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APPROXIMATE DYNAMIC PROGRAMMING BASED
ON HIGH DIMENSIONAL MODEL REPRESENTATION

Miroslav Pǐstěk

This article introduces an algorithm for implicit High Dimensional Model Representation
(HDMR) of the Bellman equation. This approximation technique reduces memory demands
of the algorithm considerably. Moreover, we show that HDMR enables fast approximate min-
imization which is essential for evaluation of the Bellman function. In each time step, the
problem of parametrized HDMR minimization is relaxed into trust region problems, all sharing
the same matrix. Finding its eigenvalue decomposition, we effectively achieve estimates of all
minima. Their full-domain representation is avoided by HDMR and then the same approach
is used recursively in the next time step. An illustrative example of N-armed bandit problem
is included. We assume that the newly established connection between approximate HDMR
minimization and the trust region problem can be beneficial also to many other applications.

Keywords: approximate dynamic programming, Bellman equation, approximate HDMR
minimization, trust region problem

Classification: 90C39

1. INTRODUCTION

The main focus of this article is to develop an approximate tool suitable for enlarging the
class of computationally feasible decision-making problems. It copes with the principal
problem within the stochastic dynamic programming, which is known as the curse of
dimensionality, see [21]. The central notion of stochastic dynamic programming is the
Bellman function, see for instance [11]. Once we are able to find and store this function,
it is easy to derive the optimal strategy. However, the exact calculation of the Bellman
function is computationally infeasible in the majority of practical applications, and also
its representation as a lookup-table is intractable.

Next, we present a survey of approximate solutions to these problems. One way
to reduce the size of the lookup-table is to aggregate the state space of the original
problem into smaller sets. As it is not clear how to pick the best level of aggregation,
several methods of multiple-level aggregation are developed [5]. A similar way to lookup-
table reduction is approximation of the Bellman function which does not require any
simplifications in the state space. A grid-based approximation with value interpolation is
a typical example of such method [8]. The Bellman function can also be estimated using
regression models which are able to exploit specialized structures (“basis functions”) in
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the state space [12]. Nonetheless, such methods are suitable for maximally hundreds of
regression parameters. Another tool suitable for approximation is the artificial neural
networks utilized to learn the shape of the Bellman function, see [17] and references
therein. Based on random sampling of the state space, a variety of Monte Carlo methods
may be also applied, see for instance [14]. Temporal Difference methods are of quite a
different nature. Opposite to the algorithm developed later, they do not operate with
system model. They use simulated or experience-based sampling of system trajectories
instead, and thus they have no ambition to cover the whole state space. Nonetheless,
they definitely do well for many real-world problems [7, 9, 27].

In this article, we develop a new approximate technique which considerably reduces
both computational and memory demands of a decision-making problem. To this end,
an approximation tool called High Dimensional Model Representations (thereinafter
“HDMR”) is useful [22]. It was applied to continuous function approximation in calcu-
lating reliability of uncertain mechanical systems [23]. It was also utilized for solution
of stochastic partial differential equations [15] and compared to Monte Carlo sampling.
Another application of HDMR was volatility calibration [3] where it was compared to
cubic spline approximation. These successful implementations of HDMR in other fields
encourage us to apply it to approximate dynamic programming. In the previous appli-
cations, it was used mainly for reducing the amount of the data. The memory space
necessary to store all the values of function g(x1, . . . , xd) grows exponentially with the
dimension d, whereas the size growth of HDMR components is just quadratic in d. This
is, of course, important even in our case, but the newly established fact that HDMR
permits fast approximate minimization may be even more essential in the context of the
decision making theory.

The outline of this work is as follows. Section 2 deals with the approximation tech-
nique of HDMR, which is determined by a system of linear equations. Its linearity does
not match with the inherently non-linear Bellman equation. On that account, an al-
gorithm for approximate minimization of function having HDMR form is developed in
Section 3. Then, the current state of the art in the decision making theory is summa-
rized at the beginning of Section 4. Next, a viable technique for approximate decision
making based on HDMR is introduced there, and then the N -armed bandit problem is
tackled as an example. Section 5 is devoted to conclusion.

Throughout this work, a few general conventions are followed. The domain of the
quantity x is denoted X, x ∈ X, |X| denotes the count of elements of finite set X. Next,
xm denotes mth coordinate for vector valued quantity x ⊂ Rd, x = (x1, . . . , xd). This
convention holds with one exception: if we use letter t as a subscript, e. g. xt, it stands
for quantity x at the time instant t ∈ T with T finite. Next, we reserve letter “f” for
conditional probability density functions, arguments in the condition are separated by
“|” in the argument list. For the domain of function h(x) we use dom(h), and HDMR
of h(x) is marked by h̃(x) with several exceptions pointed out later.

