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ON HOLOMORPHICALLY PROJECTIVE MAPPINGS FROM
MANIFOLDS WITH EQUIAFFINE CONNECTION ONTO

KÄHLER MANIFOLDS

Irena Hinterleitner and Josef Mikeš

Abstract. In this paper we study fundamental equations of holomorphically
projective mappings from manifolds with equiaffine connection onto (pseudo-)
Kähler manifolds with respect to the smoothness class of connection and
metrics. We show that holomorphically projective mappings preserve the
smoothness class of connections and metrics.

1. Introduction

T. Otsuki and Y. Tashiro [23] introduced the concept of holomorphically pro-
jective mappings of Kähler manifolds which preserve the complex structure, and
which are generalizations of geodesic mappings. These mappings are studied in
many directions, see [2]–[29]. On the other hand, issues related to the mappings
and almost complex structures are found in [3, 4, 6, 15, 22, 23, 24, 26, 29].

Fundamental equations for holomorphically projective mappings of (pseudo-)
Kähler manifolds in a linear form were found by Domashev and Mikeš [5, 16, 18], see
[26, pp. 210-220], [22, pp. 245-248]. In [7] I. Hinterleitner studied holomorphically
projective mappings between e-Kähler manifolds in detail. It was shown that they
preserve the smoothness class Cr (r ≥ 2) of the metric.

In the papers [1, 19] research on holomorphically projective mappings from
manifolds with affine connections onto (pseudo-) Kähler manifolds was initiated.

In our paper, we present some new results obtained for holomorphically projective
mappings from n-dimensional manifolds An with equiaffine connection ∇ and with
covariantly almost constant structure F onto (pseudo-) Kähler manifolds K̄n with
metric ḡ and with structure F̄ from the point of view of differentiability of affine
connections and metrics. Here we refine the results of [7, 1, 19]:

If An ∈ Cr−1 (r ≥ 2) admits holomorphically projective mappings onto K̄n

∈ C2, then K̄n ∈ Cr.
Here An ∈ Cr−1 and K̄n ∈ Cr denotes that ∇ ∈ Cr−1 and ḡ ∈ Cr, which

means that in a common coordinate system x = {x1, x2, . . . , xn} their components
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Γhij(x) ∈ Cr−1 and ḡij(x) ∈ Cr, respectivelly. We suppose that the differentiability
degree r is equal to 0, 1, 2, . . . ,∞, ω, where 0,∞ and ω denotes continuous, infinitely
differentiable, and real analytic functions, respectively.

The connection ∇ of An, as it is known, need not be the Levi-Civita conection
of any metric and An need not be a (pseudo-) Riemannian manifold, i.e. there need
not be a metric, see [6].

2. Definitions and basic results of F -planar mappings

In [1, 19] were studied holomorphically projective mappings from manifolds
An with affine connection onto Kähler manifolds K̄n, which are special cases of
F -planar mappings (Mikeš and Sinyukov [21], see [8, 17], [22, p. 213–238]).

We consider an n-dimensional manifold An with a torsion-free affine connection
∇, and an affinor structure F , i.e. a tensor field of type (1, 1).

Definition 1 (Mikeš, Sinyukov [21], see [22, p. 213]). A curve `, which is given by
the equations ` = `(t), λ(t) = d`(t)/dt ( 6≡ 0), t ∈ I, where t is a parameter, is called
F-planar, if its tangent vector λ(t0), for any initial value t0 of the parameter t,
remains, under parallel translation along the curve `, in the distribution generated
by the vector functions λ and Fλ along `.

In accordance with this definition, ` is F -planar, if and only if the following
condition holds ([21], see [22, p. 213]): ∇λ(t)λ(t) = %1(t)λ(t) + %2(t)Fλ(t), where
%1 and %2 are some functions of the parameter t.

We suppose two spaces An and Ān with torsion-free affine connection ∇ and ∇̄,
respectively. Affine structures F and F̄ are defined on An, resp. Ān.

Definition 2 (Mikeš, Sinyukov [21], see [22, p. 213]). A diffeomorphism f between
manifolds with affine connection An and Ān is called an F-planar mapping if any
F -planar curve in An is mapped onto an F̄ -planar curve in Ān.

