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Abstract. The betweenness centrality of a vertex of a graph is the fraction of shortest
paths between all pairs of vertices passing through that vertex. In this paper, we study
properties and constructions of graphs whose vertices have the same value of betweenness
centrality (betweenness-uniform graphs); we show that this property holds for distance-
regular graphs (which include strongly regular graphs) and various graphs obtained by
graph cloning and local join operation. In addition, we show that, for sufficiently large n,
there are superpolynomially many betweenness-uniform graphs on n vertices, and explore
the structure of betweenness-uniform graphs having a universal or sub-universal vertex.
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1. Introduction

In applied graph theory, a lot of attention is paid to the analysis of complex

networks that represent relations between various objects. One of typical tasks of

such an analysis is the identification of objects which play a key role within the

network. The measure of importance of these objects is usually expressed by the

values of centrality indices. Given a graph G, a centrality index is a function c :

V (G) → R which is invariant under graph isomorphism. The most frequently used

centrality indices are vertex degree, eccentricity, or sum of all distances from a vertex.

Another widely used centrality is the betweenness centrality (see [5]), which measures
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the amount of information that flows through a network node. It is roughly defined

as the fraction of shortest paths in a graph which pass through a selected vertex.

More precisely, if σu,v is the number of shortest paths with the start vertex u and end

vertex v, and σu,v(x) is the number of these u-v-paths passing through the vertex

x 6= u, v, then the betweenness of x is B(x) =
∑

(u,v)∈V 2

σu,v(x)/σu,v ; the symbol

B(G) will stand for the average of values of betweenness of the vertices of a graph G.

Besides practical applications, attention is recently paid also to graph-theoretical

properties of betweenness centrality (see the papers [4], [11], [3], [7]), as the average

betweenness centrality of an n-vertex graph G directly depends on the mean distance

l̄(G) by the formula B(G) = (n − 1)(l̄(G) − 1) (see [6], [1]). The related variant of

betweenness, the edge betweenness centrality (defined as the sum
∑

(u,v)∈V 2

σu,v(e)/σu,v

where σu,v(e) is the number of shortest u-v-paths that pass through the edge e) was

also studied mainly in connection with the detection of subgroups in social networks,

see the paper [9].

According to a selected centrality index, one may consider two kinds of extremal

networks: heterogeneous networks with vertices having different centralities and uni-

form networks with all vertices having the same centrality. For instance, if the

centrality index is the vertex degree, the extremal networks would correspond to

antiregular graphs (that is, graphs with just two vertices of the same degree) and

regular graphs.

In this paper, we explore betweenness-uniform graphs: the graphs with vertices

having the same betweenness. These graphs seem to be rare—using the graph

databases provided by Brendan McKay [12] and Wolfram Mathematica 8 code for

betweenness testing, we have found out that, among all connected graphs on at most

10 vertices, only 75 are betweenness-uniform (see Figure 3 with list of all such graphs

on 4–10 vertices). Yet these graphs constitute a relatively dense family—we show

that, for sufficiently large integer n, there are superpolynomially many betweenness-

uniform graphs on n vertices.

It is easy to see that any vertex-transitive graph is betweenness-uniform; on the

contrary, we show that there are many betweenness-uniform graphs which are not

vertex-transitive. Namely, we show that this property holds for the wide class of

distance-regular graphs (and its subset of strongly regular graphs), which implies

the existence of betweenness-uniform graphs with arbitrarily chosen automorphism

groups.

As both the vertex-transitive and the distance-regular graphs are regular, we are

interested in constructions of betweenness-uniform graphs which are nonregular. Par-

ticularly, we ask the following: which degree sequences may betweenness-uniform

graphs possess? We present several constructions based on graph cloning and local

join operation; in addition, we estimate the maximum number of distinct degrees that
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a betweenness-uniform graph may have, and determine the structure of betweenness-

uniform graphs with a universal vertex.