2. HIGH DIMENSIONAL MODEL REPRESENTATION

The approximation technique of HDMR has a particularly simple form [22]. For a general
function g(x), the second order HDMR g̃(x) reads
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g̃(x) = g̃∅ +
d∑

m=1

g̃m(xm) +
1
2

d∑
m,n=1

g̃mn(xm, xn). (1)

Here, g̃∅ denotes a constant value over dom(g); one-dimensional functions g̃m(xm) de-
scribe independent effects of each particular coordinate xm, and two-dimensional func-
tions g̃mn(xm, xn) represent the joint effect of coordinates xm and xn. In the context of
HDMR, these functions are called zero-order, first-order, and second-order components
of HDMR, respectively. Experience shows that second-order HDMR provides a sufficient
approximation of g(x) as only low-order correlations amongst the input variables have
a significant impact upon the outputs of a typical model [3, 15, 23].

Remark 2.1. (Zero Mean Property of HDMR Components) We note that for any
HDMR g̃(x) we may assume that identities∑

xm∈Xm

g̃m(xm) = 0 (2)

∑
xm∈Xm

∑
xn∈Xn

g̃mn(xm, xn) = 0

are satisfied for all m,n ∈ {1, . . . , d}. If this is not the case, we shift each component
in (1) by the respective auxiliary constant σ∅, σm, σmn in such a way that (2) holds
non-changing the overall value of g̃(x). The details are left to an interested reader as an
exercise.

There are many ways how to construct HDMR [2, 22]. Typically, it is constructed as an
approximation error minimizer in L2-norm ‖h‖2 =

∫
X

h(x)2 dx. In practise, however, a
more difficult situation may occur if the approximated function g(x) is defined only on
a strict subset of X, dom(g) = R ( X. Under such conditions, it is important not to
consider points X \ R when constructing HDMR g̃(x). Thus, instead of L2-norm, we
have to use a weighted norm

‖h‖2χR
=

∫
X

χR(x) h(x)2 dx =
∫

R

h(x)2 dx (3)

with a weight function equal to the characteristic function

χR(x) = 1 for x ∈ R, χR(x) = 0 for x 6∈ R. (4)

The optimal HDMR of the function g ∈ L2
χR

(X) is now defined as a minimizer of the
approximation error ‖g − g̃‖χR

. Then, the uniqueness of projection on closed subspaces
of L2

χR
(X) implies the uniqueness of g̃(x). Nonetheless, there may exist various compo-

nents g̃∅, g̃m and g̃mn summing up to the same g̃, cf. also Remark 2.1.
For R = X we can directly minimize the approximation error with respect to (3) ob-

taining component-wise decoupled equations matching “ANOVA-HDMR” in [22]. How-
ever, for general R ( X, we obtain one large linear system determining all the optimal
HDMR components of g̃(x), see [20]. For smaller problems this system may be compu-
tationally feasible; nonetheless, a more convenient way is to obtain decoupled equations
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for HDMR components again. Thus, instead of searching for an optimal approximation
within the class of all functions having HDMR form (1), we search for it within a smaller
class of functions having mutually independent HDMR components.

In this article we are interested in a discrete setting of HDMR. Let X be d-dimensional
product of finite sets Xi

X =
d∏

i=1

Xi, (5)

and let the integration in (3) be summation over R ⊂ X. Next, for any subset of indices
I ⊂ {1, . . . , d} we define

X⊥
I =

∏
i∈{1,...,d}\I

Xi. (6)

Then, the optimal HDMR may be obtained using marginal operators defined for a
function h as

M∅[h] =
∑
y∈X

h(y1, . . . , yd) (7)

Mm[h](xm) =
∑

y∈X⊥m

h(y1, . . . , ym−1, xm, ym+1, . . . , yd)

Mmn[h](xm, xn) =
∑

y∈X⊥mn

h(y1, . . . , ym−1, xm, ym+1, . . . , xn, . . . , yd).

Proposition 2.2. (Weighted HDMR with Mutually Independent Components) Con-
sider a finite set X in a form of (5) and function g such that dom(g) = R ⊂ X. Then,
HDMR g̃(x) minimizing approximation error ‖g − g̃‖χR

such that g̃∅ does not depend
on any other HDMR component, each g̃m(xm) depends only on g̃∅, and finally each
g̃mn(xm, xn) depends only on g̃m(xm), g̃n(xn) and g̃∅, is given by

g̃∅ =
M∅[χR.g]
M∅[χR]

, (8)

g̃m(xm) =
Mm[χR.g](xm)
Mm[χR](xm)

− g̃∅,

g̃mn(xm, xn) =
Mmn[χR.g](xm, xn)
Mmn[χR](xm, xn)

− g̃m(xm)− g̃n(xn)− g̃∅,

g̃mm(xm, xm) = 0.

P r o o f . We build the second order HDMR in three steps. First, we compute zero order
component g̃∅ in such a way that it minimizes the approximation error ‖g − g̃∅‖χR

. In
the next step we fix this component and find such first order components g̃m(xm) that
minimize approximation error ‖g − g̃∅ − g̃m‖χR

with g̃∅ kept fixed. Finally, we find
second order components g̃mn(xm, xn) as minimizers of ‖g − g̃∅ − g̃m − g̃n − g̃mn‖χR

with g̃∅, g̃m(xm), and g̃n(xn) kept fixed. The optimality conditions for such HDMR
may be derived in three steps where each step is analogous to the original derivation of
the full HDMR [22]. �
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We note that this simple construction of HDMR is beneficial to our application, as
the domain of the Bellman function could be too large to operate with all the function
values at once. Still, its HDMR components can be computed by point-wise evaluation
of the function values which are immediately added to proper sums in (8).

