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Abstract

Statistical analysis of compositional data, multivariate observations
carrying only relative information (proportions, percentages), should be
performed only in orthonormal coordinates with respect to the Aitchi-
son geometry on the simplex. In case of three-part compositions it is
possible to decompose the covariance structure of the well-known princi-
pal components using variances of log-ratios of the original parts. They
seem to be helpful for the interpretation of these special orthonormal co-
ordinates. Theoretical results are applied to real-world data containing
relative structure of landscape use in German regions.
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1 Introduction

Compositional data as multivariate observations carrying only relative infor-
mation (specially percentages, proportions, etc.) frequently occur in practice
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[1, 8]. The simplex SD, the sample space of their representations with a pre-
scribed constant sum constraint κ, can be expressed for D-part compositional
data as

SD = {x = (x1, . . . , xD)′, xi > 0, x1 + · · ·+ xD = κ}.
Compositional data naturally follow the so called Aitchison geometry with Eu-
clidean vector space structure (of dimension D − 1). The standard statistical
methods cannot be applied to compositional data until they are expressed in co-
ordinates with respect to an orthonormal basis on the simplex (in the Aitchison
geometry sense). The corresponding mapping is called the isometric logratio
(ilr) transformation [2] due to isometry property between the Aitchison geome-
try on the simplex and the real space associated with the Euclidean geometry.
Special case of compositional data is represented by three-part compositions,

x = (x1, x2, x3)
′ that are of interest since of the possibility to represent them

in ternary diagrams graphically. Consequently, there are three possible choices
of the isometric logratio transformation according to [3] (up to orientation of
coordinates), which differ only in permutation of the parts x1, x2, x3,
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The interpretation of orthonormal coordinates can be obtained from their
covariance structure, expressed using variances of log-ratios [5, 6]. In case of
(1.1), the variances of z11 and z12 are given by
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Thus the first coordinate captures all relative information about the first
compositional part (expressed by log-ratios between x1, x2 and x1, x3, respec-
tively). The second coordinate stands for the remaining log-ratio between
x2, x3. The variance of z11 consists of variances of the first two mentioned
log-ratios including x1 in the nominator and it is reduced by the variance of
log-ratio of remaining two compositional parts. This is a consequence of the
fact that each ilr variable forms a log-contrast, i.e. term of the form h′ lnx,
where h′1 = h1 + h2 + h3 = 0. Furthermore, the total variance, which repre-
sents the sum of variances of both coordinates, results in
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Analogous relations would be obtained also for (1.2) and (1.3) by permuta-
tion of parts of the original composition.
The main goal of this paper is to analyze the variance structure of the well-

known principal components as a popular tool for dimension reduction and its
impact to interpretation of these orthonormal coordinates. Note that principal
components are obtained from such rotation of the original variables that max-
imizes variance of the resulting coordinates. Although in case of standard real
data the covariance structure of principal components can be also expressed us-
ing elements of the original covariance matrix [11], we will follow an alternative
way of its derivation that enables a deeper insight into covariance structure of
three-part compositional data.

2 Variance structure of principal components

Principal component analysis represents a popular tool for dimension reduc-
tion in multivariate data sets. Consequently, only few new variables (principal
components) are able to capture most of the overall variability of the original
data. In case of compositional data, principal component analysis needs to be
performed in (preferably) orthonormal coordinates. From the theoretical point
of view, principal components of a random composition x = (x1, . . . , xD)′ are
formed by orthogonal rotation of centred ilr coordinates z = (z1, . . . , zD−1)

′,

z∗ = G′
z(z− E(z)),

where Gz comes from spectral decomposition of the covariance matrix var(z) =
GzLG

′
z as matrix of eigenvectors (the diagonal matrix L contains eigenvalues

of var(z)). Of course principal component are orthonormal coordinates as well.
At the beginning of this section we introduce a general constrained problem

of finding stationary values [7] that will be used consequently to derive the main
theorem concerning covariance structure of principal components for three-part
compositional data, denoted in the following as z∗1 , z

∗
2 . Taking the main idea

of principal component analysis into account, we search for maximal difference
between variances of both variables.
Let A be a real symmetric matrix of order D, and c a given real vector that

fulfills the condition c′c = 1. The goal is to find the stationary values of h′Ah,
taking constraints h′h = 1, c′h = 0 into account. Denote

ϕ(h, ν, μ) = h′Ah− ν(h′h− 1) + 2μh′c, (2.1)

where ν, μ are Lagrange multipliers. Differentiating (2.1) with respect to h leads
to

Ah− νh+ μc = 0. (2.2)

Multiplying (2.2) from left by c′ and using the condition c′c = 1, we have

μ = −c′Ah. (2.3)
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Then substituting (2.3) into (2.2) we obtain

PAh = νh, (2.4)

where P = I−cc′. Although P and A are symmetric, PA is not necessarily so.
Note that P2 = P, so that P is a projection matrix.
It is well-known that for two arbitrary square matrices G and H, the eigen-

values of GH equal the eigenvalues of HG. Thus we can write

λ(PA) = λ(P2A) = λ(PAP),

where λ corresponds to any (fixed) eigenvalue of the matrix in brackets.
The matrix PAP is symmetric and hence one can use the standard al-

gorithms for finding its eigenvalues. Then if we denote K = PAP and if
Kzi = λizi, it follows that hi = Pzi, where hi is the eigenvector which satisfies
(2.4) and also the initial problem. At least one eigenvalue of K will be equal to
zero, and c will be an eigenvector associated with a zero eigenvalue.
The following lemma (see [1, p. 93]) establishes a relation between log-

contrasts, corresponding to orthonormal coordinates and their covariance struc-
ture.
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Theorem 1 The covariance structure of principal components (orthonormal
coordinates) z∗1 , z

