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Abstract

Nonlinear rescaling is a tool for solving large-scale nonlinear program-
ming problems. The primal-dual nonlinear rescaling method was used to
solve two quadratic programming problems with quadratic constraints.
Based on the performance of primal-dual nonlinear rescaling method on
testing problems, the conclusions about setting up the parameters are
made. Next, the connection between nonlinear rescaling methods and
self-concordant functions is discussed and modified logarithmic barrier
function is recommended as a suitable nonlinear rescaling function.

Key words: convex optimization, nonlinear rescaling method, self-
concordant functions

2010 Mathematics Subject Classification: 46N10, 47N10, 65K05

1 Introduction

The basic idea of nonlinear rescaling (NR) methods is a nonlinear transformation
of constraint functions. Originally, the modified barrier methods (see [5]) were
introduced along with few modified barrier functions. Afterwards, log-sigmoid
function was also considered usable for NR and log-sigmoid multipliers method
was described in [6] and [7]. Consequently, the pieces of knowledge were refined,
put together and generalization of these techniques led to the concept of NR
methods and NR functions. Similar to progress with interior-point methods,
the primal-dual nonlinear rescaling (PDNR) method was developed (see [9]).
PDNR method is locally convergent with Q-linear convergence rate. PDNR

method can be combined with another optimization method (e.g. primal-dual
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path-following method) to obtain global convergence (see [9]). Another way how
to improve convergence of PDNR method is dynamic scaling parameter update
(see [10]) together with some globalization strategy (e.g. step length compu-
tation). This approach leads to the primal-dual nonlinear rescaling method
with dynamic scaling parameter update (PDNRD). Recently, generalizations
and other improvements (see [11] and [12]) were developed to improve asymp-
totic convergence rate and to reduce computational effort.
Several issues still remain for research in NR theory (see [9] and [11]). The

first puprpose of this paper is to describe the parameters of PDNRD method.
The second purpose is to give a recommendation about which NR function to
use in computations.
The paper is organized as follows. First, the convex optimization problem is

considered and basic assumptions are discussed. Then, NR functions are defined
and the key idea of NR method is explained. Afterwards, PDNRD method
is presented and its parameters are described. The connection between self-
concordant functions and a modified logarithmic barrier function is discussed
in Section 4 as a reason for using the modified logarithmic barrier function as
NR function. Finally, numerical experiments with different parameter settings
were made. The results are presented in Section 5.

2 Statement of the problem

We have the convex optimization problem{
minimize f(x), x ∈ R

n,

subject to ci(x) ≥ 0, i = 1, . . . , r.
(2.1)

Function f is convex and functions ci are concave, ∀i = 1, . . ., r. For simplicity
we define mapping c : Rn → R

r as

c(x) = (c1(x), c2(x), . . . , cr(x))
T , ∀x ∈ R

n.

We assume that:

(A) Functions f , ci, ∀i = 1, . . . , r, are at least twice continuously differentiable
on the set Rn.

(B) The optimal set X∗ = Argmin {f(x);x ∈ S} is bounded and not empty.
(C) The Slater condition holds.

For problem (2.1) we define Lagrangian

L(x;λ) = f(x)−
r∑

i=1

λici(x) (2.2)

and we consider the dual problem{
maximize θ(λ), λ ∈ R

r,

subject to λi ≥ 0, i = 1, . . . , r,
(2.3)

where θ(λ) = inf
x∈Rn

L(x;λ) is the dual function.
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Let x∗ ∈ X∗. Due to assumption (C) Karush–Kuhn–Tucker’s conditions can
be used.

3 Nonlinear rescaling

3.1 Nonlinear rescaling functions

First, we define functions which are used to transform constraints of the prob-
lem (2.1).

Definition 3.1 Twice continuously differentiable function ψ : (t0; +∞) → R,
where −∞ < t0 < 0, satisfying conditions

(i) ψ(0) = 0, ψ′(0) = 1,
(ii) ψ′(t) > 0, ∀t ∈ (t0; +∞),
(iii) ψ′′(t) < 0, ∀t ∈ (t0; +∞),
(iv) ∃a > 0: ψ(t) ≤ −at2, ∀t ∈ (t0; 0),
(v) ∃b > 0: ψ′(t) ≤ bt−1, ∀t > 0,
(vi) ∃c > 0: ψ′′(t) ≥ −ct−2, ∀t > 0

is called NR function. The symbol Ψ denotes the set of NR functions.