3. FAST MINIMIZATION OF HDMR

In this section, the main novelty of this article is developed. The key ingredient of the
proposed approximate dynamic programming technique is a fast approximate minimiza-
tion of functions in HDMR form. We consider function g̃(x, z), dom(g̃) = X×Z, having
the following structure

g̃(x, z) =
1
2

µ∑
m,n=1

g̃mn(zm, zn) +
µ∑

m=1

g̃m(zm) +
µ∑

m=1

κ∑
n=1

g̃µ+n,m(xn, zm), (9)

where we denoted by κ and µ the dimension of X and Z, respectively. This function
corresponds to full HDMR of g̃(x, z) without all HDMR components independent of z.
Since we are interested in a point-wise minima of g̃(x, z),

p(x) = min
z∈Z

g̃(x, z), (10)

the previous restriction on components of g̃(x, z) is without loss of generality and it
considerably eases the notation.

Regardless of a specific choice of x ∈ X, the parametrized minimization in (10) is
equivalent to the search for the clique of the minimal weight in a complete multi-partite
edge-weighted graph [16]. To show it, identify different Zm as partite sets of the graph,
zm ∈ Zm as vertices in particular partite set Zm and g̃mn(zm, zn) as weight of edge
between vertices zm ∈ Zm and zn ∈ Zn taken from distinct partite sets with g̃mm = 0,
as we claimed in (2). The additional weights of vertices g̃m(zm) and g̃µ+n,m(xn, zm),
the latter parametrized by x ∈ X, can be simply added to the weights of proper edges.
This problem is known to be NP-hard [10] and as it plays a role of repeatedly solved
sub-problem here, we search only for an approximate solution of (10).

At the moment, we rewrite function g̃(x, z) in a more convenient form. For a finite
set B and i ∈ {1, . . . , |B|} we denote B[i] the ith element of B. Then, for all m,n ∈
{1, . . . , µ} we define matrices Fmn in this way

Fmn
ij = g̃mn(Zm[i], Zn[j]). (11)

In the same manner, we define matrices Gmn

Gmn
ij = g̃mn(Zm[i], Xn[j]) (12)

for all m ∈ {1, . . . , µ} and n ∈ {1, . . . , κ} and vectors hm

hm
i = g̃m(Zm[i]) (13)

for all m ∈ {1, . . . , µ}. Further, we compose all matrices Fmn into one matrix F with
Fmn being the mnth sub-block of F . Similarly, we create matrix G out of matrices Gmn



Approximate dynamic programming based on HDMR 725

and vector h consisting of sub-vectors hm. Thus, we obtain a concise reformulation of
g̃(x, z)

γ(u, v) =
1
2

vT Fv + hT v + uT Gv, (14)

where the only question left is to clarify the relation between vectors u, v, and the
original variables x ∈ X, z ∈ Z, respectively.

We define

θ =
µ∑

m=1

|Zm| (15)

and follow the logic of the previous construction to deduce the structure of the newly
introduced vector v ∈ Rθ. We see that it consists of µ sub-vectors

v m ∈ {0, 1}|Zm|, (16)

which are related to coordinates zm ∈ Zm of the original variable z ∈ Z as

vm
i = 1 ⇐⇒ zm = Zm[i], vm

i = 0 otherwise. (17)

The relation of the vector u to the original parameter x ∈ X is analogous. Such con-
structions of v(z) and u(x) guarantee that

γ(u(x), v(z)) = g̃(x, z), (18)

for all (x, z) ∈ X × Z, and thus the evaluation of p(x), see (10), is fully equivalent to
the minimization of γ(u(x), v) with respect to all vectors v obeying (17). Therefore,
the latter problem is also a NP-hard problem. It is, however, more amenable to the
relaxation technique developed further.

3.1. Trust region based relaxation

We observe that each x ∈ X in (10) yields a different value of parameter u in (14) while
matrix F remains unchanged. Thus, we can afford some intensive matrix preprocessing
in order to exploit the repetitive nature of this minimization. This is why we turn our
attention to the trust region problem [26] which permits fast exact solution even for an
indefinite matrix F . To match the form of the trust region problem, we have to relax
constraints (17) into ‖v‖ = r with r > 0 specified lately. Thus, we obtain problem

min
‖v‖≤r

{
1
2

vT Fv + hT v + uT Gv

}
. (19)

The only question left is to adjust the diameter r properly. We can set r2 = µ imme-
diately, as each feasible vector v of the original problem consists of µ sub-vectors vm of
unit norm, see (17). Yet there is a possibility of obtaining a tighter relaxation.