Throughout this paper, we consider connected graphs without loops or multi-

ple edges; we use the standard graph terminology as used in [2]. Given a graph

G = (V, E), the order and the size of G is the number of vertices and edges of G,

respectively. We denote by ∆(G) the maximum degree of G, and by N(x) the set

of neighbours of a vertex x of G. The distance between two vertices u and v is the

length of the shortest path between the two vertices and is denoted by d(u, v); the

maximum distance between the vertices of the graph max
u,v∈V

d(u, v) is the diameter

of G, diam(G), and we also denote Ni(u) = {v ∈ V : d(u, v) = i}. The complete
graph on n vertices is denoted by Kn. A real-valued function f is called superpoly-

nomial if it grows faster than any polynomial (that is, if lim
x→∞

f(x)/xn = +∞ for

each positive integer n).

2. General properties

In this section, we present several results on general properties of betweenness-

uniform graphs.

Theorem 2.1. Each betweenness-uniform graph is 2-connected.

P r o o f. By contradiction. Let G be a betweenness-uniform graph which is not

2-connected, and let H1 be an endblock of G (that is, a block which contains only

one cutvertex) with the minimum number h1 +1 of vertices. Let x be the cut-vertex

of G which belongs to H1, let H2, . . . , Hk be components of G−x which are different

from H1, let hi = |V (Hi)| for i = 2, . . . , k, and let y be the vertex with the maximum

distance from x in H1. It is easy to see that h1 > 2. Now B(x) > 2
k
∑

i,j=1
i<j

hihj (since

any pair of vertices from distinct components Hi, Hj contributes at least 1 to the

sum for B(x)). On the other hand, if u ∈ V (Hi), v ∈ V (Hj), Hi 6= Hj 6= H1 or

u ∈ V (Hi), v ∈ V (H1), i 6= 1, then the pair (u, v) does not contribute to the sum for

B(y). We conclude that the only pairs contributing to the sum for B(y) are the ones

consisting of vertices of H1 (excluding the vertex y). Therefore, using the fact that

the betweenness of a vertex in an n-vertex graph is at most (n − 1)(n− 2) (see [7]),

we obtain

B(y) 6 h1(h1 − 1) < h2
1 < 2

k
∑

i,j=1
i<j

hihj 6 B(x),

a contradiction. �
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Lemma 2.1. Let G be a graph of diameter 2. Then for every vertex x ∈ V (G),

B(x) =
∑

(u,v)∈N2(x)
uv 6∈E(G)

1/σu,v.

P r o o f. By definition,

(⋆) B(x) =
∑

(u,v)∈V 2(G)
u,v 6=x

σu,v(x)

σu,v
=

∑

(u,v)∈N2(x)

σu,v(x)

σu,v

+
∑

(u,v)∈(V (G)\N(x))2

σu,v(x)

σu,v
+

∑

(u,v) : u∈N(x),
v 6∈N(x)

σu,v(x)

σu,v
.

Now, if both u, v 6∈ N(x), then each u-v-path containing x has length 4; since

d(u, v) 6 2, we get σu,v(x) = 0. If u ∈ N(x), v 6∈ N(x) and uv ∈ E(G), then trivially

σu,v(x) = 0; if uv 6∈ E(G), then d(u, v) = 2 but each u-v-path passing through x has

length 3, so again σu,v(x) = 0. Hence, in (⋆), the second and third sums are equal

to zero. Moreover, since σu,v(x) = 1 for nonadjacent u, v ∈ N(x) and 0 for adjacent

ones, the result holds. �

Lemma 2.2. Let G be a betweenness-uniform graph of diameter 2, order n and

size e. Then for any x ∈ V (G), B(x) = n − 1 − 2e/n.

P r o o f. By the previous lemma, B(x) =
∑

(u,v)∈N2(x)
uv 6∈E(G)

(1/σu,v). Then in the sum

∑

x∈V (G)

B(x), each pair (u, v) of nonadjacent vertices contributes 1/σu,v to each of

their common neighbours; for this pair, there are σu,v common neighbours, hence,

we obtain

∑

x∈V (G)

B(x) =
∑

(u,v)∈V 2(G)
uv 6∈E(G)

σu,v · 1

σu,v
=

∑

(u,v)∈V 2(G)
uv 6∈E(G)

1 = n(n − 1) − 2e

and thus, for any x ∈ V (G), B(x) = (1/n)
∑

y∈V (G)

B(y) = n − 1 − 2e/n. �

Now we turn our attention to degree sequences of betweenness-uniform graphs and

the possible values of betweenness that the vertices of betweenness-uniform graphs

may reach. Our first result shows that a non-complete betweenness-uniform graph

does not contain a universal vertex (that is, a vertex adjacent to every other vertex):

632



Theorem 2.2. Let G be an n-vertex betweenness-uniform graph with ∆(G) =

n − 1. Then G ∼= Kn.

