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CONTROL AFFINE SYSTEMS ON SOLVABLE

THREE-DIMENSIONAL LIE GROUPS, I

Rory Biggs and Claudiu C. Remsing

Abstract. We seek to classify the full-rank left-invariant control affine
systems evolving on solvable three-dimensional Lie groups. In this paper we
consider only the cases corresponding to the solvable Lie algebras of types II,
IV , and V in the Bianchi-Behr classification.

1. Introduction

Left-invariant control affine systems constitute an important class of systems,
extensively used in many control applications. In this paper we classify, under local
detached feedback equivalence, the full-rank left-invariant control affine systems
evolving on certain (real) solvable three-dimensional Lie groups. Specifically, we
consider only those Lie groups with Lie algebras of types II, IV , and V, in the
Bianchi-Behr classification.

We reduce the problem of classifying such systems to that of classifying affine
subspaces of the associated Lie algebras. Thus, for each of the three types of Lie
algebra, we need only classify their affine subspaces. A tabulation of the results is
included as an appendix.

2. Invariant control systems and equivalence

A left-invariant control affine system Σ is a control system of the form
ġ = g Ξ (1, u) = g (A+ u1B1 + · · ·+ u`B`) , g ∈ G, u ∈ R` .

Here G is a (real, finite-dimensional) Lie group with Lie algebra g and A,B1, . . . ,
B` ∈ g. Also, the parametrisation map Ξ(1, ·) : R` → g is an injective affine
map (i.e., B1, . . . , B` are linearly independent). The “product” g Ξ (1, u) is to be
understood as T1Lg ·Ξ (1, u), where Lg : G→ G, h 7→ gh is the left translation by
g. Note that the dynamics Ξ : G× R` → TG are invariant under left translations,
i.e., Ξ (g, u) = g Ξ (1, u). We shall denote such a system by Σ = (G,Ξ) (cf. [3]).

The admissible controls are piecewise continuous maps u(·) : [0, T ] → R`.
A trajectory for an admissible control u(·) is an absolutely continuous curve
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g(·) : [0, T ] → G such that ġ(t) = g(t) Ξ (1, u(t)) for almost every t ∈ [0, T ]. We
say that a system Σ is controllable if for any g0, g1 ∈ G, there exists a trajectory
g(·) : [0, T ] → G such that g(0) = g0 and g(T ) = g1. For more details about
(invariant) control systems see, e.g., [1], [10], [11], [16].

The image set Γ = im Ξ (1, ·), called the trace of Σ, is an affine subspace of g.
Accordingly, Γ = A+ Γ0 = A+ 〈B1, . . . , B`〉. A system Σ is called homogeneous if
A ∈ Γ0, and inhomogeneous otherwise. Furthermore, Σ is said to have full rank if
its trace generates the whole Lie algebra (i.e., the smallest Lie algebra containing Γ
is g). Henceforth, we assume that all systems under consideration have full rank.
(The full-rank condition is necessary for a system Σ to be controllable.)

A natural equivalence relation for control systems is feedback equivalence (see,
e.g., [9]). We specialize feedback equivalence (in the context of left-invariant control
systems) by requiring that the feedback transformations are left-invariant (i.e.,
constant over the state space). Such transformations are exactly those that are
compatible with the Lie group structure (see, e.g., [3, 2]). More precisely, let
Σ = (G,Ξ) and Σ′ = (G′,Ξ′) be left-invariant control affine systems. Σ and Σ′
are called locally detached feedback equivalent (shortly DFloc-equivalent) at points
a ∈ G and a′ ∈ G′ if there exist open neighbourhoods N and N ′ of a and
a′, respectively, and a (local) diffeomorphism Φ: N × R` → N ′ × R`′ , (g, u) 7→
(φ(g), ϕ(u)) such that φ(a) = a′ and Tgφ · Ξ (g, u) = Ξ′ (φ(g), ϕ(u)) for g ∈ N
and u ∈ R` (i.e., the diagram

N × R`
φ×ϕ //

Ξ
��

N ′ × R`′

Ξ′

��
TN

Tφ
// TN ′

commutes).
Any DFloc-equivalence between two control systems can be reduced to an equiva-

lence between neighbourhoods of the identity (by composing the diffeomorphism φ
with a suitable left-translation). More precisely, Σ and Σ′ are DFloc-equivalent at
a ∈ G and a′ ∈ G′ if and only if they are DFloc-equivalent at 1 ∈ G and 1′ ∈ G′.
Henceforth, we will assume that any DFloc-equivalence is between neighbourhoods
of identity. We have the following algebraic characterisation of DFloc-equivalence.

