

F +
β

(k)
n

2
‖Xn − X̃(k)

n ‖2
F ,

end

Step 4. Set k = k + 1 and go to Step 1.

We note that if β
(k)
n > 0, then subproblem (4.3) is a convex optimization problem.

If β
(k)
n > 0, the objective function Θ

(k)
n is strictly convex and therefore (4.3) has a

unique minimizer. Moreover, Xn ∈ R
In×K
+ is the minimizer of (4.3) if and only if

(4.4) ‖P∇Θ(k)
n (Xn)‖F = 0,

where

(4.5) ∇Θ(k)
n (Xn) = −A(n)X̃

(k)
⊙−n + Xn(X̃

(k)
⊙−n)T X̃

(k)
⊙−n + β(k)

n (Xn − X̃(k)
n )

and P∇Θ
(k)
n (Xn) is similarly defined as in (3.5).

We now present a convergence result for the PANLS/PELS algorithm.

Theorem 2 (Convergence of PANLS/PELS). Suppose that there exist constants

M and m such that

0 < m 6 β(k)
n 6 M,

for n = 1, 2, . . . , N and for all k > 0. Assume the PANLS/PELS method generates

an infinite sequence of approximations {(X
(k)
1 , X

(k)
2 , . . . , X

(k)
N )}. If the subsequence

{(X
(k)
1 , X

(k)
2 , . . . , X

(k)
N )}mod(k,T ) 6=0 has limit points, then each of these limit points

is a critical point of (1.3).

R em a r k 1. When mod(k, T ) = 0, (X̃
(k)
1 , . . . , X̃

(k)
N ) may be an infeasible point

of (1.3) due to the enhanced line search (4.2). Our convergence result focuses on

the subsequence {(X
(k)
1 , X

(k)
2 , . . . , X

(k)
N )}mod(k,T ) 6=0. In this case, X̃

(k)
n = X

(k)
n for

n = 1, 2, . . . , N . Taking this into account, Theorem 2 is proved by modifying the

proof of Proposition 7 in [13].
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P r o o f. Let J0 = {k | mod(k, T ) 6= 0}. Then for all k ∈ J0 and for n =

1, 2, . . . , N , we have

(4.6) P∇Θ(k)
n (X(k+1)

n ) = 0,

where

(4.7) ∇Θ(k)
n (X(k+1)

n ) = −A(n)X
(k)
⊙−n +X(k+1)

n (X
(k)
⊙−n)T X

(k)
⊙−n +β(k)

n (X(k+1)
n −X(k)

n )

and

(4.8) [P∇Θ(k)
n (X(k+1)

n )]ij =

{
[∇Θ

(k)
n (X

(k+1)
n )]ij if [X

(k+1)
n ]ij > 0,

min{0, [∇Θ
(k)
n (X

(k+1)
n )]ij} if [X

(k+1)
n ]ij = 0,

and moreover,

(4.9) f(X
(k+1)
1 , X

(k+1)
2 , . . . , X

(k+1)
N )

6 f(X
(k+1)
1 , . . . , X(k+1)

n , X
(k)
n+1, . . . , X

(k)
N )

6 f(X
(k+1)
1 , . . . , X

(k+1)
n−1 , X(k)

n , . . . , X
(k)
N ) −

β
(k)
n

2
‖X(k+1)

n − X(k)
n ‖2

F

6 f(X
(k+1)
1 , . . . , X

(k+1)
n−1 , X(k)

n , . . . , X
(k)
N ) −

m

2
‖X(k+1)

n − X(k)
n ‖2

F

6 f(X
(k)
1 , X

(k)
2 , . . . , X

(k)
N ).

Assume that (X∗
1 , X∗

2 , . . . , X∗
N ) is a limit point of the subsequence {(X

(k)
1 ,

X
(k)
2 , . . . , X

(k)
N )}k∈J0

. Then there exists an infinite set of indices J1 ⊂ J0 such

that

(4.10) lim
k→∞,k∈J1

(X
(k)
1 , X

(k)
2 , . . . , X

(k)
N ) = (X∗

1 , X∗
2 , . . . , X∗

N ).

