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JORDAN- AND LIE GEOMETRIES

Wolfgang Bertram

Abstract. In these lecture notes we report on research aiming at understan-
ding the relation beween algebras and geometries, by focusing on the classes
of Jordan algebraic and of associative structures and comparing them with
Lie structures. The geometric object sought for, called a generalized projective,
resp. an associative geometry, can be seen as a combination of the structure of
a symmetric space, resp. of a Lie group, with the one of a projective geometry.
The text is designed for readers having basic knowledge of Lie theory – we
give complete definitions and explain the results by presenting examples, such
as Grassmannian geometries.

Introduction

The following question will serve as guideline for this series of lectures: is there
a correspondence between classes of algebraic structures and classes of geometric
structures? At present, there is no general theory answering this question. But
there are two “archetypical” examples:

(A) The correspondence between (certain) associative commutative algebras and
(certain) manifolds or varieties. This correspondence is of basic importance for
algebraic geometry; it does not, in this form, generalize to arbitrary associative
algebras – the corresponding geometry, called non-commutative geometry, is not a
geometry in the usual sense (cf. [20]).

(B) The Lie functor. This correspondence comes in two versions:
(B1) Lie algebras correspond to Lie groups,
(B2) Lie triple systems correspond to symmetric spaces.

The principles underlying (A), respectively (B), are quite different from each other.
The following example is closer in the spirit to (B) than to (A):

The Jordan functors. Recall that Lie algebras come from skew-symmetrizing
associative products via [X,Y ] = XY − Y X. In a similar way, Jordan algebras
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come from symmetrizing them:
X • Y = (XY + Y X)/2 . (1)

During the second half of the 20th century, it turned out that Jordan algebraic
structures [algebras, triple systems, pairs] correspond to geometric structures, in a
similar way as Lie algebras correspond to Lie groups. Here is a rough and by no
means complete table of types of Jordan algebraic structures and their geometries.
The horizontal line separates the Riemannian cases from the non-Riemannian ones.
(Abbreviations: JA: Jordan algebra, JP: Jordan pair, JTS: Jordan triple system,
s.s.: semisimple, f.d.: finite dimensional, eucl.: euclidean)

type of Jordan structure corresponding geometry work of. . .
f.d. positive (=eucl.) JA symmetric cones Koecher, Vinberg (cf. [22])

and their tube domains Koecher (cf. [22])
positive Hermitian JTS bounded symmetric domains Loos [31], Kaup (cf. [37])
f.d. positive real JTS symmetric R-spaces Loos [31], [32]
Jordan Hilbert triples (Riem.) Jordan symmetric sp. Chu [19]
(real) s.s. f.d. JP parahermitian symmetric spaces Kaneyuki [25]

case (V, V ), V eucl.JA Cayley-type symmetric spaces Koufany [27]
(real) s.s. f.d. JA ω-domains Koecher [26]
(real f.d.) JA quadratic prehomog. sym. sp. B. [4], Ch. II
(real f.d.) JTS symmetric spaces with twist B. [4]
(general) JP generalized projective geometries B. [5]
(general) JTS generalized polar geometries B. [5]
(general) JA self-dual gen. proj. geometries B. [6]

Other non-associative examples. There is a huge zoology of classes of non-associ-
ative algebraic structures: alternative algebras, flexible algebras, Malcev algebras,
structurable algebras, left symmetric algebras, Lie-admissible algebras, Leibniz
algebras, Zinbiel algebras. . . Jean-Louis Loday coined the term “coquecigrue” for
the mythological beast (the hypothetic geometric structure) that should correspond
to one of these (Leibniz algebras). Research is ongoing in this domain.

Associative algebras. An associative algebra can be seen as a Jordan algebra
with an additional structure, or as a Lie algebra with an additional structure.
Therefore, following the paradigm (B), then we are led to ask: what is the geometric
object corresponding to an associative algebra? Asking this is not in contradiction
with non-commutative geometry – it just means that paradigms (A) and (B) are
different; of course, it raises the question to better understand the relation between
them.

In these lectures, I will give a basic introduction first to Jordan algebraic
structures (lecture 1), then to various geometries corresponding to them (lecture 2),
and finally come back to associative structures (lecture 3). The approach presented
here is very general: we do not assume that the base field K is the real or complex
number field nor that the dimension over K is finite (in fact, we allow K to be a
commutative ring, so there need not be a dimension at all). The point of view is
thus more algebraic and synthetic-geometric than most readers will be used to;
however, everything is nicely compatible with the differential-geometric point of
view – I will give some remarks and references on this in the last section.
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1. First lecture:
“There are no Jordan algebras, there are only Lie algebras”

This dictum is attributed to Isaiah Kantor: he discovered a construction nowadays
often called the Kantor-Koecher-Tits (KKT) construction. This construction permits
to understand Jordan algebras in terms of (graded) Lie algebras. The first aim
of this lecture is to explain what Jordan algebras are, second, why there are no
Jordan algebras but only Lie algebras, and third, why the converse seems to be
almost true as well.

1.1. What is a Jordan algebra (Jordan triple system, Jordan pair)? There
are three main categories of Jordan algebraic structures. To get a first impression,
here are the typical examples for these categories, obtained by symmetrizing
associative structures:

(A) Jordan algebra of square matrices M(n, n; K) with
X • Y = (XY + Y X)/2,

(B) Jordan triple system of rectangular matrices M(p, q; K) with
T (X,Y, Z) = XY tZ + ZY tX,

(C) Jordan pair (V +, V −) :=
(
M(p, q; K),M(q, p; K)

)
with

T±(X,Y, Z) = XY Z + ZY X.

Definition 1.1. A special Jordan algebra is a subspace V of an associative algebra
A closed under the Jordan product x • y := (xy + yx)/2. Equivalently: V is closed
under squaring: x ∈ V ⇒ x2 ∈ V .