For example, exponential transformation, modified logarithmic barrier func-
tion and modified hyperbolic barrier function are NR functions. These functions
are defined by the following formulas:

ψ1(t) = 1− e−t

ψ2(t) = ln (t+ 1),

ψ3(t) =
t

t+ 1
.

Functions ψi, i = 2, 3, can be modified so that ψi ∈ C2(R). The function ψ1

is already twice continuously differentiable and the following modification is not
necessary, of course it can be done. The modification is realized by quadratic
extrapolation of ψi for a given parameter τ ∈ (−1; 0) on the interval (−∞; τ ).
We denote these extrapolated functions ψqi , i = 1, 2, 3.
Few examples of NR functions were presented, but which to use in compu-

tations? Which NR function is the most suitable? We deal with this question
in Section 4 from a theoretical point of view and in Section 5 from a practical
point of view (computational efficiency).

3.2 Equivalent problem

NR methods are based on the idea to transform problem (2.1) using a function
ψ ∈ Ψ to the equivalent problem{

minimize f(x), x ∈ R
n,

subject to k−1ψ(kci(x)) ≥ 0, i = 1, . . . , r,
(3.1)
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From the definition of NR function, it is obvious that problems (2.1) and
(3.1) have the same admissible sets and also the same optimal sets. Positive
real number k is scaling parameter.
The Lagrangian for the equivalent problem (3.1) is given by formula

L(x;λ, k) = f(x)− k−1
r∑

i=1

λiψi(kci(x)). (3.2)

Suppose for a while that we know the solution of dual problem λ∗ ∈ R
r
+.

Then it is sufficient to minimize the function L(x;λ∗, k) in primal variable x.
Constrained optimization problem would be transformed to unconstrained op-
timization problem.
Since the Lagrange multipliers λ∗ are not known, we estimate them and

update them in every step of the method—just like the solution of the primal
problem. In consequence, constrained optimization problem is converted to
a sequence of unconstrained optimization problems. Newton’s method or its
variant is applied in each step to minimize the Lagrangian L in primal variable.
Algorithm 3.1 (Basic concept of NR methods)
Let k > 0 be a scaling parameter. An initial approximations x0 ∈ R

n and
λ0 ∈ R

r
++ are given. We suppose that approximation (xs, λs) ∈ R

n × R
r
++,

s ∈ N0, is known already. We find next primal-dual pair (xs+1, λs+1) using the
following formulas

xs+1 : ∇xL(xs+1;λs, k) = 0,

λs+1
i = ψ′ (kci(xs+1)

)
λsi , i = 1, . . . , r.

(3.3)

The Algorithm 3.1 is well defined due to the following theorem.

Theorem 3.1 For any given (λ, k) ∈ R
r
++×R++ there exists x̂ ∈ R

n such that

L(x̂;λ, k) = min
x∈Rn

L(x;λ, k).

Proof see [7, p. 206].

The main purpose of NR is to improve properties of Lagrangian. Classi-
cal Lagrangian L does not always work, because the existence of the uncon-
strained Lagrange minimizer is unknown in general. On the other hand, the
unconstrained minimizer of the Lagrangian L always exists (according to The-
orem 3.1). Moreover, NR dramatically sharpens the reaction of Lagrangian to
the constraint violation, which has an impact on the computations.

3.3 Primal-dual nonlinear rescaling method with dynamic
scaling parameter update

To obtain higher convergence rate of the method, we dynamically change the
scaling parameter. Moreover, we use Newton’s method with step length (e.g.
backtracking line search algorithm) to solve the formulas (3.3).
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We introduce a function which measures the distance between approximation
(x, λ) and solution (x∗, λ∗).

Definition 3.2 Function ν : Rn × R
r → R+, defined as follows

ν(x, λ) = max

{
‖∇xL(x;λ)‖, − min

1≤i≤r
ci(x),

r∑
i=1

|λici(x)|
}
, (3.4)

is called the merit function.

From first order optimality conditions it follows that

ν(x̂, λ̂) = 0 ⇔ (x̂, λ̂) ∈ X∗.