Clearly, (X∗
1 , X∗

2 , . . . , X∗
N) ∈ R

I1×K
+ ×R

I2×K
+ × . . .×R

IN×K
+ . Expressions (4.10) and

(4.9) imply that

lim
k→∞,k∈J0

f(X
(k+1)
1 , X

(k+1)
2 , . . . , X

(k+1)
N ) − f(X

(k)
1 , X

(k)
2 , . . . , X

(k)
N ) = 0.

Using (4.9) again gives

lim
k→∞,k∈J1

‖X(k+1)
n − X(k)

n ‖2
F = 0, n = 1, 2, . . . , N.
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This and (4.10) imply

(4.11) lim
k→∞,k∈J1

(X
(k+1)
1 , . . . , X(k+1)

n , X
(k)
n+1, . . . , X

(k)
N ) = (X∗

1 , X∗
2 , . . . , X∗

N ),

for n = 1, 2, . . . , N . Now letting k → ∞, k ∈ J1 and taking the limit in (4.6), we

obtain

P(n)∇Xn
f(X∗

1 , X∗
2 , . . . , X∗

N ) = 0, n = 1, 2, . . . , N.

Thus (X∗
1 , X∗

2 , . . . , X∗
N ) is a critical point of NTF problem (1.3). �

5. Numerical tests

5.1. Implementation.

We have presented the ANLS, PANLS, and PANLS/PELS methods in a general

framework which can be implemented in various ways, using different termination

criteria and different algorithms to solve their subproblems.

We have implemented the PANLS/PELS method in Matlab [32] in conjunction

with the Tensor Toolbox of Bader and Kolda [1]. For comparison purpose, we have

also implemented the ANLS and PANLS methods.

Our termination criteria are based on Lemma 1. Specifically, we terminate

PANLS/PELS, PANLS, and ANLS if

(5.1)
PGN(k)

PGN(0)
6 Tol,

for some given tolerance Tol, where PGN(k) denotes the norm of the projected gra-

dient at point (X
(k)
1 , X

(k)
2 , . . . , X

(k)
N ):

(5.2) PGN(k) =

Ã

N∑

n=1

‖P(n)∇Xn
f(X

(k)
1 , X

(k)
2 , . . . , X

(k)
N )‖2

F .

A key step in PANLS/PELS, PANLS, or ANLS is to solve subproblems (4.3),

(3.11), or (3.6). Since X̃
(k)
n and X̃

(k)
⊙−n in (4.3) may no longer be nonnegative, a

nonnegative least squares solver that can handle infeasible starting points is needed.

We have used a slightly modified PBBNLS2, a nonmonotone projected Barzilai-

Borwein method for nonnegative least squares problem proposed in [14] to solve

subproblems (4.3), (3.11), and (3.6). The PBBNLS2 algorithm is terminated when

(5.3) ‖P∇Θ(k)
n (Xn)‖F , ‖P∇Ψ(k)

n (Xn)‖F , or ‖P∇Φ(k)
n (Xn)‖F 6 max

{ 1

5k
, 10−8

}
.
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With this choice of tolerance, the subproblems are not solved very accurately in the

first few iterations. After 12 iterations, however, the tolerance becomes 10−8 which

leads to fairly good approximate solutions to the subproblems. We have found that

this strategy is cost effective through our numerical tests.

In PANLS/PELS and PANLS, we set the value of β
(k)
n to be

β(k)
n = max

{ 1

2k
, 10−3

}
, n = 1, 2, . . . , N,

for k = 1, 2, . . . The parameter T is set to be T = 5 in PANLS/PELS. We have

found through numerical experiments that this choice of T is generally suitable.

We use the Matlab built-in function fminbnd to carry out the line search (4.2) in

PANLS/PELS. The fminbnd finds a local minimum of a function of one variable

within a given interval [α1, α2] ([32]). In our numerical tests, we used the values

α1 = −104, α2 = 104.