P r o o f. Let x be a vertex of G with d(x) = n−1 and letH = G−x, VH = V (H).

Let S = {(u, v) ∈ V 2
H : dH(u, v) > 3}, T = {(u, v) ∈ V 2

H : dH(u, v) = 2} and let σ′
u,v

be the number of shortest u-v-paths in H . Observe that if (u, v) ∈ S, then there

is a unique shortest u-v-path in G of length 2, and this path contains x; further, if

(u, v) ∈ T , then, among all u-v-paths of length 2 in G, only one contains x.

We obtain

B(x) =
∑

(u,v)∈S

σu,v(x)

σu,v
+

∑

(u,v)∈T

σu,v(x)

σu,v
=

∑

(u,v)∈S

1 +
∑

(u,v)∈T

1

σ′
u,v + 1

,

B(y) =
∑

(u,v)∈S

σu,v(y)

σu,v
+

∑

(u,v)∈T

σu,v(y)

σu,v
=

∑

(u,v)∈S

0 +
∑

(u,v)∈T
uy,vy∈E(H)

1

σ′
u,v + 1

.

Since G is betweenness-uniform, B(x) = B(y), thus,

∑

(u,v)∈S

1 +
∑

(u,v)∈T

1

σ′
u,v + 1

=
∑

(u,v)∈T
uy,vy∈E(H)

1

σ′
u,v + 1

.

This implies that S = ∅ and every vertex of H is a common neighbour of any two
non-adjacent vertices in H . Now, if there exists a vertex y 6= x which is of degree

< n − 1, then we obtain

B(x) =
∑

(u,v)∈T

1

σ′
u,v + 1

=
∑

(u,v)∈T

1

(n − 3) + 1
=

1

n − 2
|2E(H)|,

B(y) =
∑

(u,v)∈T
uy,vy∈E(H)

1

σ′
u,v + 1

=
∑

(u,v)∈T
uy,vy∈E(H)

1

(n − 3) + 1
<

1

n − 2
|2E(H)|

(since y is non-adjacent to at least one vertex). Hence B(x) 6= B(y), a contradiction.

Thus, in H , each vertex has degree n − 1 and we obtain that G ∼= Kn. �

The results in Section 3 show that there exists a wide variety of non-isomorphic

betweenness-uniform graphs with a sub-universal vertex (that is, a vertex which is

adjacent to all but one vertex); nevertheless, we can show
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Theorem 2.3. Let G be an n-vertex betweenness-uniform graph with ∆(G) =

n − 2. Then diam(G) = 2.

P r o o f. Let u be a vertex of G of degree n − 2, N(u) = {v1, . . . , vn−2}, and let
w be a vertex of G which is not adjacent to u. Since G is connected, there exists

s ∈ {1, . . . , n − 2} such that vsw ∈ E(G); this implies that diam(G) 6 3.

Now,

B(u) =
∑

vi,vj∈N(u)
vivj 6∈E(G)

1

σvi,vj

+
∑

vi∈N(u)
d(vi,w)=3

σvi,w(u)

σvi,w
>

∑

vi,vj∈N(u)∩N(w)
vivj 6∈E(G)

1

σvi,vj

= B(w).

Since G is betweenness-uniform and N(u) ∩ N(w) ⊂ N(u), we obtain that

∑

vi∈N(u)
d(vi,w)=3

σvi,w(u)/σvi,w = 0 and
∑

vi,vj∈N(u)
vivj 6∈E(G)

1/σvi,vj
=

∑

vi,vj∈N(u)∩N(w)
vivj 6∈E(G)

1/σvi,vj
.

Thus, if vivj 6∈ E(G), then vi, vj ∈ N(w).

