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Abstract. We characterize Banach lattices E and F on which the adjoint of each operator
from E into F which is order Dunford-Pettis and weak Dunford-Pettis, is Dunford-Pettis.
More precisely, we show that if E and F are two Banach lattices then each order Dunford-
Pettis and weak Dunford-Pettis operator T from E into F has an adjoint Dunford-Pettis
operator T

′ from F
′ into E

′ if, and only if, the norm of E
′ is order continuous or F

′ has
the Schur property. As a consequence we show that, if E and F are two Banach lattices
such that E or F has the Dunford-Pettis property, then each order Dunford-Pettis operator
T from E into F has an adjoint T

′ : F
′
→ E

′ which is Dunford-Pettis if, and only if, the
norm of E′ is order continuous or F

′ has the Schur property.

Keywords: Dunford-Pettis operator, weak Dunford-Pettis operator, order Dunford-Pettis
operator, order continuous norm, Schur property
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1. Introduction

The problem discussed in the article [5] was to impose conditions on Banach

lattices, E and F , and the operator T from E to F for its adjoint operator T ′ to be

weak Dunford-Pettis. In this paper, we continue our research on this way and give

necessary and sufficient conditions on E, F and T to have a Dunford-Pettis adjoint

operator T ′. More precisely, we show that if E and F are two Banach lattices then

each order Dunford-Pettis and weak Dunford-Pettis operator T from E into F has

an adjoint Dunford-Pettis operator T ′ from F ′ into E′ if, and only if, the norm of

E′ is order continuous or F ′ has the Schur property (Theorem 3.1). Our theorem,

Theorem 3.1, appears to be a reformulation of Theorems 3.2 and 3.5 in [5] in the

following sense. In the sufficient condition of Theorem 3.2 [5], the authors give the

condition of AM-compactness property of spaces E and F . However, under these
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conditions, a positive weak Dunford-Pettis operator is an order and weak Dunford-

Pettis operator. This shows that Theorem 3.2 [5] can be easily deduced from our

Theorem 3.1 and the conditions that were sufficient are also necessary. Theorem 3.5

[1] which gives a necessary condition is also included in our theorem in the way

that the conditions that were only necessary became also sufficient if the operator is

supposed to be order Dunford-Pettis. Hence the importance of Theorem 3.1 given

in this article.

2. Preliminaries and notation

In [2] K.T.Andrews said that a norm bounded subset A of a Banach space X is

a Dunford-Pettis set whenever every weakly compact operator fromX to an arbitrary

Banach space carriesA to a norm totally bounded set. Alternatively, a norm bounded

subset A of a Banach lattice E is said to be a Dunford-Pettis set if every weakly null

sequence (fn) of E converges uniformly to zero on the set A, that is, sup
x∈A

|fn(x)| → 0

(see Theorem 5.98 of [1]). On the other hand, a Banach space X is said to have

the Dunford-Pettis property if every weakly compact operator T defined on E and

taking values in a Banach space F is Dunford-Pettis. For example, the Banach space

ℓ∞ has the Dunford-Pettis property but the Banach space ℓ∞(ℓ2
n) does not have the

Dunford-Pettis property.

Based on the concept of Dunford-Pettis sets, the class of order Dunford-Pettis

operators is defined in [4]. In fact, an operator T from a Banach lattice E into

a Banach space X is said to be order Dunford-Pettis if it carries each order bounded

subset of E into a Dunford-Pettis set of X , i.e., if for each x ∈ E+, the subset

T ([−x, x]) is Dunford-Pettis in X .

Let X and Y be two Banach spaces. An operator T : X → Y is called

a Dunford-Pettis operator if T carries weakly convergent sequences to norm con-

vergent sequences. (Equivalently, for each weakly null sequence (xn) we have

lim
n→∞

‖T (xn)‖ = 0). Alternatively, an operator T : X → Y is a Dunford-Pettis oper-

ator if and only if T carries relatively weakly compact sets to norm totally bounded

sets.