Proposition 3.1. (Optimal Choice of Diameter r) Assume that all HDMR components
in (9) have zero mean in the sense of Remark 2.1. Then, the smallest value of r such
that (19) is a relaxation of (10) is

r =

√√√√µ−
µ∑

m=1

1
|Zm|

. (20)
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P r o o f . Assuming the zero mean property of all HDMR components in (9), we observe
that the minimized criteria in (19) does not depend on the average value of any subvector
vm of v, cf. definitions (11), (12) and (13), of matrices F , G and vector h, respectively.
Hence, we may shift all elements of each vm by a constant factor − 1

|Zm| and thus rewrite
constraint (17) as

vm
i = 1− 1

|Zm|
⇐⇒ zm = Zm[i], vm

i = − 1
|Zm|

otherwise, (21)

non-affecting the value of the minimized criteria in (19). Thus, we may set r equal to
the norm of any feasible solution satisfying constraint (21), and so we have

r2 =
µ∑

m=1


(

1− 1
|Zm|

)2

+
|Zm|∑
i=2

1
|Zm|2

 = µ−
µ∑

m=1

1
|Zm|

.

�

Thus, we obtained as tight relaxation of the original problem as possible and we are
ready to solve the trust region problem (19). From a wide spectra of solution methods
of the trust region problem, see [24] and references therein, we choose one which is
computationally expensive for a one step minimization, but effective in our repetitive
setting.

Theorem 3.2. (Exact Solution of Trust Region Problem) Consider trust region prob-
lem (19) parametrized by vector u. Since F is symmetric, we may find its eigenvalue
decomposition F = UT DU with orthogonal matrix U and diagonal matrix D having
its diagonal composed of all eigenvalues ordered from the lowest one to the highest
one. For simplicity, we assume that F is indefinite matrix, i. e., D11 < 0, and that for
b = Uh + UGT u it holds b1 6= 0. Then, the minimizer v̂ of problem (19) is given by

v̂ = −UT (D − λ I)−1b, (22)

where I is a unit matrix and λ ∈ (−∞, D11) is uniquely determined by one-dimensional
equation

θ∑
i=1

(
bi

Dii − λ

)2

= r2. (23)

P r o o f . An explicit solution to (19) for a general setting (allowing b1 = 0 or D11 ≥ 0)
is derived in [26]. For more details see also [1, 24] and references therein. �

We note that λ satisfying (23) may be computed by the Newton’s method. Also,
the assumptions of Theorem 3.2 are not much restricting when a real world problem
is considered. Indeed, it is highly improbable that F would be positive semi-definite
or b1 = 0. However, even in these cases a similar result may be obtained as already
discussed. In some practical problems matrix F may be zero or may have a very small
norm. Then, we may either use a different approach, e. g. linear integer programming
[25], or we may solve (19) analytically with the optimal choice of v̂ determined by formula

v̂ = − ‖r‖
‖h + GT u‖

(
h + GT u

)
. (24)
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3.2. Estimate of the exact minimizer

At the moment, we briefly summarize the previous procedure. We related v(z) ∈ Rµ to
each z ∈ Z by (17), and also u(x) ∈ Rκ to x ∈ X in a similar manner. Next, we found
the exact minimizer v̂ ∈ Rθ of the relaxed problem (19), which is in fact parametrized by
x ∈ X as v̂ = v̂(u(x)) = v̂(x). Such v̂(x) generally does not correspond to any feasible
solution z ∈ Z of the original problem (10). Yet, we may still use the knowledge of v̂(x)
to estimate the value of p(x). We simply interpret each value v̂m

i (x) as an indicator
of sub-optimality of the related element Zm[i] ∈ Zm. In other words, the higher the
element v̂m

i (x) is, the lower cirteria g̃(x, z1, . . . , zµ) we may expect when adjusting zm

to Zm[i]. One can came up with many different ways of such “rounding” of v̂(x) to
some z ∈ Z, and thus there is not any guarantee that the following heuristic is the best
possible.

From now on, we again omit the parameter x ∈ X in the notation for the sake of
simplicity. We start with normalizing vector v̂ in two steps. We shift it to be non-
negative

v̂ = v̂ − min
i∈{1,...,θ}

v̂i, (25)

and then we rescale all its subvectors v̂m, m ∈ {1, . . . , µ}, as follows

v̂m = v̂m / max
i∈{1,...,|Zm|}

v̂m
i . (26)

Thus, for all m there is at least one element of v̂m equal to 1, and for all i ∈ {1, . . . , |Zm|}
it holds that v̂m

i ∈ [0, 1]. Further, we define function q(z) indicating the quality of a
particular z ∈ Z (with respect to an implicit parameter x ∈ X)

q(z) =
µ∏

m=1

v̂m
im

where z = (Z1[i1], . . . , Zκ[iκ]) . (27)

From non-negativity of v̂ we observe that q(z) ∈ [0, 1], and the maximum of q(z) with
respect to z ∈ Z is equal to 1 by (26). Then, we define

Zφ = {z ∈ Z : q(z) ≥ φ} (28)

for any φ ∈ [0, 1]. Thus, Z0 = Z and Z1 contains only such z ∈ Z that all the
corresponding v̂m

im
are maximizers used in the denominator in (26). We note that Zφ

can be enumerated in a component-wise manner using (27) without passing the whole
Z. Then, we substitute Zφ ⊂ Z for Z in (10), and we find an upper bound pφ(x) on
p(x)

pφ(x) = min
z∈Zφ

g̃(x, z), (29)

by enumerating g̃(x, z) for all z ∈ Zφ. The lower the value of φ we choose, the larger
the Zφ that we obtain and the tighter the upper bound pφ(x) we find; nonetheless, at
the price of slower enumeration in (29).