Lemma 1.2. In every special Jordan algebra the Jordan identity holds:

x • (x2 • y) = x2 • (x • y).

Proof. In an associative algebra, let Lx(z) = xz = Rz(x). By associativity, the
operators Lx and Ry commute: [Lx, Ry] = 0, and [Lx, Lx2 ] = 0, whence

[Lx +Rx, Lx2 +Rx2 ] = 0
which applied to some y this gives the Jordan identity. �

Definition 1.3. A (linear) Jordan algebra is a commutative K-algebra satisfying
the Jordan identity. A (linear) Jordan triple system (JTS) is a K-vector space V
together with a trilinear map T : V 3 → V satisfying
(JT1) symmetry in the outer variables: T (u, v, w) = T (w, v, u),
(JT2) an identity in 5 variables to be given below.
A (linear) Jordan pair is a pair of K-vector spaces (V +, V −) together with two
trilinear maps T± : V ± × V ∓ × V ± → V ± which are symmetric in the outer
variables and satisfy an identity (LJP2) to be given below. Here K is a commutative
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field or ring such that 2 and 3 are invertible in K. As usual, morphisms of such
structures are bilinear (resp. trilinear) maps which are compatible with the binary,
resp. ternary, “product” maps.

Remark. We assume throughout that 2 and 3 are invertible in the base ring K.
For all three Jordan categories, the more sophisticated algebraic theory, valid for
completely general K, is quadratic in nature (cf. [30, 33]). For instance, observe
that squares x2 are the same in the associative and in a special Jordan algebra.
Indeed, the Jordan product is equivalent to the squaring map A→ A, x 7→ x2 (and
essentially also to the inversion map A× → A, x 7→ x−1, cf. [35]).

1.2. “There are only graded Lie algebras.” Let g be a K-Lie algebra and Γ
an abelian group. The cases Γ = Z/2Z et Γ = Z will be most important later on.

Definition 1.4. We say that g is Γ-graded if g comes with a direct sum decom-
position g =

⊕
γ∈Γ gγ such that, for all α, β ∈ Γ, [gα, gβ ] ⊂ gα+β . Morphisms of

Γ-graded Lie algebras are Lie algebra homomorphisms respecting the gradings.1

Typically, gradings arise in the following way: let f : g→ g be diagonalizable,
and g = ⊕λgλ be the eigenspace decomposition. Then:

– if f is an automorphism, then [gλ, gµ] ⊂ gλµ: we have Γ ⊂ (K×, ·),
– if f is a derivation, then [gλ, gµ] ⊂ gλ+µ: we have Γ ⊂ (K,+).

Conversely, given such bracket rules, one can define a grading derivation (resp.
grading automorphism). Example: for eigenvalues ±1, this gives

Lemma 1.5. There is a bijection between Z/2Z-graded Lie algebras and symmetric
pairs, i.e., pairs (g, σ) of a Lie algebra with an involution σ (automorphism of
order 2). The grading is given by the eigenspaces of σ.

The −1-eigenspace m := g−1 of an involution σ is stable under the ternary Lie
bracket [X,Y, Z] := [[X,Y ], Z]. This ternary bracket has the following properties:

(LT1) [X,Y, Z] = −[Y,X,Z]
(LT2) [X,Y, Z] + [Y, Z,X] + [Z,X, Y ] = 0 (Jacobi identity)
(LT3) the endomorphism R(X,Y ) : [X,Y, ·] : m→ m is a derivation:

[X,Y, [U, V,W ]] = [[X,Y, U ], V,W ] + [U, [X,Y, V ],W ] + [U, V, [X,Y,W ]] .

Definition 1.6. A Lie triple system (LTS) is a K-vector space m together with a
trilinear ternary product [X,Y, Z] satisfying the identities (LT1)–(LT3).

Lemma 1.7 (Standard Imbedding). Every LTS arises as −1-eigenspace in an
involutive Lie algebra. More precisely, we have a bijection between Lie triple systems
and Z/2Z-graded Lie algebras that are minimal, i.e., generated by the −1-eigenspace
of the involution.

Proof. Given a LTS m, define g := m ⊕ R(m ⊗ m) ⊂ m ⊕ Der(m) together with
the “obvious” Lie bracket such that m = g−1 and R(m⊗m) = g1 (cf. [28]). �

1Remark: one should not mix up this with Lie superalgebras – even if Γ = Z/2Z, we speak
here of ordinary, graded (and not super-graded) Lie algebras!
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Remark. This bijection is in general not an equivalence of categories!

1.2.1. The category JP of Jordan pairs, and 3-graded Lie algebras. Now we are
ready to define the Jordan categories:

Definition 1.8. A 3-graded Lie algebra is a Z-graded Lie algebra such that gn = 0
for n 6= 0, 1,−1. Thus

g = g−1 ⊕ g0 ⊕ g1, [g1, g1] = 0 = [g−1, g−1], [g1, g−1] ⊂ g0, [g0, gi] ⊂ gi.

The endomorphism D which is n id on gn for n = −1, 0, 1, is then a derivation of
g, called the grading derivation. Obviously, m := g−1 ⊕ g1 is then a LTS, and it is
polarized in the following sense:

Definition 1.9. A polarized LTS is a LTS of the form m = m−1 ⊕m1 such that
[mi,mj ,mk] ⊂ mi+j+k. Equivalently, the restriction of the grading map I := D|m
is an invariant polarization (I2 = id) which is twisted (i.e., a LTS-derivation).

Theorem 1.10 (KKT: first version). If m = m1 ⊕ m−1 is a polarized LTS, let
V ± := m±1 and

T± : V ± × V ∓ × V ± → V ±, (u, v, w) 7→ T±(u, v, w) := [[u, v], w] .