On the other hand, unlike compact operators, there are operators T from a Banach

space X into another Y whose dual operators T ′ from Y ′ into X ′ are not Dunford-

Pettis. In fact, the dual operator of the identity operator of the Banach space ℓ1,

which is the identity of the Banach space ℓ∞, is not Dunford-Pettis.

Recall from [1] that an operator T from a Banach space X into another Y is

said to be weak Dunford-Pettis if yn(T (xn)) converges to 0 whenever (xn) converges

weakly to 0 in X and (yn) converges weakly to 0 in Y . Alternatively, T is weak
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Dunford-Pettis if the composed operator S ◦ T is Dunford-Pettis for each weakly

compact operator S from Y into G, for an arbitrary Banach space G.

The latter class of operators was connected in Theorem 5.98 of [1] with the class

of the Dunford-Pettis sets.

Let us recall that an operator T from a Banach lattice E into a Banach space X is

said to be AM-compact if it carries each order-bounded subset of E onto a relatively

compact subset ofX . In [3], the Banach lattice E is said to have the AM-compactness

property if every weakly compact operator defined on E, and taking values in a Ba-

nach space X , is AM-compact. For example, the Banach lattice L2([0, 1]) does not

have the AM-compactness property, but ℓ1 has the AM-compactness property.

It follows from Proposition 3.1 of [3] that a Banach lattice E has the AM-

compactness property if and only if for every weakly null sequence (fn) of E we have

|fn| → 0 for σ(E′, E).

On the other hand, it is well known that there exist weak Dunford-Pettis operators

whose adjoints are not Dunford-Pettis. In fact, let us consider the Banach lattice ℓ1:

its identity operator Idℓ1 : ℓ1 → ℓ1 is weak Dunford-Pettis while its dual operator

Idℓ∞ : ℓ∞ → ℓ∞ is not Dunford-Pettis. Also, there exist order Dunford-Pettis oper-

ators whose adjoints are not Dunford-Pettis. In fact, as the Banach space ℓ2 has the

AM-compactness property, the identity operator Idℓ2 is order Dunford-Pettis, but

its dual operator, which is the identity operator of ℓ2, is not Dunford-Pettis (because

the Banach space ℓ2 does not have the Schur property). However, we will prove that

each operator is weak Dunford-Pettis and also order Dunford-Pettis if its adjoint is.

To state our results, we need to fix some notation and recall some definitions.

A Banach lattice is a Banach space (E, ‖ · ‖) such that E is a vector lattice and

its norm satisfies the following condition: for each x, y ∈ E such that |x| 6 |y|, we

have ‖x‖ 6 ‖y‖. A norm ‖ · ‖ of a Banach lattice E is order continuous if for each

generalized sequence (xα) such that xα ↓ 0 in E, (xα) converges to 0 for the norm

‖ · ‖ where the notation xα ↓ 0 means that (xα) is decreasing, its infimum exists and

inf(xα) = 0. A vector lattice E is Dedekind σ-complete if every majorized countable

nonempty subset of E has a supremum. A Banach lattice E has the Schur property

if each weakly null sequence in E converges to zero in the norm. For example, the

Banach lattice ℓ1 has the Schur property but the Banach lattice L1([0, 1]) does not

have the Schur property. Note that if E is a Banach lattice, its topological dual E′,

endowed with the dual norm and the dual order, is also a Banach lattice.

We will use the term operator T : E → F between two Banach lattices to mean

a bounded linear mapping. It is positive if T (x) > 0 in F whenever x > 0 in E. The

operator T is regular if T = T1 − T2 where T1 and T2 are positive operators from E

into F . Note that each positive linear mapping on a Banach lattice is continuous.

If an operator T : E → F between two Banach lattices is positive, then its adjoint
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T ′ : F ′ → E′ is likewise positive, where T ′ is defined by T ′(f)(x) = f(T (x)) for each

f ∈ F ′ and for each x ∈ E.

For terminology concerning Banach lattice theory and positive operators we refer

the reader to the excellent book of Aliprantis-Burkinshaw [1].