Consider a vertex vk ∈ N(u). If vk ∈ N(w), then d(vk, w) = 1; otherwise, either

for each i ∈ {1, . . . , n− 2} \ {k}, vkvi ∈ E(G) (this, however, gives vkvs ∈ E(G) and,

subsequently, d(vk, w) = 2), or there is vj ∈ N(u) such that vkvj 6∈ E(G) (but this

gives vk ∈ N(w)). In any case, we obtain diam(G) = 2. �

Now we turn our attention to values of betweenness that the vertices of between-

ness-uniform graphs may possess; for a betweenness-uniform graph G, let B(G)

denote the common value of the betweenness of its vertices.

Lemma 2.3. For any betweenness-uniform graph G, B(G) = 0 or B(G) > 1.

P r o o f. Fix the number n of vertices of a betweenness-uniform graph G. Then

the maximum possible number of edges of G is
(

n
2

)

for G ∼= Kn; in this case,

B(G) = 0.

Let H be an n-vertex betweenness-uniform graph with the second highest number

of edges. By Theorem 2.2, ∆(H) 6 n − 2, which implies that |E(H)| 6
(

n
2

)

− n
2

and the equality is attained if and only if n = 2k and H is isomorphic to the

graph K2k − kK2 of k-dimensional hyperoctahedron. Further, we use Theorem 2

from [7]: if a graph G2 is the spanning subgraph of a graph G1, then B(G1) 6

B(G2) − 2(|E(G1)| − |E(G2)|)/n.

We distinguish two cases:

(1) Let n = 2k. From the above findings, it follows that each n-vertex betweenness-

uniform graph different from Kn has at least n/2 edges less than Kn, hence

B(G) = B(G) > B(Kn) +
2(|E(Kn)| − |E(G)|)

n
> 0 +

2n/2

n
= 1.
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(2) Let n = 2k + 1. Then

B(G) = B(G) > B(Kn) +
2(|E(Kn)| − |E(G)|)

n
> 0 +

2(n + 1)/2

n
= 1 +

1

n
> 1.

�

We do not know an example of a betweenness-uniform graph with betweenness

belonging to (1, 3/2); we conjecture that, for any rational number α ∈ (3/2,∞),

there exists a betweenness-uniform graph with betweenness centrality equal to α.

Next, we determine the betweenness of vertices of distance-regular graphs. Recall

that a graph G is distance-regular if, for any two vertices u and v at distance i, the

number of vertices at distance j from u and at distance i − j from v is the same; in

other words, the number pij = |Ni(u) ∩ Nj(v)|, i, j = 1, . . . , D = diam(G), does not

depend on u and v. For a distance-regular graph G, one also defines a matrix (called

the intersection array of G)

i(G) =











− c1 . . . cD−1 cD

a0 a1 . . . aD−1 aD

b0 b1 . . . bD−1 −











,

where ck = |Nk−1(u) ∩ N(v)|, ak = |Nk(u) ∩ N(v)| and bk = |Nk+1(u) ∩ N(v)|, for
any two vertices u, v of G, 0 6 k 6 D.

Theorem 2.4. Every distance regular graph is betweenness-uniform.

P r o o f. Let G be a distance-regular graph and w an arbitrary vertex of G lying

on a shortest path between two vertices u, v with the distance d(u, v) = k. Suppose

that d(u, w) = l. By induction on k, it is easy to prove that σuv =
k
∏

i=1

ci. Thus

bu,v(w) =
σu,v(w)

σu,v
=

σu,wσw,v

σu,v
=

l
∏

i=1

ci

k−l
∏

i=1

ci

k
∏

i=1

ci

=

l
∏

i=1

ci

k
∏

i=k−l

ci

.

This means that the betweenness does not depend on the choice of vertices u, v, just

on the distance between them. Moreover, B(w) =
∑

u,v 6=w

bu,v(w) does not depend on

w, hence, it is the same for all vertices of G. �

In particular, every strongly regular graph is distance-regular, and therefore

betweenness-uniform. This provides the existence of betweenness-uniform nontran-

sitive graphs, according to theorem of Phelps:
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Theorem 2.5 ([10]). For each finite group A there exists a strongly regular graph

with the automorphism group isomorphic to A.

Corollary 2.1. For each finite group A there exists a betweenness-uniform graph

whose automorphism group is isomorphic to A.

3. Constructions of betweenness-uniform graphs

In this section, we study betweenness-uniform nonregular graphs; we present con-

structions which yield betweenness-uniform graphs having vertices of several different

degrees by using the operation of graph cloning (see, for example, [8]).