Then (V ±, T±) is a linear Jordan pair: the trilinear maps T± satisfy
(LJP1): T±(u, v, w) = T±(w, v, u), and
(LJP2):

T±
(
u, v, T±(x, y, z)

)
= T±

(
T±(u, v, x), y, z

)
− T±

(
x, T∓(v, u, y), z

)
+T±

(
x, y, T±(u, v, w)

)
Conversely, given a linear Jordan pair (V +, V −), we may reconstruct the polarized
LTS by these formulae, and using the standard imbedding, we get back a 3-graded
Lie algebra. Summing up, there is a bijection between linear Jordan pairs and
3-graded Lie algebras that are minimal (i.e., generated by g1 ⊕ g−1).

The proof is a simple consequence of the standard imbedding: note that (LJP2)
is a rewriting of (LT3) by using the new notation. Jordan pairs form, in a sense,
the “most primitive” or “most basic” Jordan category. Note that, as above, the
theorem describes a bijection of objects, but in general not an equivalence of
categories. In general, these objects are not supposed to be semi-simple, nor even
finite dimensional. If they are, and K = R, then classification is relatively easy
([34]). The following table shows the 6 main types of Jordan pairs; in the first
line, E and F are arbitrary K-modules (in finite dimension: E = Kp, F = Kq), in
the second line, E = F (= Kn), in the third and following lines, E, resp. V carry
a non-degenerate quadratic form, and the last two lines are related to octonion
algebras:
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family name Jordan pair (V +, V −) T+(x, y, z) = 3-graded
Lie algebra g =

Ip,q: rectangular (Hom(E,F ),Hom(F,E)) xyz + zyx Pgl(E ⊕ F )
general linear

In,n: quadratic case E = F
II: symmetric (Sym(E), Sym(E)) xyz + zyx sp(E,E)

symplectic
III: skew (Asym(E),Asym(E)) xyz + zyx o(E,E)

orthogonal
IV : spin factor (V, V ) see below o(V ⊕K2)

orthogonal
V : Albert algebra V + = V − = Herm(3,OK) xytz + zyty exceptional

of type E7
V I: octonion plane (M(1, 2; OK),M(2, 1; OK)) xyz + zyx exceptional

of type E6

where in case IV we have T+(x, y, z) = 〈x, y〉z+〈z, y〉x−〈x, z〉y, for any symmetric
bilinear form 〈·, ·〉. For K = C and finite dimension, this gives a complete list of
simple pairs. For other fields, such as K = R, the list becomes longer: e.g., spaces
of (skew-)Hermitian matrices are simple real Jordan structures.

1.2.2. The category of Jordan triple systems, and involutions of graded Lie algebras.

Definition 1.11. An involution of a Z-graded Lie algebra g =
⊕

i∈Z gi is an
automorphism τ : g→ g of order 2 such that τ(gi) = g−i.

Theorem 1.12 (KKT: second version). An involution of a 3-graded Lie algebra
induces an involution of the polarized LTS m = m−1 ⊕m1 and of the linear Jordan
pair (V +, V −). The vector space V := m1, together with the trilinear product

T (u, v, w) := [[u, τ(v)], w]

is a Jordan triple system, i.e., T : V 3 → V is a trilinear map satisfying the identies
(JT1) and (JT2) obtained from (LJP1) and (LJP2) by omitting the indices ±.
Conversely, given a JTS, one may reconstruct a linear Jordan pair with involution
and the 3-graded Lie algebra with involution. Thus we have bijections between:

– Jordan triple systems T ,
– Jordan pairs (V +, V −) with involution,
– twisted polarized LTS m = m+ ⊕m− with involution τ |m,
– 3-graded Lie algebras g with involution τ .

Definition 1.13. The 3-graded Lie algebra associated to a JTS (T, V ) is called
the KKT-algebra of T , and (V +, V −) its underlying Jordan pair.

Going through the proof of the preceding theorem, one notices that the LTS of
the symmetric pair (gτ , h), where h = gτ ∩ g0, is given by the following

Lemma 1.14 (The Jordan-Lie Functor). For any JTS (V, T ), we have a LTS on
V defined by

[x, y, z] := RT (x, y)z := T (x, y, z)− T (y, x, z).
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This defines a functor JTS → LTS, T 7→ RT , which we call the Jordan-Lie
functor.

The Jordan pairs from the table given above all admit several different involutions.
For K = R, the list of JTS is quite long (classification by Erhard Neher), and
comparing it with the list of LTS (Marcel Berger [1]) reveals a surprising fact (also
due to E. Neher): the Jordan-Lie functor is not far from being a bijection on simple
real finite-dimensional objects – see [4] for references, and for the list of classical
objects. As far as we know, there is no general conceptual explanation of this fact –
the only work we know of is on the compact case (O. Loos, [32]): Loos describes
the Jordan-Lie functor in terms of cubic unit lattices of root systems of compact
LTS.

1.2.3. The category of Jordan algebras. It turns out that binary Jordan algebras
form the “most complicated” of the three Jordan categories. The proofs of the
following results are not just a simple check of definitions, as it was the case for
the other results given so far:

Theorem 1.15 (“Meyberg’s Theorem”). Assume (V +, V −) is a linear Jordan
pair and y ∈ V −. Then V + with bilinear product • is a Jordan algebra, called the
local or homotope Jordan algebra at y:

x • z := T+(x, y, z) .

Theorem 1.16 (KKT: third version). The local algebra has a unit element, if,
and only if, the operator

Q(y) := Q−(y) : V + → V − , x 7→ Q(y)x := 1
2T

+(y, x, y)

is bijective. If this is the case, then (Q(y))−1y is the unit element in the homotope
algebra, and the JTS T has the same underlying Jordan pair as the JTS T̃ given by

T̃ (x, y, z) = x • (y • z)− y • (x • z) + (x • y) • z .

Definition 1.17. We say that a Jordan pair (V +, V −) is of the first kind, or that
it has invertible elements, if some of its local Jordan algebras have a unit element.
(In the table above, this is true for In,n, II, III with dimE even, IV and V . This
is related to the list of Hermitian symmetric spaces of tube type.)