∗
2 for three-part composition x = (x1, x2, x3)

′ can be expressed
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Proof Taking properties of the variation matrix into account [1], the general
problem of finding stationary values can be replaced by maximizing h′Th with
respect to constraints h′c = 0, h′h = 1. Here c = 1√
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Consequently, by solving the equation Kh = λh (K = PTP, P = I− c′c), the
resulting non-zero eigenvalues correspond to variances of principal components
and eigenvectors to their log-contrasts. �

Note that in context of compositional data analysis, the matrixK represents
covariance matrix of centred log-ratio transformed compositions [1]. It is easy
to see that principal components and their variances, resulting as log-contrasts
of eigenvectors and (non-zero) eigenvalues of the clr covariance matrix, respec-
tively, correspond to those coming from ilr transformed compositional data [4].
Log-contrasts, corresponding to coordinates z∗1 , z

∗
2 , thus can be expressed as
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Because z∗1 , z
∗
2 are orthonormal coordinates, h1, h2 are standard and orthogonal

log-contrasts, i.e. h′
1h1 = h′

2h2 = 1, h′
1h2 = 0 (see [1, p. 85] for details).

The latter property as well as zero covariance between z∗1 and z∗2 results from
construction of principal components [10].
Note that big differences between variances of logratios contribute for max-

imalization of the first principal component at the expense of the second one.
This is obvious from the second part of (2.7)—in variance of z∗1 we add square
root of the sum of squared differences of these variances while in var(z∗2) we sub-
stract it. Further it is not neccesary to consider the covariance because princi-
pal components are uncorrelated [10]. Obviously, the interpretation of principal
components seems to be not straightforward even with the above decomposition
of the covariance structure using variance of log-ratios of compositional parts.
It will strongly depend on the concrete analyzed problem. On the other hand,
some features of variances of these coordinates are now easily detectable. As
already mentioned, the first part of both variances is formed by half of the total
variance. Particularly, for higher difference between variances of both principal
components high differences between variances of log-ratios are crucial (see the
term contained in the square root).
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3 Illustrative example

We demonstrate the above theoretical results using real-world data set from [12]
containing the relative structure of landscape use (habitation, x1; agriculture,
x2; wood and water areas, x3) in 415 German regions (2009). Note that original
data were expressed in percentages and the third part results from amalgamation
of two trace parts.

Habit. Agric.

Wood_Water

Figure 1: Relative structure of landscape use, original data in ternary diagram.
Black line corresponds to first principal component and gray line to second
principal component.

All computations and plots were performed using package ‘compositions’ of
statistical software R [9].
From ternary diagram (Figure 1) we can see that data are concentrated

mainly between parts correponding to agriculture and nature areas. Thus it
might seem that the ratio between these two parts contributes at most to the
total variance of the whole composition. Nevertheless, the variability concern-
ing the part x1 has small relative values except for big cities where it plays a
dominating role. This turns out to be crutial and it becomes visible when the
original data are expressed in orthonormal coordinates.
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The preliminary considerations concerning variability are justified by varia-
tion matrix

T =

⎛
⎝ 0 0.876 1.006

0.876 0 0.597
1.006 0.597 0

⎞
⎠ ; (3.1)

indeed, the highest variability is contained in log-ratio between the first and
third part, followed closely by log-ratio between the first and second part of the
composition. On the other hand, the effect of log-ratio between parts x2 and x3

is substantially smaller.
Figure 2 displays scatterplots of the above introduced three ilr coordinate

systems together with principal components.
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Figure 2: Relative structure of landscape use, plots of orthonormal coordinates.
The upper left plot corresponds to formula (1.1), upper right plot to (1.2), lower
left plot to (1.3) and lower right plot to principal components.
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Note that these coordinates are rotations of each other. The upper left
plot corresponds to coordinates resulting from (1.1). We can observe that the
main data cloud contains negative values of z11 and positive values of z12. It
means that the second part (agriculture) is dominating in the composition,
followed by nature area and habitation parts. It is also easy to see that the
first coordinate captures more variability of the data set which is confirmed
by Table 1. From this figure we can also see that the main data cloud in the
other two coordinates systems is located in the fourth quadrant. This means
that ratios x1/x3 and x1/x2 are mostly below zero. This confirms the fact
that the part x1 contributes at least to the relative structure of landscape use.
Consequently, it is not suprising that the scatterplot for principal components
is quite close just to coordinates (1.1).

i var(zi1) var(zi2)
1 0.528 0.299
2 0.323 0.503
3 0.388 0.438

Table 1: Variances of ilr coordinates.

From the variation matrix (3.1) the variances of principal components using
(2.7) can be easily computed, var(z∗1) = 0.5337, var(z∗2) = 0.2926, where the first
part of both variance terms, half of the total variance totvar(x), equals 0.4131.
Difference between both variances results from the sum of squared differences
between variances of log-ratios. Variances of log-ratios with x1 differ substan-
tially from variance of ln(x2/x3) that once more confirm the exceptional role
of the habitation part for the overall variability of the compositional data set.
This is also reflected by Figure 1 where both principal directions are displayed.

4 Conclusions

The case of three-part compositional data enables to decompose the covariance
structure of principal components of ilr transformed compositions and allows
for their better interpretation in sense of log-ratios of the original compositional
parts. This is advantageous in the practice because interpretation of principal
components usually strongly depends on the concrete data set and any addi-
tional support in this direction is warmly welcome. Although the maximization
problem can be solved also in general for D-part compositions, from our expe-
rience it seems to be not possible to arrive to an interpretable decomposition of
the covariance structure as for the case of three-part compositional data. More-
over, generalization for D-part compositions leads to demanding computation
of solution of an algebraic equation.
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