Let G be a graph with the vertex set {v1, . . . , vn} and let H1, . . . , Hn be other

graphs. The graph G[H1, . . . , Hn] is obtained from G by replacing each vertex vi in

G by Hi and taking a join on Hi and Hj whenever vivj is an edge of G (see Figure 1);

for H1 = . . . = Hn = H , we write G[H ] for short. The subgraphHi in G[H1, . . . , Hn]

resulting from the above described replacement will be called the substitute for vi.

v1

v2

v3

v4

v5

v6

H6

H3H2H1

H5H4

G

G[H1, H2, H3, H4, H5, H6]

Figure 1. An example of graph cloning

Theorem 3.1. Let G be a betweenness-uniform graph and m an integer. Then

G[Km] is betweenness-uniform.

P r o o f. Let x be an arbitrary vertex of G[Km] and xt the vertex of G that corre-

sponds to the substituteKt ∼= Km in G[Km]. Let u ∈ Ki, v ∈ Kj be two distinct ver-

tices of G[Km] (different from xt) and let ui, vj be the vertices in G that correspond

to the substitutes Ki, Kj . Now, dG[Km](u, v) = dG(ui, vj) = d, σu,v = σui,vj
md−1

(each fixed shortest ui-vj-path of length d in G results in md−1 shortest u-v-paths in

G[Km]) and if dG(ui, xl) = h, dG(xl, vj) = k, then σu,v(x) = mh−1mk−1σui,vj
(xt) =
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σui,vj
(xt)m

h+k−2 = σui,vj
(xt)m

d−2 (any shortest u-v-path passing through x corre-

sponds to some shortest ui-vj-path passing through xt). Hence, we obtain

BG[Km](x) =
∑

(u,v)∈V 2(G[Km])

σu,v(x)

σu,v
=

∑

(u,v)∈V 2(G[Km])

md−2σui,vj
(xt)

md−1σui,vj

=
1

m

∑

(u,v)∈V 2(G[Km])

σui,vj
(xt)

σui,vj

=
1

m

∑

(u,v)∈V 2(G[Km])

u∈Ki,v∈Kj

σui,vj
(xt)

σui,vj

=
1

m

∑

(ui,vj)∈V 2(G)

m · m · σui,vj
(xt)

σui,vj

= m
∑

(ui,vj)∈V 2(G)

σui,vj
(xt)

σui,vj

= mBG(xt),

which is independent of x due to the fact that G is betweenness-uniform. �

Theorem 3.2. Let G be a betweenness-uniform k-regular graph and let H =
l
⋃

i=1

niKri
be a disjoint union of ni complete graphs of orders ri, i = 1, . . . , l. Then

G[H ] is betweenness-uniform.

P r o o f. Putm =
l

∑

i=1

niri. Let x be an arbitrary vertex of G[H ] and xt the vertex

of G that corresponds to a substitute Ht ∼= H in G[H ]. Let u ∈ Hi, v ∈ Hj be two

distinct nonadjacent vertices of G[H ] (different from x) and let ui, vj be vertices in G

that correspond to the substitutes Hi, Hj . If i 6= j then, like in the previous proof,

dG[H](u, v) = dG(ui, vj) = d, σu,v = σui,vj
md−1 and if dG(ui, xl) = h, dG(xl, vj) = p,

then σu,v(x) = mh−1mp−1σui,vj
(xt) = σui,vj

(xt)m
h+p−2 = σui,vj

(xt)m
d−2. If i = j

then σu,v = km and σu,v(x) = 1. Hence, we obtain

BG[H](x) =
∑

(u,v)∈V 2(G[H])

σu,v(x)

σu,v
=

∑

(u,v)∈V 2(G[H])

u∈Hi,v∈Hj ,i6=j

md−2σui,vj
(xt)

md−1σui,vj

+
∑

(u,v)∈V 2(G[H])

u,v∈Hi

σu,v(x)

σu,v
=

1

m

∑

(u,v)∈V 2(G[H])

u∈Hi,v∈Hj ,i6=j

σui,vj
(xt)

σui,vj

+ k · 2
((

m

2

)

−
l

∑

i=1

ni

(

ri

2

))

· 1

km

=
1

m

∑

(ui,vj)∈V 2(G)

m · m · σui,vj
(xt)