Finally, in PANLS/PELS, if mod(k, T ) = 0 and the modified PBBNLS2 method

does not obtain a nonnegative X
(k+1)
n for some n within the allocated computational

budget (which is set to be 1000 inner iterations), we reset X̃
(k)
n = X

(k)
n for n =

1, 2, . . . , N and resolve (4.3) using the new X̃
(k)
n ’s.

R em a r k 2. We wish to point out that other termination criteria for ANLS have

been used in the literature. For example, one such criterion is to terminate ANLS

when the difference between objective function values of two consecutive iterations

is within a given tolerance. Some other methods for solving the ANLS subproblems

(3.6) have also been used (see, for example, [3], [9], [11], [16]). These methods can

be used to solve the PANLS and PANLS/PELS subproblems. We remark that if the

same stopping criteria for ANLS, PANLS, and PANLS/PELS and their subproblems

are used, the three algorithms implemented using different subproblem solvers should

exhibit similar relative performance, e.g., in terms of the number of iterations used.

In our implementation of the ANLS, PANLS, and PANLS/PELS algorithms, the

gradient of the objective function (1.3) and the gradients of the subproblem functions

(3.1), (3.8), and (4.3) are computed at every iteration in both the inner and the outer

loops to test termination conditions. This is not most cost effective in terms of CPU

time. However, this implementation serves our purpose in this paper well, that is,

to compare the relative performance of the three algorithms.

5.2. Numerical results.

We carried out our numerical tests on a Dell Optiplex 755 computer with 4 GB

of RAM and a 3 GHz Intel Core Due CPU E8400 running Windows Vista.
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To assess the performance of the ANLS, PANLS, and PANLS/PELS methods, we

first tested them on some randomly generated order-3 and order-4 NTF problems.

In our tests, the tensor A was generated by

(5.4) A = [[Y1, Y2, . . . , YN ]],

where

Yn = rand(In, M), n = 1, 2, . . . , N,

and N = 3 or 4. If M 6 K, then A is exactly factorizable, i.e., the objective value

of the problem (1.3) at a global minimizer is 0. When M > K, this objective value

is generally nonzero. The initial matrix factors were chosen as

(5.5) X(0)
n = rand(In, K), n = 1, 2, . . . , N.

For each tensor A, we ran each of PANLS/PELS, PANLS, and ANLS five times. In

each run, the three algorithms used the same randomly generated (X
(0)
1 , X

(0)
2 , . . . ,

X
(0)
N ) as in (5.5). The three algorithms were terminated when the stopping condi-

tion (5.1) was satisfied. We tried both Tol = 10−6 and Tol = 10−7 as the tolerance

value. At the termination of an algorithm, we recorded the means of their corre-

sponding numbers of iterations used, the CPU times used, values of the final PGN(k)

as defined in (5.2), and residual norms computed by

‖A− [[X1, X2, . . . , XN ]]‖

in NIT, Time, PGN, and RN, respectively.

We observed that the final RN values obtained by using tolerances Tol = 10−6 and

Tol = 10−7 for problems with M > K are very close—the difference between the RN

values obtained using the two tolerances is smaller than 10−6 for all problems, which

is neglectable since RN > 48. This indicates that Tol = 10−6 is a suitable tolerance

for problems withM > K. For exactly factorizable problems withM 6 K, the value

of RN is 0 at a global minimizer. The final RN values obtained by using tolerances

Tol = 10−6 and Tol = 10−7 are more distinguishable.

We found that the values of NIT, Time, PGN, and RN are very close for PANLS and

ANLS. Therefore, we only report the numerical results of ANLS and PANLS/PELS

here. For the PANLS/PELS method, we also report LStime, the mean values of

times used by the enhanced line search.

We summarize the numerical results in Tables 1, 2, and 3 with M = 5, K = 5,

Tol = 10−7, M = 5, K = 6, Tol = 10−7, and M = 10, K = 5, Tol = 10−6 respec-

tively. From these tables, we observe that on this set of problems, the PANLS/PELS
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method significantly outperforms the ANLS method in terms of the number of iter-

ations used and the CPU time used.