Theorem 1.18 (“Fundamental Formula”). For all x ∈ V + and y ∈ V −,
Q(x)Q(y)Q(x) = Q(Q(x)y) .

“There are no Jordan algebras. . .” Summing up, as Kantor noticed, a Jordan
algebra is “is nothing but” one of the local algebras attached to a 3-graded Lie
algebra. However, this is not the end of the story: in [33], Kevin McCrimmon
answers to Kantor (loc. cit., p. 14): “Of course, this can be turned around: nine
times out of ten, when you open up a Lie algebra you find a Jordan algebra inside
which makes it tick.” This is indeed quite close to being true, but it is rather hard
to explain why this is so. On the one hand, to a single Jordan algebra, we can
associate several Lie algebras: the KKT-algebra is, in a sense, the “biggest” of
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all of them; there are two other ones, the so-called structure algebra g0, and the
derivation algebra g0 ∩ gτ . But in general none of these constructions is functorial.
On the other hand, we have the Jordan-Lie functor: as mentioned above, the fact
that it is quite close to being a bijection remains rather mysterious.

2. Second lecture:
“Social symmetric spaces”

In the first lecture we explained that a JTS T can be interpreted as an LTS
R with an additional structure (namely a realization as R = RT : the Jordan-Lie
functor). Since LTS correspond to symmetric spaces, JTS shall correspond to
“Jordan symmetric spaces”, i.e., to symmetric spaces with some additional structure.
We are going to explain this in two steps:

(A) First, what is a symmetric space?
(B) and second what is the additional structure? To name it, we will call it a

“social structure”.

2.1. Symmetric spaces. In Lie theory, a symmetric space is usually defined as a
homogeneous space M = G/H such that G is a Lie group and H an open subgroup
of the fixed point group Gθ of some non-trivial involution θ of G. In [28], O. Loos
has developed an equivalent, but much more conceptual approach:

Definition 2.1. A symmetric space is a manifold M equipped with a smooth
binary “product map” µ : M ×M →M , (x, y) 7→ µ(x, y) =: sx(y) such that

(M1) µ(x, x) = x, i.e., x is a fixed point of sx,
(M2) µ(x, µ(x, y)) = y, i.e., s2

x = id,
(M3) µ(x, µ(y, µ(x, z))) = µ(µ(x, y), µ(x, z)), i.e., sx is an automorphism of µ,
(M4) the fixed point x of sx is isolated, equivalently: Tx(sx) = −idTxM .

We will use both approaches, but Loos’ approach is our favorite one (see [4], Chapter
I, or [7] for an account on the general theory of symmetric spaces). One of the
conceptual advantages of Loos’ approach is that it is base point free: “all points
are created equal”. There is a base-point free approach to groups as well – not so
well-known, possibly because there is no universally accepted terminology:

Definition 2.2. A torsor or heap or groud or principal homogeneous space (phos)
is a set G together with a map denoted by G3 → G, (x, y, z) 7→ (xyz) such that

(T1) idempotency: (xxy) = y = (yxx),
(T2) para-associativity: (x(uvw)z) = ((xwv)uz) = (xw(vuz)).

Exercise: (a) if (G, e, ·) is a group, show that G with (xyz) = xy−1z is a torsor,
(b) if G is a torsor and y ∈ G, show that (G, y, ·y) with x ·y z = (xyz) is a group,
(c) show that both constructions are inverse to each other and are functorial
(morphisms being suitably defined).

It is well-known that every Lie group G can be viewed as symmetric space: using
base points, we consider a Lie group as homogeneous space G ∼= G×G/dia(G×G),
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and in a base point free way, we consider G with product

(2.1) µ(x, y) = (xyx) = xy−1x .

In other words, we restrict the ternary product (xyz) to the diagonal x = z. (Note:
in the same way an associative algebra with product xz is turned into a Jordan
algebra: one restricts to the diagonal x = z.)

2.2. Social structure: historical. The following concept was introduced in [36]:

Definition 2.3. A symmetric R-space is a flag manifold G/P (G real semisimple
Lie group, P a parabolic subgroup) which at the same time is a symmetric space
G/P = U/K, with K open in Uθ and U a maximal compact subgroup U of G.

In the late 60ies and early 70ies, Solodovnikov, Rivillis, and Makarevič remarked
that symmetric R-spaces contain (as open orbits) a lot of other symmetric spaces,
besides the compact (total) U -orbit, and studied these realizations (see [4] for
references). At the same time, O. Loos realized that symmetric R-spaces are in
bijection with compact real Jordan triple systems (announced in [29] and proved
in [32]). More generally, we will see that generalized projective geometries have in
common with symmetric R-spaces a rich “social life” – there are large families
of symmetric spaces living harmonically together, on an underlying set G/P
where G is a big, “projective” or “conformal”, overgroup, while all assumptions on
finite-dimensionality or semisimplicity of G can be dropped.

2.2.1. Grassmann geometries. Before coming to the general construction, let us
study this important example: for a vector space V over a field K (or even a module
over a ring K), we denote by X := Gras(V ) the full Grassmannian (set of all sub-
spaces of V ), and by X+ := GrasFE(V ) the Grassmannian of type E and co-type F
(set of all subspaces that are isomorphic to a given “model space” E ⊂ V and
admit a complementary subspace isomorphic to another given model space F ⊂ V ).
Denote by X− := GrasEF (V ) the dual Grassmannian of X+. Recall:

Lemma 2.4. The geometry X+ is homogeneous under the general linear group
G = Gl(V ). If K = R,C,H, and dimE = p, dimF = q, then the stabilizer of the
base point o = Kp ⊂ Kp+q is a (maximal) parabolic subgroup of the (semisimple)
Lie group PGl(V ). Moreover, any choice of scalar product on Kp+q induces on X+

a (compact) symmetric space structure, isomorphic to O(p+ q)/(O(p)×O(q)), resp.
U(p+ q)/(U(p)×U(q)), resp. Sp(p+ q)/(Sp(p)× Sp(q)).