σui,vj

+
1

m

(

m(m − 1) −
l

∑

i=1

niri(ri − 1)

)

= mBG(x) + m − 1 +

l
∑

i=1

niri(ri − 1)/m.
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Since G is betweenness-uniform, this expression does not depend on x. �

This result provides a lower bound of order Ω(
√

n) for the maximum possible

number of distinct degrees (the graph diversity) of an n-vertex betweenness-uniform

graph: setting G ∼= K2 and H ∼=
t
⋃

i=1

Ki, one obtains the betweenness-uniform graph

G[H ] with 2
t

∑

i=1

i = t(t+1) vertices and t distinct degrees t(t + 1)/2+i, i = 0, . . . , t−1;

with t(t + 1) = n, we have t = (
√

4n + 1 − 1)/2. For n > 4, an easy upper bound

n − 3 can be deduced from Theorem 2.2 and the fact that an n-vertex graph with

the maximum degree n − 2 and n − 2 distinct degrees contains a vertex of degree

1, but its betweenness is zero. It is an open question whether the upper bound for

the diversity of a betweenness-uniform graph is a sublinear function in terms of the

number of vertices.

Theorem 3.2 can be also used to show the following

Corollary 3.1. There exists an integer N such that, for each even integer n >

N , there exist superpolynomially many nonisomorphic nontransitive betweenness-

uniform graphs on n vertices.

P r o o f. Put n = 2k and consider an integer partition k = k1 + . . . + kl. Let

H be a disjoint union of complete graphs of orders ki, i = 1, . . . , l and let G ∼= K2.

By the previous theorem, G[H ] is betweenness-uniform. Also, it is easy to see that,

using this construction, different number partitions yield nonisomorphic resulting

graphs. Thus, the number of n-vertex nonisomorphic betweenness-uniform graphs

is at least the number of integer partitions p(k) of the number k = n/2, which is

superpolynomial in k by Hardy-Ramanujan formula p(k) ∼ (4k
√

3)−1eπ

√
2k/3. Note

also that for fixed k, the number of integer partitions of k with equal parts is sublinear

in k, and any partition of k with at least two distinct parts yields a betweenness-

uniform graphG[H ] which is not vertex transitive; hence, the number of nontransitive

graphs arisen from the above construction is also superpolynomial in k. �

The constructions of Theorems 3.1 and 3.2 are based on cloning betweenness-

uniform graphs with complete graphs or disjoint unions of complete graphs. However,

betweenness-uniform graphs can be also constructed by using clonings of any kind

of graph, by replacing vertices with different complete graphs, as can be seen in the

next

Theorem 3.3. Let s, m, n be integers and let G be the graph obtained from

two disjoint copies K1, K2 of Ks on vertices u1, . . . , us and v1, . . . , vs, respectively,

by adding edges uivi for each i = 1, . . . , s. Then the graph G′ = G[Km, . . . , Km,
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Kn, . . . , Kn] (where the replacement by Km is applied on u1, . . . , us) is betweenness-

uniform.

P r o o f. It is easy to see that the diameter of G is 2. Denote by (A1, . . . , As)

and (B1, . . . , Bs) the partitions of V (K1) and V (K2) such that Ai and Bj are vertex

sets of substitutes isomorphic to Km and Kn, respectively, in G′.

Let x be a vertex of G′; without loss of generality, let x ∈ Ai (the case x ∈ V (K2)

is similar). Then N(x) = V (K1) ∪ Bi. For a pair (u, v) of nonadjacent vertices of

G′, σu,v = m + n. Count now the pairs (u, v) of nonadjacent vertices u, v ∈ N(x):

we obtain that one of u, v is from V (K1) \ Ai and the other one is from Bi. Thus,

there are 2(sm − m)n = 2mn(s − 1) such pairs.