3. Main results

Let X and Y be two Banach spaces, and let E be a Banach lattice. We denote:

wDP (X, Y ), the space of all weak Dunford-Pettis operators from X into Y ,

oDP (E, Y ), the space of all order Dunford-Pettis operators from E into Y and

DP (X, Y ), the space of all Dunford-Pettis operators from X into Y .

To give the proof of Proposition 3.1, we need the following lemma

Lemma 3.1. Let A be a bounded subset of a Banach space X . If for each ε > 0

there exists a Dunford-Pettis set Aε in X such that A ⊆ Aε + εBX (where BX is the

closed unit ball of X), then A is a Dunford-Pettis set.

P r o o f. Let Y be a Banach space and let T : X → Y be a weakly compact

operator. We have to prove that T (A) is relatively compact in Y . Let ε > 0, then by

hypothesis there exists a Dunford-Pettis subset Aε of X such that A ⊆ Aε + εBX ,

and then T (A) ⊆ T (Aε.) + ε‖T ‖BY . Now as Aε is a Dunford-Pettis set, T (Aε) is

relatively compact in Y and hence by Theorem 3.1 of [1], T (A) is relatively compact

in Y . This shows that A is a Dunford-Pettis set. �

Proposition 3.1. Let E and F be two Banach lattices, and let X be a Banach

space. Then

(1) oDP (E, X) is a norm closed vector subspace of the space L(E, X) of all oper-

ators from E into X ,

(2) if T : E → F is an order Dunford-Pettis operator, then for each operator S :

F → X , the composed operator S ◦ T is order Dunford-Pettis,

(3) if T : E → F is an order bounded operator, then for each order Dunford-Pettis

operator S : F → X , the composed operator S ◦ T is order Dunford-Pettis.

P r o o f. (1) Clearly, oDP (E, X) is a vector subspace of L(E, X). To see that

oDP (E, X) is also norm closed, let S be in the norm closure of oDP (E, X). To this

end, let x be a nonzero in E+ and ε > 0. Choose some T ∈ oDP (E, X) satisfying

‖S − T ‖ 6 ε/‖x‖, and observe that S([−x, x]) ⊂ T ([−x, x]) + εBX holds. Since T

is order Dunford-Pettis, T ([−x, x]) is a Dunford-Pettis set and hence by Lemma 3.1

S([−x, x]) is a Dunford-Pettis set. This shows that S is order Dunford-Pettis.
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(2) Let T : E → F be an order Dunford-Pettis operator. Then for each x ∈ E+,

T ([−x, x]) is a Dunford-Pettis set in F and hence S(T [−x, x]) is a Dunford-Pettis

set in X . So, S ◦ T is order Dunford-Pettis.

(3) Let T : E → F be an order bounded operator. Then for each x ∈ E+,

T ([−x, x]) is an order interval and since S is order Dunford-Pettis, S(T [−x, x]) is

a Dunford-Pettis set in X . Hence S ◦ T is order Dunford-Pettis. �

Proposition 3.2. Let E be a Banach lattice and X a Banach space. If the norm

of E is order continuous and X has the Dunford-Pettis property then each operator

T from E into X is order Dunford-Pettis.

P r o o f. Since the norm of E is order continuous, it follows from Theorem 2.4.3

of [7] that for each x ∈ E+, the order interval [−x, x] is weakly compact. If T :

E → X is an operator, then T ([−x, x]) is weakly compact in X .

On the other hand, since X has the Dunford-Pettis property, the identity oper-

ator of X is weak Dunford-Pettis and hence by Theorem 5.99 of [1], T ([−x, x]) is

a Dunford-Pettis set. This shows that T is order Dunford-Pettis. �

The following proposition gives some characterizations of order Dunford-Pettis

operators

Proposition 3.3 ([4]). Let T be an operator from a Banach lattice E into a Ba-

nach space X . Then the following assertions are equivalent:

(1) T is an order Dunford-Pettis operator,

(2) for each weakly compact operator S from X into an arbitrary Banach space Z,

the composed operator S ◦ T is AM-compact,

(3) for each weakly null sequence (fn) in X ′ we have |T ′(fn)| → 0 for σ(E′, E).