Once the diagonalization of F assumed in Theorem 3.2 is done, it is in fact easy to
compute pφ(x) for any x ∈ X. We construct u(x) by the one-to-one correspondence (17),
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then we find the related value of λ(x) following (23), and finally calculate candidate v̂(x)
which enters the already introduced procedure that leads to pφ(x) defined by (29). Thus,
we found approximate minima of a general function g̃(x, z) in HDMR form over z ∈ Z
for all parameters x ∈ X. This permits us to apply HDMR to effectively approximate
the Bellman equation in Section 4.

3.3. Minimization of a random function

Now, we dedicate a short section to a numerical verification of the previously introduced
technique. We solved problem (10) exactly for a random function g̃(x, z). For the sake
of simplicity, we omitted the parameter x and set G = 0 in (19). Next, we choose
the minimization domain Z = {1, . . . , 150}3, we generated HDMR components g̃mn

randomly with values chosen from the uniform distribution on interval [0, 1] and finally
we adjusted them to satisfy (2). Then, we found upper estimates on minima pφ for
various choices of parameter φ following (29). All results were averaged with respect to
20 random samples of F and h and depicted in Figure 1.
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Fig. 1. Value of log(|Zφ|) and a relative error of pφ plotted against

various values of φ. The relative error is the distance of pφ from the

minimum of g̃(z) rescaled and shifted in such a way that exact

minimum corresponds to 0 whereas the average value of the

minimized criteria corresponds to 1. The depicted results were

averaged over 20 different realizations of matrix F and vector h.

The relative error of upper bound pφ is defined as the distance from minimum of g̃(z)
rescaled and shifted in such a way that the exact minimum corresponds to 0 whereas
the average value of the minimized criteria corresponds to 1. We observe that the lower
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the value of φ is, the better the approximation we obtain as we expected. On the other
hand, there was a linear grow of log(|Zφ|) when decreasing φ. We suppose that a detailed
elaboration of this relation could serve as a basis for an error estimation heuristics.

These experiments were carried out on CPU Intel Core i3, 2.10 GHz with 4GB of
RAM in Matlab 7. It took 169 seconds to find the exact minimum, whereas the average
time necessary to diagonalize matrix F was 1.3 seconds. We note that this matrix
diagonalization is done only once in the full setting of (10), whereas the time necessary
for exact minimization of g̃(x, z) for each x ∈ X is still the same.

4. APPROXIMATE DP BASED ON HDMR

This is the right time to briefly introduce the decision-making theory. A decision-making
task stands for selecting a decision-maker’s strategy in order to reach his aim with respect
to the part of the world (so-called system). The decision maker observes or influences the
system over a finite decision making horizon τ < ∞. Value yt ∈ yt, t ∈ T = {1, . . . , τ},
provides the decision maker with all the knowledge influencing the future behaviour
of the system. Thus, yt includes the current state of the system together with other
external data observed up to the time instant t. Nonetheless, we will reference yt simply
as a state of the system. Next, the decisions (actions) of a decision-maker are denoted
as at ∈ At. A strategy is a collection of mappings of the current state yt−1 ∈ Yt−1

into the choice of the next decision at ∈ At; for the optimal strategy we use symbols
{ât(yt−1)}t∈T . To formalize the decision-maker’s aims, a concept of the additive loss
function is used, lt(at, yt), depending on the current action at and the system state yt.
The involved system is described in a probabilistic manner by the following collection
of pdfs called the outer Markov model of a system

{ft(yt|at, yt−1)}t∈T . (30)

For the expected value of variable x conditioned by y we use

E [x | y ] =
∫

X

x f(x|y) dx. (31)

Knowing the collection of loss functions {lt(at, yt)}τ
t=1 together with the system model

(30), the optimal strategy {ât(yt−1)}t∈T is fully determined by the Bellman function

Vt−1(yt−1) = min
at∈At

E [ lt(at, yt) + Vt(yt) | at, yt−1 ] , (32)

which has to be recursively evaluated at all times t ∈ T with the boundary condition
Vτ = 0. As this standard form of the Bellman equation (32) is not convenient to our
purposes, we rewrite it in an equivalent form

Et(at, yt−1) = E
[

lt(yt, at) + min
at+1∈At+1

Et+1(at+1, yt)
∣∣∣∣ at, yt−1

]
(33)

Eτ+1 = 0.