Proposition 1 ([2]). Σ and Σ′ are DFloc-equivalent if and only if there exists a
Lie algebra isomorphism ψ : g→ g′ such that ψ · Γ = Γ′.

Proof. Suppose Σ and Σ′ are DFloc-equivalent. Then T1φ·Ξ(1, u) = Ξ′(1′, ϕ(u))
and so T1φ · Γ = Γ′. As T1φ is a linear isomorphism, it remains only to show
that it preserves the Lie bracket. Let u, v ∈ R`, and let Ξu = Ξ(·, u) and Ξv =
Ξ(·, v) denote the corresponding vector fields. Then the push-forward φ∗[Ξu,Ξv] =
[φ∗Ξu, φ∗Ξv] and so T1φ·[Ξu(1),Ξv(1)] = [Ξ′ϕ(u)(1′),Ξ′ϕ(v)(1′)] = [T1φ·Ξu(1), T1φ·
Ξv(1)]. As Σ has full rank, the elements Ξu(1), u ∈ R` generate the Lie algebra
g; hence T1φ is a Lie algebra isomorphism.
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Conversely, suppose we have a Lie algebra isomorphism ψ such that ψ · Γ = Γ′.
Then there exists neighbourhoods N and N ′ of 1 and 1′, respectively, and a local
group isomorphism φ : N → N ′ such that T1φ = ψ (see, e.g., [12]). Furthermore,
there exists a unique affine isomorphism ϕ : R` → R`′ such that ψ · Ξ(1, u) =
Ξ′(1′, ϕ(u)). Consequently, Tgφ · Ξ(g, u) = T1Lφ(g) · ψ · Ξ(1, u) = Ξ′(φ(g), ϕ(u)).
Hence Σ and Σ′ are DFloc-equivalent. �

For the purpose of classification, we may assume that Σ and Σ′ have the same
Lie algebra g. We will say that two affine subspaces Γ and Γ′ are L-equivalent
if there exists a Lie algebra automorphism ψ : g → g such that ψ · Γ = Γ′.
Then Σ and Σ′ are DFloc-equivalent if and only if there traces Γ and Γ′ are
L-equivalent. This reduces the problem of classifying under DFloc-equivalence to
that of classifying under L-equivalence. Suppose {Γi : i ∈ I} is an exhaustive
collection of (non-equivalent) class representatives (i.e., any affine subspace is
L-equivalent to exactly one Γi). For each i ∈ I, we can easily find a system
Σi = (G,Ξi) with trace Γi. Then any system Σ is DFloc-equivalent to exactly one
Σi.

3. Affine subspaces of 3D Lie algebras

The classification of three-dimensional Lie algebras is well known. The classifica-
tion over C was done by S. Lie (1893), whereas the standard enumeration of the
real cases is that of L. Bianchi (1918). In more recent times, a different (method
of) classification was introduced by C. Behr (1968) and others (see [14], [13], [15]
and the references therein); this is customarily referred to as the Bianchi-Behr
classification (or even the “Bianchi-Schücking-Behr classification”). Any solvable
three-dimensional Lie algebra is isomorphic to one of nine types (in fact, there are
seven algebras and two parametrised infinite families of algebras). In terms of an
(appropriate) ordered basis (E1, E2, E3), the commutator operation is given by

[E2, E3] = n1E1 − aE2

[E3, E1] = aE1 + n2E2

[E1, E2] = n3E3.

The (Bianchi-Behr) structure parameters a, n1, n2, n3 for each type are given in
Table 1.

In this paper we are only concerned with types II, IV , and V . The remaining
solvable Lie algebras (i.e., those of types III, V Ih, V I0, V IIh, and V II0) are
treated in [6]. (For the Abelian Lie algebra 3g1 the classification is trivial.)