Problem Algorithm NIT Time (LStime) PGN RN

I1 = 50, I2 = 50, PANLS/PELS 75.6 1.96 (0.49) 0.49× 10−3 0.76 × 10−4

I3 = 50 ANLS 240.2 4.53 0.50× 10−3 0.82 × 10−4

I1 = 100, I2 = 100, PANLS/PELS 77.8 16.89 (4.39) 0.23× 10−2 0.21 × 10−3

I3 = 100 ANLS 231.8 36.62 0.25× 10−2 0.24 × 10−3

I1 = 100, I2 = 150, PANLS/PELS 74.2 47.71 (12.62) 0.56× 10−2 0.28 × 10−3

I3 = 200 ANLS 215.4 102.36 0.63× 10−2 0.32 × 10−3

I1 = 25, I2 = 25, PANLS/PELS 40.80 4.17 (0.84) 0.67× 10−3 0.56 × 10−4

I3 = 25, I4 = 25 ANLS 102.4 8.37 0.79× 10−3 0.69 × 10−4

I1 = 50, I2 = 50, PANLS/PELS 42.4 81.52 (14.34) 0.62× 10−2 0.19 × 10−3

I3 = 50, I4 = 50 ANLS 115.2 185.04 0.68× 10−2 0.21 × 10−3

I1 = 20, I2 = 40, PANLS/PELS 38.8 48.56 (9.71) 0.51× 10−2 0.13 × 10−3

I3 = 60, I4 = 80 ANLS 96.6 97.64 0.54× 10−2 0.14 × 10−3

Table 1. Numerical results for problems with M = 5, K = 5

Problem Algorithm NIT Time (LStime) PGN RN

I1 = 50, I2 = 50, PANLS/PELS 93.2 10.07 (0.85) 0.65× 10−3 0.34 × 10−3

I3 = 50 ANLS 378.2 35.48 0.69× 10−3 0.25 × 10−3

I1 = 100, I2 = 100, PANLS/PELS 144 47.73 (11.16) 0.31× 10−2 0.12 × 10−2

I3 = 100 ANLS 514 138.70 0.35× 10−2 0.13 × 10−3

I1 = 100, I2 = 150, PANLS/PELS 88.6 86.30 (25.19) 0.73× 10−2 0.60 × 10−3

I3 = 200 ANLS 272.4 186.30 0.10× 10−1 0.17 × 10−2

I1 = 25, I2 = 25, PANLS/PELS 101.4 23.63 (3.70) 0.11× 10−2 0.67 × 10−3

I3 = 25, I4 = 25 ANLS 236 46.88 0.12× 10−2 0.57 × 10−3

I1 = 50, I2 = 50, PANLS/PELS 93.2 231.35 (59.02) 0.10× 10−1 0.22 × 10−2

I3 = 50, I4 = 50 ANLS 209.4 386.52 0.11× 10−1 0.16 × 10−2

I1 = 20, I2 = 40, PANLS/PELS 123.6 211.80 (60.33) 0.54× 10
−2 0.14 × 10−2

I3 = 60, I4 = 80 ANLS 330.8 407.97 0.64× 10−2 0.13 × 10−2

Table 2. Numerical results for problems with M = 5, K = 6

Our second numerical experiment involves the order-3 nonnegative tensor arising

from Sugar Production using Fluorescence Spectroscopy introduced in [4], where

A ∈ R
268×571×7. We tested and compared the ANLS and PANLS/PELS methods

on this tensor with K = 4 and K = 6, using Tol = 10−6 and the same randomly
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Problem Algorithm NIT Time (LStime) PGN RN