Then, Et+1(at+1, yt) is the expected loss-to-go provided we choose action at+1 in the
system state yt. In this setting, the optimal strategy ât(yt−1) is composed of the actions
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satisfying
ât(yt−1) = argmin

at∈At

Et(at, yt−1). (34)

4.1. Offline part – Approximate evaluation of Et

Now, we are prepared to apply both HDMR developed in Section 2 and fast approximate
minimization of functions in HDMR form, see Section 3, to effectively approximate
Et(at, yt−1) defined by (33). This part of algorithm is the most demanding concerning
the computational complexity. Thus, function Et(at, yt−1) is typically computed offline,
stored as a look-up table (in our case HDMR), and then used during the online part
of a decision-making algorithm to find the approximated optimal action in analogy to
(34). The proposed algorithm runs in the backward manner just as the evaluation of
the exact Bellman equation (32).

We denote the approximated loss-to-go function by Ẽt even though for t < τ it is not
HDMR of the (unknown) exact Et. For the first step, t = τ , we rewrite (33) as

Eτ (aτ , yτ−1) = E [ lτ (yτ , aτ ) | aτ , yτ−1 ] . (35)

To obtain all HDMR components Ẽτ,∅, Ẽτ,m, Ẽτ,mn of Eτ (aτ , yτ−1), we evaluate
Eτ (aτ , yτ−1) for each pair (aτ , yτ−1) ∈ Aτ × Yτ−1 and add the resulting value to proper
sums in (8). Next, suppose we know all Ẽt+1,∅, Ẽt+1,m, Ẽt+1,mn and we want to find
an approximation of Et in the form of HDMR. Substituting Ẽt+1 into (33) we have

Et(at, yt−1) ≈ E
[

lt(yt, at) + min
at+1∈At+1

Ẽt+1(at+1, yt))
∣∣∣∣ at, yt−1

]
. (36)

This suggests defining Ẽt as HDMR of the expression on the right-hand side, or at least
as HDMR of some approximation of this expression.

Algorithm.

evaluate Eτ (aτ , yτ−1) according to (35)

find HDMR Ẽτ (aτ , yτ−1) of Eτ (aτ , yτ−1) using Proposition 2.2

fix φ ∈ [0, 1] determining the precision of the approximate minimization near (37)

for t := τ to 2

shift HDMR components of Ẽt(at, yt−1) according to Remark 2.1

construct matrices Ft, Gt and vector ht regarding (11), (12) and (13)

find orthogonal matrix Ut and diagonal matrix Dt such that Ft = UT
t DtUt

compute rt using Proposition 3.1

for each yt−1 ∈ Yt−1

relax problem πt−1(yt−1), see (37), into a trust region problem (19)
compute the exact minimizer v̂t−1(yt−1) using Theorem 3.2
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find an upper bound estimate πφ
t−1(yt−1) using v̂t−1, see (29)

for each at−1 ∈ At−1

set ρ := E
[
lt−1 + (yt−1, at−1) + πφ

t−1(yt−1)
∣∣∣ at−1, yt−2

]
, cf. (39)

add ρ to proper sums in Prop. 2.2 to successively construct Ẽt−1

end

end

end

On that account we denote

πt(yt) = min
at+1∈At+1

Ẽt+1(at+1, yt) (37)

and search for its upper bound πφ
t (yt) following the instructions of Section 3. The

choice of an auxiliary parameter φ ∈ [0, 1] determining the precision of the upper bound
estimate is discussed at the end of this section. Looking at (10), we identify g̃ = Ẽt+1,
X = yt and Z = At+1. We note that all the HDMR components of Ẽt+1 that depend only
on yt may be directly interchanged with minimization in (37) and thus not considered at
this moment. Based on the knowledge of such Ẽt+1,∅, Ẽt+1,m and Ẽt+1,mn that depend
on at+1, we construct matrices Ft, Gt and vector ht according to (11), (12) and (13),
and we formulate the relaxed problem (19). Then, we find its exact minimizer v̂t(yt) in
a direct analogy to (22) with the matrix diagonalization

Ft = UT
t DtUt (38)

involved. The diagonalized matrix Ft is typically small and does not grow with t as
its size (15) corresponds to the space of actions at. Knowing v̂t(yt), we calculate an
upper bound on minimum applying procedure (29), and finally we add (restore) all
HDMR components of Ẽt+1 depending only on yt. Thus, we obtained an upper bound
on minimum of πt(yt). We note that diagonalization (38) is carried out just once for
each time step t, and so we can effectively evaluate πφ

t (yt) for all yt ∈ Yt.
Now, we find Ẽt(at, yt−1) by evaluating the right-hand side of the following formula

Ẽt(at, yt−1) ≈ E
[
lt(yt, at) + πφ

t (yt)
∣∣∣ at, yt−1

]
(39)

for each pair (at, yt−1) ∈ At×Yt−1 and by adding the resulting value to proper sums in (8)
immediately. Thus, we construct all HDMR components Ẽt,∅, Ẽt,m and Ẽt,mn, avoiding
the full dimensional representation of Ẽt. Finally, we repeat the whole procedure to
recursively compute function Ẽt(at, yt−1) for all t ∈ T . For the readers convenience, the
whole procedure is summarized in Algorithm 1.
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4.2. Online part – Approximate minimization of Ẽt