An affine subspace Γ of a Lie algebra g is written as

Γ = A+ Γ0 = A+ 〈B1, B2, . . . , B`〉

where A,B1, . . . , B` ∈ g. Let Γ1 and Γ2 be two affine subspaces of g. Γ1 and
Γ2 are L-equivalent if there exists a Lie algebra automorphism ψ ∈ Aut(g) such
that ψ · Γ1 = Γ2. L-equivalence is a genuine equivalence relation. (Note that
Γ1 = A1 + Γ0

1 and Γ2 = A2 + Γ0
2 are L-equivalent if and only if there exists an

automorphism ψ such that ψ ·Γ0
1 = Γ0

2 and ψ ·A1 ∈ Γ2.) An affine subspace Γ is
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Type Notation a n1 n2 n3 Representatives

I 3g1 0 0 0 0 R3

II g3.1 0 1 0 0 h3

III = V I−1 g2.1 ⊕ g1 1 1 −1 0 aff(R)⊕ R
IV g3.2 1 1 0 0
V g3.3 1 0 0 0
V I0 g0

3.4 0 1 −1 0 se(1, 1)
V Ih,

h<0
h6=−1 gh3.4

√
−h 1 −1 0

V II0 g0
3.5 0 1 1 0 se(2)

V IIh, h>0 gh3.5
√
h 1 1 0

Tab. 1: Bianchi-Behr classification (solvable)

said to have full rank if it generates the whole Lie algebra. The full-rank property
is invariant under L-equivalence. Henceforth, we assume that all affine subspaces
under consideration have full rank.

In this paper we classify, under L-equivalence, the (full-rank) affine subspaces
of g3.1, g3.2, and g3.3. Clearly, if Γ1 and Γ2 are L-equivalent, then they are
necessarily of the same dimension. Furthermore, 0 ∈ Γ1 if and only if 0 ∈ Γ2.
We shall find it convenient to refer to an `-dimensional affine subspace Γ as
an (`, 0)-affine subspace when 0 ∈ Γ (i.e., Γ is a vector subspace) and as an
(`, 1)-affine subspace, otherwise. Alternatively, Γ is said to be homogeneous if
0 ∈ Γ, and inhomogeneous otherwise.

Remark. We have the following characterization of the full-rank condition when
dim g = 3. No (1, 0)-affine subspace has full rank. A (1, 1)-affine subspace has full
rank if and only if A,B1, and [A,B1] are linearly independent. A (2, 0)-affine
subspace has full rank if and only if B1, B2, and [B1, B2] are linearly independent.
Any (2, 1)-affine subspace or (3, 0)-affine subspace has full rank.

Clearly, there is only one affine subspace whose dimension coincides with that of
the Lie algebra g, namely the space itself. From the standpoint of classification,
this case is trivial and hence will not be covered explicitly.

Let us fix a three-dimensional Lie algebra g (together with an ordered basis). In
order to classify the affine subspaces of g, we require the (group of) automorphisms
of g. These are well known (see, e.g., [7], [8], [15]); a summary is given in Table 2. For
each type of Lie algebra, we construct class representatives (by considering the action
of automorphisms on a typical affine subspace). By using some classifying conditions,
we explicitly construct L-equivalence relations relating an arbitrary affine subspace
to a fixed representative. Finally, we verify that none of the representatives are
equivalent.

The following result is easy to prove.
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Proposition 2. Let Γ be a (2, 0)-affine subspace of a Lie algebra g. Suppose
{Γi : i ∈ I} is an exhaustive collection of L-equivalence class representatives for
(1, 1)-affine subspaces of g. Then Γ is L-equivalent to at least one element of
{〈Γi〉 : i ∈ I}.

4. Type II (the Heisenberg algebra)

In terms of an (appropriate) basis (E1, E2, E3) for g3.1, the commutator opera-
tion is given by

[E2, E3] = E1 , [E3, E1] = 0 , [E1, E2] = 0 .

With respect to this ordered basis, the group of automorphisms is

Aut(g3.1) =


yw − vz x u

0 y v
0 z w

 : u, v, w, x, y, z ∈ R, yw 6= vz

 .

We start the classification of the affine subspace of g3.1 with the (inhomogeneous)
one-dimensional case.

Proposition 3. Any (1, 1)-affine subspace of g3.1 is L-equivalent to Γ1 = E2 +
〈E3〉.