There exist operators that are not order Dunford-Pettis. In fact, the identity

operator of the Banach lattice L2([0, 1]) is not order Dunford-Pettis. The following

result gives a characterization of a Banach lattice which has the AM-compactness

property.

Proposition 3.4. Let E be a Banach lattice. Then the following statements are

equivalent:

(1) each positive operator from E into E is order Dunford-Pettis,

(2) the identity operator of E is order Dunford-Pettis,

(3) E has the AM-compactness property.

P r o o f. (1) =⇒ (2) Obvious.

(2) =⇒ (3) Let x ∈ E+ and let T : E → X be a weakly compact operator where

X is arbitrary Banach space.
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Since the identity operator of E is an order Dunford-Pettis, [−x, x] is a Dunford-

Pettis set in E and hence T ([−x, x]) is relatively compact. This shows that T is

AM-compact and hence E has the AM-compactness property.

(3) =⇒ (1) Let T : E → E be a positive operator and S : E → Z a weakly compact

operator where Z is an arbitrary Banach space. Since E has the AM-compactness

property, the operator S is AM-compact and hence S ◦ T is AM-compact. Finally,

it follows from Proposition 3.3 that T is order Dunford-Pettis. �

Proposition 3.5. Let T be an operator from a Banach lattice E into a Banach

space F . If T ′ ∈ DP (F ′, E′), then T ∈ oDP (E, F ).

P r o o f. Let (fn) be a sequence of F ′ such that fn → 0 in the weak topology

σ(F ′, F ′′).

As the adjoint T ′ is Dunford-Pettis from F ′ into E′, we deduce that T ′ (fn) → 0

for the norm of E′ and hence |T ′(fn)| → 0 for σ(E′, E). Finally, by Proposition 3.3,

we deduce that T is order Dunford-Pettis. �

Proposition 3.6. Let T be an operator from a Banach lattice E into a Banach

space F . If T ′ ∈ DP (F ′, E′), then T ∈ wDP (E, F ).

P r o o f. Let (xn) (resp. (fn)) be a sequence of E (of F ′) such that xn → 0 in the

weak topology σ(E, E′) (fn → 0 in σ(F ′, F ′′)). We have to prove that fn(T (xn)) →

0. As (fn) is a sequence of F ′ such that fn → 0 in σ(F ′, F ′′) and hence T ′ is

Dunford-Pettis then T ′(fn) → 0 for the norm of E′.

On the other hand, since xn → 0 in the weak topology σ(E, E′) hence (xn) is

norm bounded and by the inequality |T ′(fn)(xn)| 6 ‖T ′(fn)‖E′ , we conclude that T

is weak Dunford-Pettis. �

Theorem 3.1. Let E and F be two Banach lattices. Then the following assertions

are equivalent:

(1) each order Dunford-Pettis and weak Dunford-Pettis operator T from E into F

has an adjoint Dunford-Pettis operator T ′ from F ′ into E′,

(2) one of the following is valid:

(a) the norm of E′ is order continuous,

(b) F ′ has the Schur property.

P r o o f. (1) =⇒ (2) Assume that (2) is false, i.e., the norm of E′ is not order

continuous and F ′ does not have the Schur property. We will construct an operator

T : E → F which is weak Dunford-Pettis and order Dunford-Pettis but its adjoint

T ′ : F ′ → E′ is not Dunford-Pettis. Indeed, suppose that E′ does not have an

order continuous norm. By Theorem 2.4.14 of [7] we may assume that ℓ1 is a closed
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sublattice of E, and it follows from Proposition 2.3.11 of [7] that there is a positive

projection P from E into ℓ1. On the other hand, since F ′ does not have the Schur

property, there exists a weakly null sequence (fn) ⊂ F ′ such that ‖fn‖ = 1 for all n.