The primal-dual system derived from (3.3) has the form (see [10])

[ ∇2
xxL(x; λ̄) +

1
k2 In −∇c(x)T

−kΨ′′ (kc(x)) Λ∇c(x) Ir

] [
Δx

Δλ

]
=

[−∇xL(x; λ̄)

0

]
, (3.5)

where primal-dual pair (x, λ) is an approximation of solution, k is the scaling
parameter and λ̄ = Ψ′ (kc(x))λ is the dual predictor of Lagrange multipliers.
We denote

Nk(·) =
[ ∇2

xxL(x; λ̄) +
1
k2 In −∇c(x)T

−kΨ′′ (kc(x)) Λ∇c(x) Ir

]
.

Primal-dual system can be solved in two ways using techniques for sparse ma-
trices or for positive definite matrices (see [9]).
Using dynamic scaling parameter update and backtracking line search al-

gorithm we obtain a globally convergent method with 1.5-Q-superlinear con-
vergence rate (see [10]) called PDNRD method. In every outer iteration, sys-
tem (3.5) is solved. Next, it is tested whether the value of the merit function
was decreased superlineary. If not, the primal Newton direction Δx is used to
minimize L in primal variable. Therefore, it can happen that several Newton
steps (inner iterations) are made during one outer iteration.

Algorithm 3.2 (Globally convergent PDNRD method)
An initial approximation x0 ∈ R

n is given. An accuracy parameter ε > 0 and
initial scaling parameter k ∈ R++ are given. Parameters q ∈ (0; 1), η ∈ (0; 0.5),
ω > 1, σ > 0 and θ > 0 are also given. Set x := x0, λ := (1, 1, . . . , 1) ∈ R

r and
H := ν(x, λ).

(1o) If H ≤ ε, then stop, output (x, λ).

(2o) Find λ̄ and (Δx,Δλ) from primal-dual system (3.5) and set

x̂ := x+Δx, λ̂ := λ̄+Δλ, Ĥ := ν(x̂, λ̂).
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(3o) If Ĥ ≤ min
{
H3/2−θ, 1− θ

}
, then set

x := x̂, λ := λ̂, H := Ĥ, k := max

{
1√
H
, k

}

and go to step (1o).

(4o) Find α ∈ (0; 1〉 so that it holds

L(x+ αΔx;λ, k)− L(x;λ, k) ≤ ηαΔxT∇xL(x;λ, k),

using the backtracking line search algorithm.

(5o) Set
x := x+ αΔx, λ̂ := Ψ′(kc(x))λ.

(6o) If

‖∇xL(x;λ, k)‖ ≤ σ

k
‖λ̂− λ‖,

then go to step (8o).

(7o) Find (Δx,Δλ) from primal-dual system (3.5) and go to step (4o).

(8o) If ν(x, λ̂) ≤ qH, then set

λ := λ̂, H := ν(x, λ̂), k := max

{
1√
H
, k

}

and go to step (1o).

(9o) Set k := ωk and go to step (7o).

3.4 Parameters

When using numerical method the “right” setting of the parameters is very
important. Experience with numerical experiments helps us to find this optimal
setting. Based on testing PDNRD method on examples from section 5, we made
considerations about suitable setting of PDNRD method parameters.

Factor ω
The factor ω affects the rate of scaling parametr increase. For ω ∈ 〈5; 20〉 we

obtain almost the same results. So we set ω = 10. However, even for the other
choices ω > 1 there are not any significant changes. At most, it may happen
that it takes a few extra steps of the method.

Parameter σ
How we choose parameter σ is less important then the choice of the ratio

between σ and the initial choice of scaling parameter kinit. It is fraction σ
k

which decides about the number of inner iterations (and thus about the number
of Newton steps in damped fase of Newton’s method). It is clear that for σ � k
there are too little inner steps. On the other hand, for σ � k there are too
many of them. According to this the choice σ = 1

2kinit or σ = 1
5kinit is suitable.
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Parameter θ

The parameter θ affects whether the inner solver runs or not. If we set θ = 0,
the inner solver runs whenever the 1.5-superlinear decrease of the merit function
was not achieved. Choosing θ = 0.5 we are saying that we are satisfied with only
linear decrease of the merit function. Therefore, it is wise to set θ ∈ 〈0; 0.5〉. It
appears (see Tab. 3 and 6) that the method does not depend on this parameter
too much.

In condition, which is related to the parameter θ, the termmin
{
H3/2−θ, 1− θ

}
is calculated. We can ask why do not simply use the term H3/2−θ instead of
the previous one. As we know, the classical Newton method is effective only in
neighbourhood of the solution, so if we are “far” from the solution the damped
Newton method is better suited to use. The expression “far” means that the
merit function is greater than 1− θ.