Proof. Let Γ be a (1, 1)-affine subspace of g3.1. Then Γ may be written as
Γ =

∑3
i=1 aiEi +

〈∑3
i=1 biEi

〉
. Accordingly (as Γ has full rank)

ψ =

a2b3 − a3b2 a1 b1
0 a2 b2
0 a3 b3


is a Lie algebra automorphism such that ψ · Γ1 = Γ. �

The result for the homogeneous two-dimensional case follows from Propositions
2 and 3.

Proposition 4. Any (2, 0)-affine subspace of g3.1 is L-equivalent to 〈E2, E3〉.

Lastly, we consider the inhomogeneous two-dimensional case.

Proposition 5. Any (2, 1)-affine subspace of g3.1 is L-equivalent to exactly one
of the following subspaces

Γ1 = E1 + 〈E2, E3〉 Γ2 = E3 + 〈E1, E2〉 .

Proof. Let Γ = A + Γ0 be a (2, 1)-affine subspace of g3.1. First, suppose that
E1 ∈ Γ0. Then Γ =

∑3
i=1 aiEi +

〈
E1,

∑3
i=1 biEi

〉
. Consequently

ψ =

a3b2 − a2b3 b1 a1
0 b2 a2
0 b3 a3


is an automorphism such that ψ · Γ2 = Γ.
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On the other hand, suppose that E1 /∈ Γ0. Again we can write Γ as Γ =∑3
i=1 aiEi +

〈∑3
i=1 biEi,

∑3
i=1 ciEi

〉
. Then the equationa1 a2 a3

b1 b2 b3
c1 c2 c3

 v1
v2
v3

 =

1
0
0


has a unique solution for v. Moreover, a simple calculation shows that v1 6= 0. We
may thus choose non-zero constants x, y ∈ R such that xy = v1. Then

ψ =

v1 v2 v3
0 x 0
0 0 y


is an automorphism. A simple calculation shows that ψ · Γ = Γ1.

Finally, as E1 is an eigenvector of every automorphism, it is easy to show that
Γ1 and Γ2 cannot be L-equivalent. �

In summary,
Theorem 1. Any affine subspace of g3.1 (type II) is L-equivalent to exactly one
of E2 + 〈E3〉, 〈E2, E3〉, E1 + 〈E2, E3〉, and E3 + 〈E1, E2〉.

5. Type IV

The Lie algebra g3.2 has commutator operation given by
[E2, E3] = E1 − E2 , [E3, E1] = E1 , [E1, E2] = 0

in terms of an (appropriate) ordered basis (E1, E2, E3). With respect to this basis,
the group of automorphisms is

Aut(g3.2) =


u x y

0 u z
0 0 1

 : x, y, z, u ∈ R, u 6= 0

 .

Again, we start with the (inhomogeneous) one-dimensional case.
Proposition 6. Any (1, 1)-affine subspace of g3.2 is L-equivalent to exactly of
the following subspaces

Γ1 = E2 + 〈E3〉 Γ2,α = αE3 + 〈E2〉 .
Here α 6= 0 parametrises a family of class representatives, each different value
corresponding to a distinct non-equivalent representative.
Proof. Let Γ = A + Γ0 be a (1, 1)-affine subspace of g3.2. First, suppose that
E∗3(Γ0) 6= {0}. (Here E∗3 denotes the corresponding element of the dual basis.)
Then Γ =

∑3
i=1 aiEi +

〈∑3
i=1 biEi

〉
with b3 6= 0. Thus Γ = a′1E1 + a′2E2 +

〈b′1E1 + b′2E2 + E3〉. As Γ has full rank, a simple calculation shows that a′2 6= 0.
Hence

ψ =

a′2 a′1 b′1
0 a′2 b′2
0 0 1
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is an automorphism such that ψ · Γ1 = Γ.
On the other hand, suppose that E∗3(Γ0) = {0} and E∗3(A) = α 6= 0. (As Γ

has full rank, the situation α = 0 is impossible.) Then Γ = a1E1 + a2E2 + αE3 +
〈b1E1 + b2E2〉. A simple calculation shows that b2 6= 0. Thus

ψ =

b2 b1
a1
α

0 b2
a2
α

0 0 1


is an automorphism such that ψ · Γ2,α = Γ.