If we look at open orbits in X which are symmetric spaces, then we get a much
bigger class of not necessarily compact spaces. Most classically, among them the
“affine cells” of the Grassmannian, viewed as flat symmetric spaces:

Lemma 2.5. Let us call a, x ∈ X transversal if V = a⊕ x; notation: a>x. Then,
for all a ∈ X , the set Va := {x ∈ X | a>x} of complements of a, is, in a natural
way, an affine space over K.
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This classical fact can be proved in various ways. For our purposes, a convenient
proof is as follows: if a>x, let P ax : V → V be the linear projection operator with
kernel a and image x. If x, z>a, and r ∈ K, define two other linear operators by

(2.2) Ma
xz := P ax − P za = P ax − idV + P az ,

Πa
r;x := P ax + rP xa = (1− r)P ax + ridV .

Choose an origin y ∈ Va (so y is a subspace transversal to a). Then Va with

(2.3) x+ z := x+y z := Ma
xz(y), rz := Πa

r;y(z)

is a K-module with origin y. If K = R, then (V, y,+y) is an abelian Lie group, and
it is a symmetric space with symmetries sz(x) = z − x+ z = z +x z = Ma

zz(x) =
Πa
−1;z(x). Next, some non-flat symmetric spaces:

Lemma 2.6. For any non-degenerate quadratic or symplectic form β : V ×V → K,
let p : X → X , x 7→ p(x) = x⊥ the corresponding orthocomplementation map, and

M := Mp := {x ∈ X | V = x⊕ x⊥}

the set of β-non-degenerate subspaces. Then Mp becomes a symmetric space with

sz(y) := Πp(z)
−1;z(y) = Mp(z)

z,z (y) .

If β is a scalar product, as in Lemma 2.4, then this gives the symmetric spaces
named in that lemma; if β is indefinite, we get, e.g., symmetric orbits of the type
O(p, q)/O(p)×O(q), and similar spaces. Finally, for p = q (i.e., GrasE(E ⊕ E)),
there is another particular space: the group case Gl(E), see next lecture.

2.2.2. General construction of a geometry associated to a 3-graded Lie algebra. In
[16, 17], the following very general construction of a geometry out of a Jordan
pair or -triple system has been given. The key principle is a systematic use of the
relation between gradings and filtrations of a Lie algebra g:
(a) Start with a JTS or with a Jordan pair, and let g its 3-graded KKT algebra.
Without loss of generality, one may assume that the center of g is trivial.
(b) We look at the space of all inner 3-gradings of g (Euler operators), that is, the
set of all inner derivations having 3 eigenvalues −1, 0, 1:

(2.4) G := {E ∈ g | (ad(E))3 − ad(E) = 0}

This set can be defined for any Lie algebra, thus, strictly speaking, step (a) is
not really necessary: it serves just to ensure that G contains a non-trivial element,
which can be taken as base point in G, if needed.
(c) For any Euler operator E, the map SE := idg − 2(ad(E))2 : g → g is an
automorphism of order 2 having eigenvalues (−1, 1,−1) where ad(E) has eigenvalues
(−1, 0, 1). The set G, with product

(2.5) µ(E,F ) = sE(F ) = F − 2[E, [E,F ]]

satisfies the algebraic axioms (M1), (M2), (M3) of a symmetric space. The following
steps show that it is polarized (and it also gives an algebraic analog of (M4)):
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(d) For any Euler operator E, there is a positive and a negative flag of eigenspaces:

(2.6) f+(E) : (g−1 ⊂ g−1 ⊕ g0 ⊂ g), f−(E) : (g1 ⊂ g1 ⊕ g0 ⊂ g) .
Let F be the space of “short flags” thus obtained: it plays the role of the Grass-
mannian X from the preceding example. There is an analogue of the affine cells:

Lemma 2.7. For any flag f = (f0 ⊂ f1 ⊂ g) ∈ F , the set f> of all transversal flags
of f is an affine space over K, modelled on f0. Here, a flag e = (e0 ⊂ e1 ⊂ g) is
called transversal to f if they are “crosswise complementary”: g = f0 ⊕ e1 = e0 ⊕ f1.

The affine parts f> of F are called “Jordan charts”. They should be seen as
a class of priviledged coordinates, in which most objects have particularly nice
expressions. For instance, in a Jordan chart, elements of Aut(g) act by quadratic
fractional maps.

Theorem 2.8. A pair (e, f) ∈ F×F is transversal, if and only if, there is an Euler
operator E ∈ G such that e = f+(E) and f = f−(E). In other words, the image of
the map G → (F ×F), E 7→ (f+(E), f−(E)) is precisely the set of transversal pairs.

Since the set of transversal pairs may be considered as “Zariski-dense” in F ×F ,
this imbedding defines a local product structure on G.
(e) Now let us add an involution τ to the whole set-up (that is, in point (a), we
start with a JTS T ). The map τ acts naturally on G (by automorphisms of µ) and
on F × F (by the exchange map). The fixed point set Gτ is a symmetric subspace,
identified with a part of F , namely with the set of flags such that τ(f) is transversal
to f. (This generalizes Lemma 2.6.)
(f) There is a description in terms of homogeneous spaces: the whole space F
is of course in general not homogeneous under Aut(g), but certain “connected
components” are (exactly as in the Grassmannian example, where Gras(V ) is not
homogeneous, but GrasFE(V ) is). The connected components are then homogeneous
spaces G/P . A good choice for G is the group generated by all SESF with E,F ∈ G,
called the projective elementary group.
(g) An abstract approach to spaces like G and F has been given in [5]: they are
called generalized projective geometries. As seen above (item (d)), F and X have
in common that they are covered by affine charts. The abstract approach features
this: the affine parts “interact with each other” according to certain algebraic laws
formulated in loc. cit., generalizing, in some sense, the symmetric space law (M3).
See also [2] for new results in this direction.
(h) Up to know, everything is purely algebraic: there is no topology around. But,
under very general and natural assumptions on K and on g, one can define smooth
manifold structures on G and F – see Section 4 below.