The previously described part of the algorithm has to be implemented in advance, or “off-
line” manner because of high computational demands. As functions {Ẽt(at, yt−1)}t∈T

are stored only in the form of HDMR, it is possible to take larger decision horizons τ
into consideration. Nonetheless, we still have to choose an approximated (suboptimal)
action ãt in the real time, or “on-line” manner. Then, the previously observed system
state yt−1 is fixed and so we solve just one minimization problem in each time step t in
opposite to the recursive evaluation of (36). Substituting Ẽt into (34), we define

ãt(yt−1) = argmin
at∈At

Ẽt(at, yt−1). (40)

We note that ãt(yt−1) does not stand for HDMR approximation of ât(yt−1) defined by
(34).

There are many ways how to find ãt, or at least some its approximation. An in-
teresting choice can be a trust region based relaxation as we may exploit our previous
calculations. We may represent HDMR components of Ẽt(at, yt−1) in the basis obtained
in (38). If we store all matrices Ut, Dt, and also matrices Gt and vectors ht involved in
the approximate minimization of πt(yt) defined by (37), we may find the approximate
minimizer of (40) in accordance with Section 3 again. However, even some more accurate
technique may be used in one-shot only minimization (40). Any algorithm for binary
quadratic programming [18] may be applied to solve (40) via equivalent reformulation
(14) constrained by (17). For smaller sets At, we can find even exact value of ãt ∈ At by
direct enumeration of (40). We decided to use this most accurate approach in Section
4.3 in order to show the extent to which Ẽt(at, yt−1) in the form of HDMR may be
compared with the exact value of Et(at, yt−1).

4.3. N-armed bandit problem

As an illustrative example, we propose here an approximate solution to the N -armed
bandit problem, which plays an important role in approximate dynamic programming,
see for instance [21, 27]. First, however, is important to note that since the proposed
algorithm does not exploit any expert knowledge of the N-armed bandit problem, it can
not compete with the whole class of tailor-made solutions to this problem, see [4, 6]
and references therein. Thus, the purpose of this section is to show in a detail how to
employ the developed algorithm, and also to indicate its position among other general
approximate dynamic programming techniques, see the comparison in Figure 2. This
question is also discussed in the conclusion.

Conceive a game where the player has to choose between different options, e. g. levers
of N -armed bandit, with numerical rewards chosen from various stationary probability
distributions. The payoff probabilities of levers are fixed, yet unknown, and thus the
player has to estimate them. Then, the problem is to identify the most winning lever.
Even though this problem could be formulated easily, it is a real issue for a longer game
horizon as it is hard to balance exploration and exploitation. Winning in the first round
does not imply that the player should stick to the same lever as it prevents learning of
the payoff probability of other levers.
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Fig. 2. Average payoffs obtained from approximated strategies

derived from Ẽφ
t for various φ ∈ [0, 1]. The average payoff of the exact

optimal strategy derived from Et was 0.653; the average payoff of the

receding-horizon-based strategy (with horizon of 3 steps) was 0.625.

These results are based on 20000 simulated plays with 9-armed

bandit, each of them consisting of τ = 8 steps. The payoff

probabilities Pij of the bandit were chosen randomly from uniform

distribution on interval [0, 1]. The only exception was payoff

probability P11 = 0.1, which was kept fixed to avoid complete

symmetry of the problem as discussed in Section 4.3.
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We considered the game with 9-armed bandit and decision making horizon of τ = 8
steps to be able to compare approximated suboptimal strategies with the exact optimal
strategy. Using the previous notation, yt stands for the observed value (payoff) yt ∈
Y = {0, 1} and at denotes the decision of a player in each time step t ∈ T = {1, . . . , τ}.
The arms of the bandit are represented by two-dimensional space of actions, at ∈ A =
{1, 2, 3}2. The loss function

lt(yt, at) = −yt (41)

represents the aim of maximizing the payoff yt in each round of the game. Next, we
introduce a sufficient statistic st, dom(st) = Y ×A, which compresses the previous game
results in a small vector

st(y, a) = st−1(y, a) + δyt,y δat,a, (42)

with δ standing for standard Kronecker’s symbol. Thus, st(y, a) counts how many times
we observed a value y after selecting an action a in first t rounds of the game. We set
s0 = 0 for the moment. In fact, st may be included into the system state yt, but for the
sake of simplicity we treat it separately here. To compute the expected loss in (33), the
knowledge of the Markov system model (30) is necessary

ft(yt|at, st−1) =
st−1(yt, at) + 1

st−1(yt, at) + st−1(1− yt, at) + 2
. (43)

This model was obtained using the technique of Bayesian estimation [19]. In the
following experiment, the 9-armed bandit was simulated using pseudo-random generator
with fixed payoff probability matrix P defined for a ∈ A as follows

Pij = Prob(y = 1|a = [i, j]). (44)

During the experiment, it turned out that high-symmetry of N -armed bandit is un-
suitable for our purposes. If the underlying payoff probability P is completely unknown,
and for the prior information it holds s0(y, a) = 0 for all y ∈ Y, a ∈ A, then all the
bandit arms have the same expected loss when averaged over all the possible system
trajectories. Thus, F1 corresponding to differences of the expected loss among various
arms is equal to zero. We may still use the previously introduced algorithm, see the
note near (24), but we would miss its most interesting part, i. e. the trust region based
approximate minimization described in Section 3.1.