Factor q

The number of inner steps is influenced by fraction σ
k together with the

factor q. This factor also affects how often is the scaling parameter increased.
Due to the way in which is this parameter used in PDNRD method, it is needed
to set q ∈ (0; 1). Moreover, we must choose the factor q so that the method do
not use too many inner steps, because of long-lasting cumputation (see Tab. 3).
Based on data in Tab. 3 and 6 we recommend not to set the factor q too small.
The values from interval 〈0.5; 1) is a suitable choice and gives us comparable
results.

Parameter η

The backtracking line search parameter η is usually chosen in the range from
0.01 to 0.3 (see [1, p. 466]). According to data in Tab. 1, 2 and 3, the choice of
the parameter η ∈ 〈0.01; 0.3〉 is arbitrary when solving the chord problem. But
when the steel brick problem is solved it is better to set η = 0.01 (see Tab. 4, 5
and 6).

Initial value of scaling parameter

Based on the results shown in Tab. 4 and 5 it might seem that with increas-
ing number of variables we should increase also the initial value of the scaling
parameter. However, this hypothesis was not confirmed when solving the steel
brick problem, because for n = 648 is the suitable setting kinit = 2 · 102 (see
Tab. 5). Anyway, for kinit ∈

〈
102; 105

〉
the solution is reached usually after an

acceptable number of steps.

Initial approximation

The computation also depends on the initial approximation. The number of
steps can be decreased, if a “lucky” initial approximation is chosen. In problems
like beam deflection or contact problems we choose an initial state of the system
as initial approximation, because the shape changes of body are usually very
small. Thus we set x0 = (0, 0, . . . , 0).
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4 Connection between nonlinear rescaling functions and
self-concordant functions

Self-concordance is affine invariant property (see Theorem 4.2) and convergence
analysis of Newton’s method for self-concordant functions does not depend on
any unknown constants. In addition, self-concordant functions include many
logarithmic functions (e.g. −ψ2 and −ψq2).

4.1 Self-concordant functions

We begin with definition of a self-concordant function.

Definition 4.1 Three times continuously differentiable convex function
f : D (f) → R, where D (f) ⊆ R, is self-concordant on A ⊆ D (f), if the follow-
ing inequality holds

|f ′′′(x)| ≤ 2[f ′′(x)]
3
2 , ∀x ∈ A. (4.1)

Definition 4.2 The function f : D (f) → R, where D (f) ⊆ R
n, n ∈ N, n > 1,

is self-concordant, if the function f̂(t) = f(x0 + tα) is self-concordant for any
α ∈ R

n such that x0, x0 + tα ∈ D (f).

Remark 4.1 Obviously, linear functions and convex quadratic functions are
self-concordant, because its second derivative is non-negative and its third deriva-
tive is identically equal to zero.

Self-concordant functions have several important properties, which can be
used to decide whether a given function is self-concordant or not. We use these
properties in section 4.3.
The symbol Sn, n ∈ N, denotes the set containing self-concordant functions

f : D (f) → R, where D (f) ⊆ R
n. It holds that

Sn ⊂ {
f ∈ C3(D (f)), D (f) ⊆ R

n
}
.

Theorem 4.1 The set Sn, ∀n ∈ N, is closed under addition and under scaling
by a factor exceeding one.

Proof see [1, p. 499]. �

Corollary 4.1 Let f(x) ∈ Sn, g(y) ∈ Sm (m, n ∈ N) with domains D (f),
D (g). Then the function h(x, y) = f(x) + g(y) is self-concordant on the set
D (f)×D (g) ⊆ R

n+m.

Proof The functions f(x), g(y) can be viewed as functions of (n+m)-variables.
Hence the statement is direct consequence of Theorem 4.1. �

Theorem 4.2 Let f(x) ∈ Sn, where n ∈ N. Suppose that A ∈ R
n×n, b ∈ R

n.
Then the function f(Ax + b) is self-concordant. In other words, the property
“self-concordance” is affine invariant.
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Proof It is sufficient to prove the statement only for n = 1 (see definition 4.2).
Assume that the function f : D (f) → R, where D (f) ⊆ R is self-concordant.
We show that also function f̂(x) = f(ax + b) ∈ S1, where a, b ∈ R, a �= 0. It
holds that

f̂ ′′(x) = a2f ′′(ax+ b), f̂ ′′′(x) = a3f ′′′(ax+ b).