Thus, by Lemma 2.1,

B(x) =
∑

(u,v)∈N2(x)
uv 6∈E(G′)

1

σu,v
=

∑

(u,v)∈N2(x)
uv 6∈E(G′)

1

m + n
=

2mn(s − 1)

m + n
,

which is independent of the choice of x. �

Figure 2. The construction from Theorem 3.2 (grey strips correspond to bunches of edges
in local joins)

Thus, we see that the operation of cloning provides, under appropriate choice of the

basic graph and the substitutes, a wide variety of betweenness-uniform graphs. We

believe that the underlying global structure of cloned betweenness-uniform graphs

can be chosen in an arbitrary way:
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Conjecture 3.1. For any graph G on a vertex set {v1, . . . , vn} there exist graphs
H1, . . . , Hn such that G[H1, . . . , Hn] is betweenness-uniform.

To provide a partial support for this conjecture, we examine betweenness-uniform

graphs obtained by cloning from graphs from selected graph families.

Theorem 3.4. The graph C4[Ka, Kb, Kc, Kd] is betweenness-uniform if and only

if bd(b + d) = ac(a + c).

P r o o f. It is easy to calculate that, for x being a vertex of a substitute Ka or

Kc in C4[Ka, Kb, Kc, Kd], we have B(x) = 2bd · 1/(a + c), and if x is a vertex of

a substitute Kb or Kd, then B(x) = 2ac · 1/(b + d); the theorem follows. �

By numerical calculations, one can check that there exist many quadruples of four

distinct integers a, b, c, d satisfying the above condition.

Theorem 3.5. The graph C5[Ka, Kb, Kc, Kd, Ke] is betweenness-uniform if and

only if a = b = c = d = e.

P r o o f. By straightforward calculation, we obtain that the betweenness

of a vertex x which is a vertex of a substitute of Ka, Kb, Kc, Kd and Ke in

C5[Ka, Kb, Kc, Kd, Ke] are 2be/a, 2ac/b, 2bd/c, 2ce/d and 2ad/e, respectively; puting

these values equal and forming the corresponding four equations, it can be easily

verified that the only solution is a = b = c = d = e. �

The conditions obtained for the existence of betweenness-uniform clones from

longer cycles are less simple. For example, in C6[Ka, Kb, Kc, Kd, Ke, Kf ], the

betweenness of vertices from the substitute Ka is equal to bf/a + b/(ab + de) +

f/(af + cd) (the other betweenness values can be obtained by cyclic shifting of the

variables a, . . . , f in this expression). It is an open question whether there exists

a nontrivial solution of the system of five equations formed from comparison of these

betweenness values; by numerical calculations, we verified that the only solutions

with all six parameters a, . . . , f being less than 20 are only those with all parameters

equal.

Theorem 3.6. Let r, s be integers and let Kr,s = ({x1, . . . , xr}, {y1, . . . , ys}, E)

be a complete bipartite graph. ThenKr,s[Ka1
, . . . , Kar

; Kb1 , . . . , Kbs
] is betweenness-

uniform if and only if

( r
∑

i=1

ai

)( r
∑

i,j=1
i<j

aiaj

)

=

( s
∑

i=1

b

)( s
∑

i,j=1
i<j

bibj

)

.
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Figure 3: All betweenness-uniform graphs on 4–10 vertices (the grey graphs are not vertex
transitive)

P r o o f. Observe that, in the resulting clone, the neighbourhood of any ver-

tex x from a substitute Kat
(for fixed t = 1, . . . , r) consists of

s
∑

j=1

bj vertices be-

longing to substitutes Kb1 , . . . , Kbs
and of at − 1 vertices from Kat

; in this neigh-

bourhood, the only missing edges are the ones between two vertices from distinct

substitutes Kbp
, Kbq

, and there are
r
∑

i=1

ai shortest paths between any pair of such
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vertices. Thus, by Lemma 2.1, B(x) = 2
( s

∑

i,j=1
i<j

bibj

)(

1/
r

∑

i=1

ai

)

. By symmetry,

we obtain that for any vertex y from a substitute Kbt
(for fixed t = 1, . . . , s),

B(x) = 2
( r

∑

i,j=1
i<j

aiaj

)(

1/
s

∑

i=1

bi

)

. Setting B(x) = B(y), the result follows. �

By applying this result we obtain, for example, that the graphs K2,3[K1, K4; K1,

K1, K2] and K3,7[K1, K1, K4; K1, K1, K1, K1, K1, K1, K2] are betweenness-uniform.

However, it is not clear whether the numbers a1, . . . , ar, b1, . . . , bs can be always

found for arbitrary complete bipartite graphs.
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