Thus, we decided to slightly perturb the experiment to suppress its symmetry. We
put a prior information on one arm, s0(0, [1, 1]) = 1, and in this setting we computed the
exact values of {Et}t∈T following (33) and also all HDMR functions {Ẽφ

t }t∈T according
to Section 4.1. This time we explicitly stated that Ẽφ

t depends also on the value of φ,
see (39). The disk space necessary to save {Et}t∈T and each {Ẽφ

t }t∈T in Matlab .mat
file was 2.3 MB and 0.1 MB, respectively. The optimal strategy was derived from Et

using (34), and suboptimal strategies parametrized by φ were derived according to (40).
All these strategies were used to simulate 20000 plays with 9-armed bandit, each of

them consisting of τ = 8 steps. The payoff probabilities Pij of the bandit were chosen
randomly from uniform distribution on interval [0, 1] with the only exception of a fixed
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payoff probability P11 = 0.1 corresponding to the only non-zero prior s0(0, [1, 1]). The
average payoff of the optimal strategy was 0.653, whereas the average payoff of a sub-
optimal strategy based on a classical technique of receding horizon (with horizon of 3
steps) was 0.625. We observe that the payoffs of strategies based on HDMR approxima-
tion for various φ ∈ [0, 1], see Figure 2, lie between these two numbers (with an exception
of one outlier). Naturally, the optimal strategy with the high computational demands
(for offline calculation) and high memory demands (for both offline and online part) gives
the highest payoff, its HDMR based approximation (high offline computational demands,
modest memory demands) is slightly worse, and the receding-horizon-based strategy (no
offline computation, low online memory demands, high online computational demands)
gives the lowest payoff. In our setting, 1710 numbers are necessary to represent the
receeding horizon strategy and 342 expected loss minimizations are needed to evaluate
it each time step, whereas for HDMR approximation 22745 numbers are needed to rep-
resent the approximated strategy, but only 9 expected loss minimizations are necessary
each time step.

Next, we discuss the influence of the parameter φ ∈ [0, 1]. We see that the strategy
derived from E1

t was rather successful, it gained 0.632 on average. This fact indicates the
practical applicability of the less accurate approximation of Et with φ = 1 and Z1 con-
taining typically just one element. On contrary, the precision of HDMR approximation
itself may be deduced from the average payoff 0.638 obtained for φ = 0, which corre-
sponds to the exact minimization in (37). The closer the φ is to 0, the closer the upper
bound πφ

t is to πt, cf. the definition near (37). However, this point-wise convergence
of approximated Bellman functions does not imply any monotonicity of their respective
payoffs, as it is disrupted by an averaging effect of HDMR. Still, on average, we observed
higher payoffs when decreasing φ to 0, see their linear approximation in Figure 2. The
slope of this line is rather small, i. e., the average payoff just slightly increases when
decreasing φ. However, this observation is likely to be problem-dependent. Indeed, in
the case of a randomly generated function, cf. Figure 1, the approximation error was
more sensitive with respect to φ.

5. CONCLUSION

The aim of this work was to cope with both computational and memory demands neces-
sary to find and represent the optimal decision making strategy. The proposed variant
of the approximate dynamic programming based on HDMR is appealing for two reasons.
At first, this approximation considerably reduces the memory demands of the algorithm,
but, more importantly, it also enables a fast approximate minimization of the approxi-
mated Bellman function. The numerical simulation proved that the proposed variant of
the approximate dynamic programming is a viable technique. Based on the comparison
with the receding-horizon-based approximation, we shown that this technique may be
advantageous whenever the online computational power is limited. This could be the
case of fast industrial processes where the time step of control strategy is very short.

As for all the approximate methods surveyed at the beginning of Section 1, the one
proposed in this article cannot be assigned to any of these classes directly. It is based on
the Bellman function approximation, however, looking at its internal structure it may
be considered also as an aggregation method where each HDMR component aggregates
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different coordinates. Next, the point-wise construction of HDMR resembles the learning
phase of the artificial neural networks, yet it is more straightforward.

A bottleneck of the proposed approximation technique is the fact that it still needs to
pass through the whole decision tree. Nonetheless, it can easily be parallelized, or ran-
domly sampled HDMR may be used [13], or some reinforcement learning algorithm that
aims at this problem can be applied. The fact that HDMR enables a fast approximate
minimization would still be worthwhile.
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the Czech Republic, Pod Vodárenskou věž́ı 4, 182 08 Praha 8. Czech Republic.

e-mail: pistek@utia.cas.cz


		webmaster@dml.cz
	2015-03-29T15:44:31+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