Moreover, the following inequality holds

∣∣a3f ′′′(ax+ b)
∣∣ ≤ 2

[
a2f ′′(ax+ b)

] 3
2 ,

and thus the function f̂(x) is self-concordant. �

4.2 Newton’s method for self-concordant functions

Assume that f : D (f) → R, where D (f) ⊆ R
n is a self-concordant function

with minimizer x∗ ∈ D (f). We analyze Newton’s method for the function f .
The upper bound on the number of Newton steps is already known, so it can
be simply computed.

Theorem 4.3 Let η and β be the line search parameters. An accuracy param-
eter ε > 0 is given. The total number of Newton steps is less than

20− 8η

ηβ(1− 2η)2
(f(x0)− f(x∗)) + log2 (− log2 ε). (4.2)

Proof see [1, p. 503]. �

The value of parameter β ∈ (0; 1) determines how precise will be the estimate
of the step length. In practice, values between 0.1 (crude) and 0.8 (more precise)
are used (see [1]). The parameter α ∈ (0; 0.5) is usually ranges from 0.01 to 0.3
(see [1]). For example, in Section 4.3 we set η = 0.01, β = 0.8 and ε = 10−6.
With these values we obtain the upper bound

2592.7(f(x0)− f(x∗)) + 4.3

This estimate shows us, what can happen in the worst case. The numerical
experiments shows (see [1]) that the expression f(x0) − f(x∗) + log2 (− log2 ε)
is a good guess of the Number of Newton steps.

4.3 Application of self-concordant functions in NR theory

The functions ψ2 and ψq2 are NR functions (see Section 3.1). From Defini-
tion 4.1, it follows that the negative of these two functions are self-concordant
functions. We can use this property in NR theory. Suppose that we deal
with a convex optimization problem using NR method. If we find out that
the Lagrangian L for the equivalent problem, or its positive multiple, is self-
concordant, we can use Theorem 4.3 for better analysis of our problem. We
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show how to do it on the following quadratic programming problem with linear
and quadratic constraints.
From the finite element approximation of contact problems of linear elasticity

with friction in three space dimensions arise minimization problem⎧⎪⎨
⎪⎩
minimize 1

2x
TAx− xTb, x ∈ R

n

subject to g2i − x2i+m − x2i+2m ≥ 0, i = 1, . . . ,m,

xi − li ≥ 0, i = 1, . . . ,m,

(4.3)

where n = 3m is the number of variables, A ∈ R
n×n is symmetric and positive

definite, b ∈ R
n, g ∈ R

m
+ , l ∈ R

m. This is a convex programming problem so we
can use NR approach to solve it.
We transform the inequality constraints of the problem (4.3) into an equiva-

lent set of constraints using the function ψ2. The Lagrangian for the equivalent
problem is defined by the following formula

L(x;λ, k) = 1

2
xTAx− xTb− k−1

2m∑
i=1

λiψ2 (kci(x)), (4.4)

where
ci(x) = xi − li, i = 1, . . . ,m,

ci+m(x) = g2i − x2i+m − x2i+2m, i = 1, . . . ,m.

Suppose that arbitrary λ ∈ R
r
++ and k > 0 are given. We prove that the

Theorem 4.3 hold true when applied to the Lagrangian (4.4). First, we will
show that the function

L̂(x;λ, k, r) := kr−1L(x;λ, k),

where r := min {λi;λi �= 0, i = 1, . . . , 2m}, is self-concordant. The function L̂
has three parts, namely:

1. kr−1
(
1
2x

TAx− xTb
)
,

2. −r−1
m∑
i=1

λi ln (k(xi − li) + 1),

3. −r−1
m∑
i=1

λi+m ln
(
k(g2i − x2i+m − x2i+2m) + 1

)
.

The first part is a quadratic function, therefore it is a self-concordant func-
tion (see Remark 4.1) for any r > 0.
From Definition 4.1, it follows that − ln t is self-concordant. Also the func-

tion − ln (k(xi − li) + 1) ∈ S1 (see Theorem 4.2). We scale this function by a
factor −r−1λi ≥ 1 and the result −r−1λi ln (k(xi − li) + 1) ∈ S1 (according to
Theorem 4.1). This process can be done for all i = 1, . . . ,m. At last, the sum of
self-concordant functions is again a self-concordant function (see Corollary 4.1),
therefore the second part of L̂ belongs to the set Sm.
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To prove that the third part is also a self-concordant function, we use the
following lemma and then analogical procedure as for the second part of the
function L̂.