Finally, we verify that none of representatives are L-equivalent. As E2 ∈ Γ1,
αE3 ∈ Γ2,α, and 〈E1, E2〉 is an invariant subspace of every automorphism, it
follows that Γ1 and Γ2,α cannot be L-equivalent. Then again, as E∗3 (ψ ·αE3) = α
for any automorphism ψ, it follows that Γ2,α and Γ2,α′ are L-equivalent only if
α = α′. �

We obtain the result for the homogeneous two-dimensional case by use of
Propositions 2 and 6.

Proposition 7. Any (2, 0)-affine subspace of g3.2 is L-equivalent to 〈E2, E3〉.

Lastly, we consider the inhomogeneous two-dimensional case and then summarise
the results of this section.

Proposition 8. Any (2, 1)-affine subspace of g3.2 is L-equivalent to exactly one
of the following subspaces

Γ1 = E2 + 〈E1, E3〉 Γ2 = E1 + 〈E2, E3〉
Γ3,α = αE3 + 〈E1, E2〉 .

Here α 6= 0 parametrises a family of class representatives, each different value
corresponding to a distinct non-equivalent representative.

Proof. Let Γ = A+Γ0 be a (2, 1)-affine subspace of g3.2. First, assume E∗3 (Γ0) 6=
{0} and E1 ∈ Γ0. Then Γ =

∑3
i=1 aiEi +

〈
E1,

∑3
i=1 biEi

〉
with b3 6= 0. Hence

Γ = a′2E2 + 〈E1, b
′
2E2 + E3〉 with a′2 6= 0. Thus

ψ =

a′2 0 0
0 a′2 b′2
0 0 1


is an automorphism such that ψ · Γ1 = Γ.

Next, assume E∗3 (Γ0) 6= {0} and E1 /∈ Γ0. Then Γ =
∑3
i=1 aiEi +

〈∑3
i=1 biEi,∑3

i=1 ciEi
〉

with c3 6= 0. Hence Γ = a′1E1+a′2E2+〈b′1E1+b′2E2, c
′
1E1+c′2E2+E3〉.

Now, as E1 /∈ Γ0, it follows that b′2 6= 0. Thus Γ = a′′1E1 + 〈b′′1E1 + E2, c
′′
1E1 + E3〉

with a′′1 6= 0. Therefore

ψ =

a′′1 a′′1b
′′
1 c′′1

0 a′′1 0
0 0 1


is an automorphism such that ψ · Γ2 = Γ.
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Lastly, assume E∗3 (Γ0) = {0} and E∗3 (A) = α 6= 0. Then Γ0 = 〈E1, E2〉 and so
Γ = αE3 + 〈E1, E2〉 = Γ3,α.

Finally, we verify that none of the representatives are L-equivalent. As E1 is an
eigenvector of every automorphism, it follows that Γ2 cannot be L-equivalent to Γ1
or Γ3,α. Then again, Γ2 cannot be L-equivalent to Γ3,α as E2 ∈ Γ1 and 〈E1, E2〉
is an invariant subspace of every automorphism. Lastly, as E∗3(ψ · αE3) = α for
any automorphism ψ, it follows that Γ2,α and Γ2,α′ are L-equivalent only if
α = α′. �

Theorem 2. Any affine subspace of g3.2 (type IV ) is L-equivalent to exactly one
of E2+〈E3〉, αE3+〈E2〉, 〈E2, E3〉, E1+〈E2, E3〉, E2+〈E3, E1〉, and αE3+〈E1, E2〉.
Here α 6= 0 parametrises two families of class representatives, each different value
corresponding to a distinct non-equivalent representative.

6. Type V

The Lie algebra g3.3 has commutator relations given by

[E2, E3] = −E2 , [E3, E1] = E1 , [E1, E2] = 0

in terms of an (appropriate) ordered basis (E1, E2, E3). With respect to this basis,
the group of automorphisms is

Aut(g3.3) =


x y z
u v w
0 0 1

 : x, y, z, u, v, w ∈ R, xv 6= yu

 .

Many of the affine subspaces of g3.3 do not have full rank.

Proposition 9. No one-dimensional or homogeneous two-dimensional affine sub-
space of g3.3 has full rank.