2.3. Family life. By the preceding construction, we have constructed one symme-
tric space associated to a JTS, that is, to every involution of g we have constructed
one symmetric space structure on F . Since there are many involutions, this gives
indeed a family of symmetric space structures on F which we call isotopes of each
other. More surprisingly, this family “degenerates smoothly”, it contracts, e.g., to
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flat spaces. We will investigate some examples in the next chapter. On a Jordan
algebraic level, the corresponding phenomenon is homotopy:

Lemma 2.9. Given a Jordan pair (V +, V −), a homotopy is a linear map α : V + →
V − such that

∀x, y, z ∈ V + : αT+(x, αy, z) = T−(αx, y, αz) .
Then the formula Tα(x, y, z) := T+(x, αy, z) defines a JTS structure on V = V +.

The proof is by a direct, two-line computation (cf. [4], Lemma III.4.5). If α is
invertible, we call it an isotopy, and for a JTS, these notions are defined in the
same way by omitting superscripts ±. For instance, any automorphism of order
two of a JTS is an isotopy.

Definition 2.10. The structure variety of a Jordan pair is the set of all homotopies
Svar(V +, V −) ⊂ HomK(V +, V −), and Tα is called the α-homotope. Also, the family

Rα(x, y)z := RTα(x, y)z = Tα(x, y, z)− Tα(y, x, z) = T+(x, αy, z)− T+(y, αx, z)
of Lie triple systems will be called homotopes of each other.

Note that (Rα)α∈Svar(V +,V −) is a family of LTS all living on the same underlying
vector space V = V +, parametrized by the structure variety. This variety is
an algebraic variety; it is a cone (stable under taking multiples), hence every
element contracts to 0. Correspondingly, Rα and Tα describe deformations, resp.
contractions of LTS, resp. of JTS. For α = 0, we always get the most singular
contraction, the flat LTS R0 = 0.
The classification problem may now be refined as follows:

1. Classify (simple. . .) Jordan pairs (see list in first lecture),
2. Classify their isotopes, i.e., classifiy (simple. . .) JTS,
3. Classify the whole structure variety, i.e., all homotopes.

For real JTS, see [4] for a list of JTS, organized according to the point of view
of isotopy, thus answering to 2. For special Jordan pairs, the last item has been
achieved in [11, 12], by using the link with associative structures:

3. Third lecture :
“A non-associative view on associative structures”

In this third lecture we come back to associative structures. From the point of
view of Jordan theory, associative structures are “Jordan structures with additional
structure” (“special structure”), just as JTS are LTS with additional structure. We
summarize this by the “Jordan-Lie triangle”:

associative: xy
↙ ↘

Jordan: x • y Lie: [x, y]

When looking for a global, geometric version of this triangle, we are led to ask:
what is the “meaning” of associativity? Put differently: what kind of geometric



JORDAN- AND LIE GEOMETRIES 287

structure corresponds to associative algebras? This leads to further questions: how
do the “exceptional” structures arise? Either of these topics would deserve a whole
series of lectures on its own. We will give some first answers by looking at examples.
First of all, the “Jordan Lie triangle” becomes a true triangle (including a bottom
arrow) if we look at ternary structures. We start with an easy observation:

Lemma 3.1. Assume A is an associative algebra. Then, for all a ∈ A, the product
(x, z) 7→ xaz is again bilinear and associative. Thus [x, y]a := xay − yax is a Lie
bracket on A.

Slightly more generally, this holds also for ternary associative systems:

Definition 3.2. An associative pair is a pair of K-modules (A+,A−) with two
ternary trilinear products A± × A∓ × A± → A±, (x, y, z) 7→ 〈xyz〉± such that

(A) 〈xy〈uvw〉〉 = 〈〈xyu〉vw〉 = 〈x〈vuy〉w〉.
With suitably defined morphisms, associative pairs form a category AP. Ob-
viously, for any fixed element y ∈ A∓ we have an associative algebra on A±
x ·y z := 〈xyz〉±, called the local algebra at y or y-homotope algebra. Finally,
associative triple systems are K-modules with a trilinear map satisfying the same
identity, where superscripts are omitted.

Lemma 3.3. There is a functor AP → JP defined by symmetrizing: T±(x, y, z) :=
〈xyz〉± + 〈zyx〉±. A Jordan pair obtained in this way is called special.

Similarly there is a functor ATS → JTS, and we complete with JTS → LTS to
get

associative TS: 〈xyz〉
↙ ↘

Jordan TS: T (x, y, z) −→ Lie TS: R(x, y)z

Main example: rectangular matrices, (A+,A−) = (M(p, q; K),M(q, p; K)) with
products 〈XY Z〉+ = XY Z, 〈XY Z〉− = ZY X. Thus the Jordan pair of rectangular
matrices is special. For p = q = n, we are back in the case of the associative algebra
of square matrices. More generally, consider (Hom(E,F ),Hom(F,E)) with the
same product.

3.1. Associative geometries. The prototype of these is the Grassmann geometry
considered in the preceding lecture, which corresponds to the Jordan pair of
rectangular matrices. The following result from [14] gives the geometric analog of
the homotope-algebras of an associative pair. Analogously to (2.2), we define, for
a>x and b>z, an operator
(3.1) Mab

xz := P ax − P zb = P ax − idV + P bz .

Theorem 3.4. Let X = Gras(V ) be a Grassmann geometry. Then, for all a, b ∈ X ,
the set Uab := Va ∩ Vb of common complements of a and b, is a torsor with respect
to the ternary product

(xyz)ab := Mab
xz(y) .
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This torsor is commutative if a = b; more generally, we have, for all a, b ∈ X ,

(xyz)ab = (zyx)ba .