Lemma 4.1 The function

f(x) = − ln
(
xTPx+QTx+R

)
,

where P ∈ R
n×n is negative definite matrix, Q ∈ R

n and R ∈ R, n ∈ N, is
self-concordant on its domain.

Proof see [1, p. 500]. �

Finally, L̂ is a self-concordant function according to Corollary 4.1 as the
sum of three self-concordant function. Now, we can apply the Theorem 4.3 to
the function kl−1L(x;λ, k). According to the fact that Newton’s minimization
sequences are the same for a given function and its positive multiple, the same
statement remain true for the original function L.
Similar analysis can be made for many other problems (e.g. linear and

quadratic programming), because the function − ln(kc(x)+1) is self-concordant
for a wide enough class of functions c(x).

5 Numerical experiments

PDNRD method was tested on two problems like (4.3)—the chord problem and
the steel brick problem. All computations were performed in MATLAB on PC
Intel Pentium (1.7 GHz) with 1 GB RAM. In tables below we report the number
of iterations, the number of solutions of the primal-dual system and the solution
time in seconds. If some data is missing, it means that the solution time was
too long in comparison to other cases in table.
Function ψq2 was used for NR of the problems to show that ψq2 is appropriate

NR function not only from theoretical point of view, but also from the practical
point of view.

5.1 Chord problem

We consider a problem
min
u∈K

J (u), (5.1)

where

J (u) =
1

2

∫ 1

0

‖u′(t)‖2dt−
∫ 1

0

u(t)Tf(t) dt,

K =
{
u ∈ (

H1
0 (0; 1)

)2
: u2(t) ≥ 0, ∀t ∈ (0; 0.5), ‖u(t)‖ ≤ 1.4, ∀t ∈ (0.5; 1)

}
,

f(t) =
(
36π2 sin 6πt,−4π2 sin 2πt

)T
.
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Figure 1: The chord deformation.

Minimization problem (5.1) describes loaded chord fixed at the endpoints
that is partially above the plain and partially inside the cylindrical tube (see
Fig. 1). Function u(t) is the chord deflection.
The objective function 1

2x
TAx− xTb, x ∈ R

n matches the convex quadratic
functional J (u), linear constraints in problem (4.3) matches constraint u2(t) ≥
0, ∀t ∈ (0; 0.5) from the definition of the set K and quadratic constraints matches
‖u(t)‖ ≤ 1.4, ∀t ∈ (0.5; 1).

Solution: We solve the chord problem for different settings of parameters of
PDNRD method. The main result from Tab. 1 and 2 is non-increasing (rather
decreasing) number of iterations and number of solutions of primal-dual system
while increasing the number of variables. The best choice for kinit is 2 · 105 in
this case.

η = 0.01 kinit
n r 2 · 102 2 · 103 2 · 104 2 · 105
64 32 8/13/0.359 6/6/0.063 7/12/0.109 6/14/0.203
128 64 9/21/0.547 7/10/0.328 7/12/0.234 6/12/0.219
256 128 – 6/19/1.515 – 4/10/0.532
512 256 – – 5/10/3.156 4/12/3.094
1024 512 – – 5/13/19.890 3/6/9.578
2048 1024 – – – 4/7/62.375
4096 2048 – – – 4/9/553.481

Table 1: PDNRD method with parameters ω = 10, σ = 1
2kinit, θ = 0.4, q = 0.5,

η = 0.01, ε = 10−6. The chord problem.
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η = 0.3 kinit
n r 2 · 102 2 · 103 2 · 104 2 · 105
64 32 8/13/0.375 6/6/0.078 7/12/0.156 6/14/0.187
128 64 9/20/0.578 7/10/0.218 7/12/0.219 6/12/0.282
256 128 – 6/19/1.297 – 4/10/0.437
512 256 – – 5/10/3.047 4/12/3.141
1024 512 – – 5/13/20.469 3/6/9.063
2048 1024 – – – 4/7/63.484
4096 2048 – – – 4/9/551.516

Table 2: PDNRD method with parameters ω = 10, σ = 1
2kinit, θ = 0.4, q = 0.5,

η = 0.3, ε = 10−6. The chord problem.