Proof. An one-dimensional affine subspace Γ = A + 〈B〉, or a homogeneous
two-dimensional subspace Γ = 〈A,B〉, has full rank if and only if A, B, and
[A,B] are linearly independent. Let A =

∑3
i=1 aiEi and B =

∑3
i=1 biEi. Then

[A,B] = (−a1b3 + a3b1)E1 + (−a2b3 + a3b2)E2. A direct computation shows that∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3

−a1b3 + a3b1 −a2b3 + a3b2 0

∣∣∣∣∣∣ = 0 .

Hence A, B, and [A,B] are necessarily linearly dependent. �

Accordingly, we need only consider the inhomogeneous two-dimensional case.

Theorem 3. Any affine subspace of g3.3 (type V ) is L-equivalent to exactly one
of the following subspaces

Γ1 = E2 + 〈E1, E3〉 Γ2,α = αE3 + 〈E1, E2〉 .

Here α 6= 0 parametrises a family of class representatives, each different value
corresponding to a distinct non-equivalent representative.
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Proof. Let Γ = A + Γ0 be a (2, 1)-affine subspace of g3.3. First, assume that
E∗3 (Γ0) 6= {0}. (Again, E∗3 denotes the corresponding element of the dual basis.)
Then Γ =

∑3
i=1 aiEi +

〈∑3
i=1 biEi,

∑3
i=1 ciEi

〉
with c3 6= 0. Hence Γ = a′1E1 +

a′2E2 + 〈b′1E1 + b′2E2, c
′
1E1 + c′2E2 + E3〉. As Γ is inhomogeneous, it follows that

a′1b
′
2 − a′2b′1 6= 0. Thus

ψ =

b′1 a′1 c′1
b′2 a′2 c′2
0 0 1


is a automorphism such that ψ ·Γ1 = Γ. On the other hand, assume E∗3 (Γ0) = {0}
and E∗3 (A) = α 6= 0. Then Γ0 = 〈E1, E2〉 and so Γ = αE3 + 〈E1, E2〉 = Γ2,α.

Lastly, we verify that none of these representatives are equivalent. As 〈E1, E2〉
is an invariant subspace of every automorphism, it follows that Γ2,α cannot be
L-equivalent to Γ1. Then again, as E∗3 (ψ · αE3) = α for any automorphism ψ, it
follows that Γ2,α and Γ2,α′ are equivalent only if α = α′. �

7. Final remark

This paper forms part of a series in which the full-rank left-invariant control
affine systems, evolving on three-dimensional Lie groups, are classified. A summary
of this classification can be found in [4]. The remaining solvable cases are treated
in [6], whereas the semisimple cases are treated in [5].

Tabulation of results

Type Commutators Automorphisms

II

[E2, E3] = E1
yw − vz x u

0 y v
0 z w

 ; yw 6= vz[E3, E1] = 0
[E1, E2] = 0

IV

[E2, E3] = E1 − E2
u x y

0 u z
0 0 1

 ; u 6= 0[E3, E1] = E1

[E1, E2] = 0

V

[E2, E3] = −E2
x y z
u v w
0 0 1

 ; xv 6= yu[E3, E1] = E1

[E1, E2] = 0

Tab. 2: Lie algebra automorphisms
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Type (`, ε) Classifying conditions Equiv. repr.

II

(1, 1) E2 + 〈E3〉
(2, 0) 〈E2, E3〉

(2, 1) E1 /∈ Γ0 E1 + 〈E2, E3〉
E1 ∈ Γ0 E3 + 〈E1, E2〉

IV

(1, 1) E∗3 (Γ0) 6= {0} E2 + 〈E3〉
E∗3 (Γ0) = {0}, E∗3 (A) = α 6= 0 αE3 + 〈E2〉

(2, 0) 〈E2, E3〉

(2, 1)
E∗3 (Γ0) 6= {0} E1 /∈ Γ0 E1 + 〈E2, E3〉

E1 ∈ Γ0 E2 + 〈E1, E3〉
E∗3 (Γ0) = {0}, E∗3 (A) = α 6= 0 αE3 + 〈E1, E2〉

V

(1, 1) ∅
(2, 0) ∅

(2, 1) E∗3 (Γ0) 6= {0} E1 + 〈E2, E3〉
E∗3 (Γ0) = {0}, E∗3 (A) = α 6= 0 αE3 + 〈E1, E2〉

Tab. 3: Full-rank affine subspaces of Lie algebras
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