I1 = 50, I2 = 50, PANLS/PELS 137.6 4.75 (1.23) 0.99× 10−2 48.7965

I3 = 50 ANLS 569.6 8.85 0.10× 10−1 48.7965

I1 = 100, I2 = 100, PANLS/PELS 150 36.30 (12.89) 0.55× 10−1 148.1935

I3 = 100 ANLS 566.4 88.63 0.56× 10−1 148.1935

I1 = 100, I2 = 150, PANLS/PELS 162.6 118.66 (42.39) 0.15× 100 261.8624

I3 = 200 ANLS 567 267.57 0.15× 100 261.8624

I1 = 25, I2 = 25, PANLS/PELS 78.4 9.08 (2.46) 0.87× 10−2 59.1337

I3 = 25, I4 = 25 ANLS 240 19.99 0.10× 10−2 59.1337

I1 = 50, I2 = 50, PANLS/PELS 79.4 168.36 (41.55) 0.12× 100 273.2424

I3 = 50, I4 = 50 ANLS 243.4 392.14 0.13× 100 273.2424

I1 = 20, I2 = 40, PANLS/PELS 77.6 111.54 (30.89) 0.77× 10−1 219.6184

I3 = 60, I4 = 80 ANLS 244.8 256.23 0.82× 10−1 219.6184

Table 3. Numerical results for problems with M = 10, K = 5

generated initial nonnegative (X
(0)
1 , X

(0)
2 , X

(0)
3 ). The two methods are compared

based on their ability to reduce the ratio

̺k =
‖A− [[X

(k)
1 , X

(k)
2 , X

(k)
3 ]]‖ − ‖A − [[X∗

1 , X∗
2 , X∗

3 ]]‖

|A − [[X
(0)
1 , X

(0)
2 , X

(0)
3 ]]‖ − ‖A− [[X∗

1 , X∗
2 , X∗

3 ]]‖
,

where k denotes the iteration index, and the optimal (X∗
1 , X∗

2 , X∗
3 ) is obtained by

running the corresponding algorithm using a smaller tolerance Tol = 10−8. We

report the numerical results in Figures 1 and 2. As can be seen, PANLS/PELS is

faster than ANLS.

0 10 20 30 40 50 60
−14

−12

−10

−8

−6

−4

−2

0

PANLS/PELS
ANLS

Figure 1. Comparison of ANLS and PANLS/PELS on the Sugar Production tensor when
K = 4, where the x-axis represents the iteration index k and the y-axis represents
the log-scaled ratio ̺k, i.e., log10 ̺k.
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Figure 2. Comparison of ANLS and PANLS/PELS on the Sugar Production tensor when
K = 6, where the x-axis represents the iteration index k and the y-axis represents
the log-scaled ratio ̺k, i.e., log10 ̺k.

6. Final remarks

In order to improve the ANLS method for NTF, we propose to use a proximal tech-

nique to enforce its convergence. We also use a periodic enhanced line search to speed

up the convergence. The resulting method, PANLS/PELS, is globally convergent in

the sense that each limit point of the subsequence {(X
(k)
1 , X

(k)
2 , . . . , X

(k)
N )}mod(k,T ) 6=0

(T > 2) is a critical point of the nonnegative tensor factorization problem. Our nu-

merical tests show that the PANLS/PELS method outperforms the ANLS method

in terms of the number of iterations used and the CPU time used.

We have presented the PANLS/PELS algorithm (i.e., Algorithm 3) as a general

framework. It can be implemented in various different ways. In our implementation,

we used a slightly modified version of the PBBNLS2 method [14] to solve the sub-

problem (4.3). This subproblem can be solved using other methods, such as the ones

developed in [3], [9], [11], [16]. The enhanced line search (4.2) can also be carried

out using other approaches. In [25], [22], the authors explicitly express the objective

function g(α) as a polynomial of degree 6 for order-3 tensors. We have observed that

this strategy can save computing time for order-3 large scale problems. It remains

to be seen if this is the case for tensors of higher orders (i.e., N > 4).

The effectiveness of using the periodic ELS strategy has been demonstrated by

numerical experiments in [10], [28] and in this paper. It is desirable to investigate

how to make more efficient use of ELS. For example, one possibility is to use ELS

only when the updates (3.11) do not make a satisfactory progress. It is also desirable

to compare the PANLS/PELS algorithm with the algorithms proposed in [28]. We

leave both problems for future research.
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