Moreover, there exists a sequence (yn) ⊂ F+ with ‖yn‖ 6 1, and an ε > 0 such that

|fn(yn)| > ε for all n.

Now, we consider the operator T = S ◦ P : E → ℓ1 → F where S is the operator

defined by

S : ℓ1 → F, (αn) →
∑

n

αnyn.

Since ℓ1 has the Dunford-Pettis property , the operator T is weak Dunford-Pettis.

Also, T is order Dunford-Pettis. In fact, since ℓ1 is discrete and its norm is

order continuous, it is clear that P ([−x, x]) is relatively compact in ℓ1. Then T =

S ◦ P ([−x; x]) is relatively compact in F and hence there is a Dunford-Pettis set in

F for each x ∈ E+. Finally, we conclude that T is order Dunford-Pettis.

But the adjoint T ′ : F ′ → E′ is not Dunford-Pettis. Indeed, the sequence (fn) is

weakly null in F ′. And as the operator P : E → ℓ1 is surjective, there exists δ > 0

such that δ · Bℓ1 ⊂ P (BE) where BH is the closed unit ball of H = E or ℓ1. Hence

‖T ′(fn)‖ = sup
x∈BE

|T ′(fn)(x)| = sup
x∈BE

|fn(T (x))|

= sup
x∈BE

|fn ◦ S(P (x))| > δ · |fn ◦ S((en))| > δ · |fn(yn)| > δ · ε

(where (en)∞n=1 is the canonical basis of ℓ
1). Then ‖T ′(fn)‖ > δ · ε for all n, and we

conclude that T ′ is not Dunford-Pettis. This presents a contradiction.

(2; a) =⇒ (1) Let (fn) be a disjoint sequence of F ′ such that (fn) → 0 in σ(F ′, F ′′).

We have to prove that (T ′(fn)) converges to 0 for the norm of E′. By using Corol-

lary 2.7 of Dodds-Fremlin [6], it suffices to prove that |T ′(fn)| → 0 in σ(E′, E)

and T ′(fn)(xn) → 0 for every norm bounded disjoint sequence (xn) ∈ E+. In

fact, as (fn) is a weakly null sequence in F ′ and since T is order Dunford-Pettis

we have |T ′(fn)| → 0 for σ(E′, E). On the other hand, since the norm of E′

is order continuous, it follows from Corollary 2.9 of Dodds and Fremlin [6] that

xn → 0 in σ(E, E′). Hence, as T is a weak Dunford-Pettis operator, we obtain

T ′(fn)(xn) = fn(T (xn)) → 0, and this proves that T ′ is Dunford-Pettis.

(2; b) =⇒ (1) Obvious. �

Corollary 3.1. Let E and F be two Banach lattices such that E or F has the

Dunford-Pettis property. Then the following assertions are equivalent:

(1) each order Dunford-Pettis operator T from E into F has an adjoint Dunford-

Pettis operator from F ′ into E′,
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(2) one of the following is valid:

(a) the norm of E′ is order continuous,

(b) F ′ has the Schur property.

As consequences of Theorem 3.1 and Proposition 3.4, we obtain the following

result:

Corollary 3.2. Let E and F be two Banach lattices such that E has the AM-

compactness property. Then the following assertions are equivalent:

(1) each weak Dunford-Pettis operator T from E into F has an adjoint Dunford-

Pettis operator from F ′ into E′,

(2) one of the following is valid:

(a) the norm of E′ is order continuous,

(b) F ′ has the Schur property.

As consequences of Theorem 3.1 and Proposition 3.2, we obtain the following

result:

Corollary 3.3. Let E and F be two Banach lattices such that the norm of E

is order continuous and F has the Dunford-Pettis property. Then the following

assertions are equivalent:

(1) each operator T from E into F has an adjoint which is Dunford-Pettis,

(2) one of the following is valid:

(a) the norm of E′ is order continuous,

(b) F ′ has the Schur property.
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