Exercise: prove this – the proof uses only elementary linear algebra, see [14] for
hints. The pentary map Γ: (x, a, y, b, z) 7→ (xyz)ab has “wonderful” properties,
which are studied in [14, 15, 3]. One of the most surprising features is that the map
Γ extends, in a rather canonical way, to a map Γ: X 5 → X , such that, for any fixed
couple (a, b), the partial map of the remaining three arguments is a semi-torsor (it
satisfies the property (T2), and hence, for fixed y, defines families of semigroups
on X ). Moreover, Γ has a nice behavior under permutations, which remind of the
classical cross-ratio on a projective line.

3.2. Homotopy revisited. The preceding theorem has two special cases which
are, in a sense, opposite of each other:

(a) a = b: we get back the affine cell Uaa = Va
(b) the transversal case a>b: then V = a ⊕ b, and Uab is the set of common

complements of a and b; each such complement is the graph of an invertible linear
operator a → b; hence Uab can be identified with the set of linear isomorphisms
from a onto b. This set carries a natural torsor structure, and it is not hard to
show that this torsor structure agrees with the one from the preceding theorem.
Therefore, as a group, Uab is isomorphic to the general linear group GlK(a).

Now, the general case of Uab can be understood as a deformation of (a) in
direction of (b). In an affine chart, the groups Uab are explicitly described as
follows:

Lemma 3.5. For any matrix A ∈M(n, n; F), the product X ·AY = X+Y −XAY
on M(n, n; F) is associative, has neutral element 0, and an element X is invertible
iff (1−XA) is an invertible matrix. The inverse is then jA(X) = −(1−XA)−1X.

Proof. By direct computation: associativity:

X ·A (Y ·A Z) = X + Y + Z − (XAY + Y AZ) +XAY AZ = (X ·A Y ) ·A Z

invertibility: let φ(X) := 1−AX, then φ is a homomorphism: φ(0) = 1,

φ(X ·A Y ) = 1−AX −AY +AXAY = (1−AX)(1−AY ) = φ(X)φ(Y )

inverse: 0 = X ·A Y iff 0 = X + Y −XAY iff Y = −(1−XA)−1X. �

This construction generalizes to all other classical groups: orthogonal, unitary
and symplectic groups all live in suitable Lagrangian geometries ([15]; in symplectic
geometry, the symplectic case is referred to as canonical relations). We will not
explain here the geometric construction from [15], but just the analog of the lemma
above (whose proof is again elementary):

Lemma 3.6. The following sets with product X ·A Y as above are (algebraic)
groups:
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label underlying set parameter space product
Gln(A; F) := {X ∈M(n, n; F)|1−AX invertible} A ∈M(n, n; F) X ·A Y
Glp,q(A; F) := {X ∈M(p, q; F)|1−AX invertible} A ∈M(q, p; F) X ·A Y
On(A; K) := {X ∈ Gln(A,K)|X +Xt = XtAX} A ∈ Sym(n; K) X ·A Y
Spn/2(A; K) := {X ∈ Gln(A,K)|X −Xt = XtAX} A ∈ Asym(n; K) X ·A Y
Un(A; C) := {X ∈ Gln(A,C)|X +X

t = X
t
AX} A ∈ Herm(n; C) X ·A Y

Un(A; H) := {X ∈ Gln(A,H)|X +X
t = X

t
AX} A ∈ Herm(n; H) X ·A Y

Un(A; H̃) := {X ∈ Gln(A,H)|X + X̃t = X̃tAX} A ∈ Herm(n; H̃) X ·A Y

Their Lie algebras are the following spaces with Lie bracket [X,Y ]A = XAY −Y AX:

Lie
family name label and underlying space parameter space bracket
general linear (square) gln(A; F) := M(n, n; F) A ∈M(n, n; F) [X,Y ]A
general linear (rectan.) glp,q(A; F) := M(p, q; F) A ∈M(q, p; F) [X,Y ]A
orthogonal on(A; K) := Asym(n; K) A ∈ Sym(n; K) [X,Y ]A
[half-] symplectic spn/2(A; K) := Sym(n; K) A ∈ Asym(n; K) [X,Y ]A
C-unitary un(A; C) := Aherm(n; C) A ∈ Herm(n; C) [X,Y ]A
H-unitary un(A; H) := Aherm(n; H) A ∈ Herm(n; H) [X,Y ]A
H-unitary split un(A; H̃) := Aherm(n; H̃) A ∈ Herm(n; H̃) [X,Y ]A

Notation used here: we consider the associative algebra M(n, n; F) (where F is any
ring with unit) and the usual involutions (transposed or adjoint matrix); concerning
their eigenspaces, Sym denotes symmetric, Asym skewsymmetric, Herm denotes
Hermitian and Aherm skew-Hermitian matrices, where K = C is always equipped
with its usual complex conjugation, and for K = H we use the following conventions:
if nothing else is specified, we use the “usual” conjugation λ 7→ λ (minus one on
the imaginary part imH and one on the center R ⊂ H). If we consider H with its
“split” involution λ 7→ λ̃ := jλj−1, then we write H̃. Note: in all cases, for invertible
A we get a usual (i.e., semisimple or reductive) classical Lie algebra, whereas for
non-invertible A we get “new” Lie algebras, which are contractions of their “usual”
counterparts.

Exercise. The set Ôn(A; K) := {X ∈ M(n, n; K)|X + Xt = XtAX} is stable
under the product X ·A Y and forms a semigroup with unit 0. Thus we get a
semigroup hull containing the orthogonal group as open dense subset. Similarly for
all other classical groups. (More in [15].)