η = 0.01 η = 0.3
q θ = 0.1 θ = 0.4 θ = 0.1 θ = 0.4
0.1 – – – –
0.5 3/6/9.094 3/6/9.078 3/6/9.109 3/6/9.078
0.9 3/6/9.094 3/6/9.079 3/6/9.125 3/6/9.109

Table 3: PDNRD with parameters ω = 10, σ = 1
2kinit, kinit = 2 · 105, ε = 10−6.

The chord problem (n = 1024).

From Tab. 3 it is obvious that choice q = 0.1 is the worst one. Parameters
η and θ have no significant impact on the computation in this case.

5.2 Steel brick problem

The steel brick problem is also the problem of type (4.3). Let us consider a
steel brick lying on the rigid obstacle. The brick occupies the domain S =
(0; 3)× (0; 1)× (0; 1). Boundary ∂S is divided into three parts

Γu = {0} × (0; 1)× (0; 1), Γc = (0; 3)× (0; 1)× {0} , Γp = ∂S\ (Γ̄u ∪ Γ̄c

)
,

on which are different boundary conditions (see Fig. 2). The problem is de-
scribed in detail in [3].

Γp

Γp

Γp

Γc

SΓu

Figure 2: The steel brick.
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Solution: The progress is similar to previos one in Section 5.1. We solve the
steel brick problem for different choices of n. According to data in Tab. 4 and 5,
the choice η = 0.01 is better then η = 0.3. The best setting for initial values of
scaling parameter is 2 · 103 and 2 · 104 in this problem.

η = 0.01 kinit
n r 2 · 102 2 · 103 2 · 104 2 · 105
54 36 – 5/85/1.578 9/959/9.391 –
90 60 – 6/47/1.031 6/329/5.047 –
180 120 – 5/31/2.328 8/641/27.718 –
324 216 – 7/58/15.469 5/105/21.234 –
648 432 8/32/50.000 6/30/53.563 6/74/113.454 8/501/800.297

Table 4: PDNRD method with parameters ω = 10, σ = 1
2kinit, θ = 0.4, q = 0.5,

η = 0.01, ε = 10−6. The steel brick problem.

η = 0.3 kinit
n r 2 · 102 2 · 103 2 · 104 2 · 105
54 36 7/33/0.531 5/82/1.328 11/1167/9.578 –
90 60 – 6/39/0.969 6/340/5.640 –
180 120 – 7/48/3.328 10/717/39.594 –
324 216 – – 5/116/25.922 –
648 432 8/33/59.484 – 6/106/145.313 9/609/891.375

Table 5: PDNRD method with parameters ω = 10, σ = 1
2kinit, θ = 0.4, q = 0.5,

η = 0.3, ε = 10−6. The steel brick problem.

η = 0.01 η = 0.3
q θ = 0.1 θ = 0.4 θ = 0.1 θ = 0.4

0.1 5/105/23.328 5/105/23.312 5/116/25.812 5/116/25.735
0.5 5/105/24.141 5/105/23.984 5/116/25.610 5/116/25.984
0.9 5/105/23.203 5/105/23.437 5/116/25.734 5/116/25.781

Table 6: PDNRD method with parameters ω = 10, σ = 1
2kinit, kinit = 2 · 104,

ε = 10−6. The steel brick problem (n = 324).

Results from Tab. 6 supports that the choice η = 0.01 is better then η = 0.3.
Parameter θ has no significant impact on the computation.

6 Conclusion

In both examples, the outstanding step length shortening occured from certain
moment for some parameter choices. As a consequence, this led to very high
number of primal-dual system solutions, which slows down the method. It
remains for further research, whether is this effect predictable or not.
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MATLAB function mldivide was used to solve primal-dual systems. These
systems were solved in two ways (see [9]) using sparse matrices (the chord prob-
lem) or positive definite matrices (the steel brick problem).
The connection between NR functions and self-concordant functions was

studied. We considered a quadratic programming problem with linear and
quadratic constraints and the respective equivalent problem. It was shown that
there exists a positive multiple of Lagrangian of the equivalent problem such
that it has the self-concordant property.
The parameters of PDNRD method were described and the recommenda-

tions about setting these parameters were made.
The solution of the primal-dual system is the most expensive operation, thus

the number of solutions of the primal-dual system determines the total complex-
ity of the computation. It was found out that the increasing number of variables
in both presented problems has not a consequence in the increasing number of
solutions of the primal-dual system. This fact supports the applicability of
PDNRD method on problems of arbitrary size.
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