Classification of homotopes. The families of classical groups just given are indeed
associative counterparts of the homotopes introduced at the end of the preceding
lecture. In [11], elementary constructions of a similar kind are given for symmetric
spaces coming from Jordan structures:

Lemma 3.7. Let A an associative algebra with involution τ (anti-automorphism
of order 2), and let A ∈ A.
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(i) If A belongs to the eigenspace A±τ , then the “opposite” eigenspace A∓τ is
stable under the Lie bracket [X,Y ]A (note: this has implicitly been used in the
preceding construction! ).

(ii) If A belongs to the eigenspace A±τ , then both eigenspaces are LTS with
respect to [[X,Y ]A, Z]A.

Item (i) leads to 2 types of Lie algebras, denoted by spA,A,τ and uA,A,τ , and item (ii)
leads to 4 cases of LTS, two of them being “group cases, considered as LTS”, and
the other two corresponding to symmetric spaces of type “general linear/unitary”,
resp. “general linear/symplectic”, according to the following table

A ∈ Aτ A ∈ A−τ
LTS Aτ (gA,A, uA,A,τ ) spA,A,τ
LTS A−τ uA,A,τ (gA,A, spA,A,τ )

Next, given two commuting involutions τ, τ ′ of A, let the joint eigenspace decompo-
sition be written in the form

A = A(1,1) ⊕ A(−1,1) ⊕ A(1,−1) ⊕ A(−1,−1) .

Then, applying the lemma to each of the two involutions, we see that, if A belongs to
one of these eigenspaces, all four eigenspaces are LTS with respect to [[X,Y ]A, Z]A.
This leads to 16 cases for combination of choices (eigenspace for the parameter,
eigenspace for the underlying set of the LTS). Of course, this observation generalizes
for an arbitrary finite number of commuting involutions, but, as a matter of fact,
it turns out that all classical symmetric spaces can be obtained by choosing two
commuting involutions on a suitable matrix algebra, and looking at one of the
common eigenspaces. In [12], we have worked out the explicit form of the most
relevant of these situations – the resulting tables contain a lot of information on
the “family organization” of symmetric spaces. For instance, we see how some
well-known classical symmetric spaces, such as, e.g., the Siegel upper half plane,
contract to “degenerate” spaces. A long term project, with P. Bieliavsky, is to use
such information in order to develop a quantization on such semi simple symmetric
spaces, by “following” quantization theories from the almost flat case up to the
non-degenerate cases.

4. Further topics, and afterhoughts

At the end of this series of lectures, let us add a list of some mathematical and
philosophical remarks, concerning further topics and open problems.

(1) Differential geometry, and infinite dimensional parabolic geometries. The
approach outlined in these lectures is rather algebraic in nature, including spaces of
infinite dimension, whereas classical text books such as [22, 31, 26], and my lecture
notes [4], deal with finite-dimensional real or complex geometries and use tools of
classical differential geometry. Moreover, these texts mainly focus on the simple
or semi-simple case, so that the geometry X is a symmetric R-space G/P , which
is electable as a model space for, possibly curved, parabolic geometries. We would
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like to propose as a challenge and as a possible direction of new research to define
and to study general parabolic geometries of Jordan type (step 3 below):

1. First step: develop a general algebraic and geometric theory of the model
spaces (spaces accociated to 3-graded Lie algebras: cf. these lectures),

2a. Second step: in presence of topology, define a smooth manifold structure on
the model space and show that all structure maps are smooth ([16]),

2b. For the preceding item to make sense, one has to define the basic notions
of differential calculus and differential geometry in a sufficiently general
framework (this has been done in [13, 7]),

3. Combining the preceding points, define Cartan geometries (over general base
fields or -rings...), modelled on spaces defined in Item 2a.

The flavor of this approach will certainly be more algebraic than the one by
functional analytic methods, used in Kaup’s approach to infinite dimensional
bounded symmetric domains (cf. [37]). It should be possible to extend these
methods to 5-graded, or even longer Z-graded model geometries, but the theory
then becomes much more involved (cf. [18]).

(2) Link with representation theory and harmonic analysis. It turned out that
the Jordan theoretic formulation is a remarkably effective tool in harmonic analysis
on symmetric cones and on Hermitian symmetric spaces, see [22, 38]. It has been
used in the analysis of minimal representations and of a generalized Maslov index
(Clerc, Hilgert, Kobayashi, Koufany, Neeb, Ørsted, Pevzner and others).

(3) Associative geometries. When defining the notion of associative geometries,
our original motivation was to understand the geometry of Jordan-Lie algebras
(which include associative algebras and Hermitian matrices), see item (5) below. A
list of open problems and further topics is given at the end of [14, 3].

(4) Exceptional and semi-exceptional geometries. They correspond to the Jordan
pairs IV, V, and VI from the list given in the first lecture. The point of view
of projective geometry builds a bridge from associative geometries to type VI,
the octonion, or Moufang projective plane ([15]). Moreover, octonion geometries
(type V and VI) are related to constructions of exceptional Lie groups related to
“Freudenthal’s magic square”. On the other hand, spaces of type IV (spin factors) are
“semi-exceptional”: they correspond to conformal geometry of projective quadrics.
Certainly they would deserve a series of lectures in their own right.

(5) Link with physics? Until today, Jordan theory does not belong to the
“mathematical mainstream” and lives somewhere near the border of mathematics
and physics. For instance, there is an interesting concept of Jordan-Lie algebra,
which (to our knowledge) appears only in physics litterature (see [21]) and nowhere
in mathematics – this concept seems to go back to a question by Niels Bohr asking
what algebraic structures admit tensor products (see [23], cf. [10]). One reason why
Jordan structures are still considered as somewhat “exotic” by many mathematicians
may be that Pascual Jordan was a physicist and not a mathematician. Certainly,
his approach to foundations of quantum mechanics did not hold sway; but this does
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not mean that the last word on this issue has already been said. Some speculations
on this can be found in [9, 10].
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