Due to the diffeomorphism f we always suppose that ∇, ∇̄, and the affinors F ,
F̄ are defined on M where An = (M,∇, F ) and Ān = (M, ∇̄, F̄ ). The following
holds.

Theorem 1. An F -planar mapping f from An onto Ān preserves F -structures
(i.e. F̄ = aF + b Id, a,b are some functions), and is characterized by the following
condition

(1) P (X,Y ) = ψ(X) · Y + ψ(Y ) ·X + ϕ(X) · FY + ϕ(Y ) · FX

for any vector fields X, Y , where P = ∇̄ − ∇ is the deformation tensor field of f ,
ψ and ϕ are some linear forms.

This theorem was proved by Mikeš and Sinyukov [21] for finite dimension n > 3,
a more concise proof of this theorem for n > 3 and also a proof for n = 3 was given
by I. Hinterleitner and Mikeš [8], see [22, p. 214].

We introduce the following classes of F -planar mappings from manifolds An
with affine connection ∇ onto (pseudo-) Riemannian manifolds V̄n with metric ḡ:
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Definition 3 (Mikeš [17], see [22, p. 225]).

1. An F -planar mapping of a manifold An with affine connection onto a (pseudo-)
Riemannian manifold V̄n is called an F1-planar mapping if the metric tensor satisfies
the condition
(2) ḡ(X,FX) = 0 , for all X .

2. An F1-planar mapping An → V̄n is called an F2-planar mapping if the one-form
ψ is gradient-like, i.e.
(3) ψ(X) = ∇XΨ ,

where Ψ is a function on An.

3. An F1-planar mapping An → V̄n is called an F3-planar mapping if the one-forms
ψ and ϕ are related by
(4) ψ(X) = ϕ(FX) .
Remark. F -planar curves and F1-planar mappings are a generalization of quasi-geo-
desic curves, resp. mappings by A. Z. Petrov [24], which he used for space-times.

3. Definitions and basic results of holomorphically projective
mappings onto Kähler manifolds

(Pseudo-) Kähler manifolds were first considered by P.A. Shirokov and indepen-
dently these manifolds were studied by E. Kähler, see [22, p. 68].
Definition 4. A (pseudo-) Riemannian manifold K̄n = (M, ḡ, F̄ ) is called a
(pseudo-) Kähler manifold if beside the tensor ḡ, a tensor field F̄ of type (1,1) is
given on M , such that the following conditions hold:
(5) (a) F̄ 2 = − Id, (b) ḡ(X, F̄X) = 0 for all X , (c) ∇̄F̄ = 0 .

We remark that the formulas (1) – (4) hold for holomorphically projective
mappings between (pseudo-) Kähler manifolds, see [4, 5, 16, 18, 22, 26]. For this
reason we give the following definition
Definition 5. An F -planar mapping An onto a Kähler manifold K̄n is called a
holomorphically projective mapping, if it is F3-planar.

By analysis of formulas (4) and (5c) we find that ∇F̄ = 0. After differentiation
of (5a), using (5c), and F̄ = aF + b Id (see Theorem 1), we find that F̄ = ±F .
Thus the following theorem holds.
Theorem 2. If An= (M,∇, F ) admits holomorphically projective mappings onto
a (pseudo-) Kähler manifold K̄n = (M, ḡ, F̄ ), then F̄ = ±F and the structure F is
a covariantly constant almost complex structure, i.e. F 2 = − Id and ∇F = 0.

From formulas (4) and (5a) follows that for holomorphically projective mappings
f : An → K̄n:

ϕ(X) = −ψ(FX) for all X .

From Theorem 2 and formulas (1), (5b) follows the following theorem.
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Theorem 3. Let An = (M,∇, F ) be a manifold M with affine connection ∇ and
with a covariantly constant complex structure F. A diffeomorphism f from An onto
a Kähler manifold K̄n = (M, ḡ, F ) is a holomorphically projective mapping if and
only if

(6)
a) P (X,Y ) = ψ(X) · Y + ψ(Y ) ·X − ψ(FX) · FY − ψ(FY ) · FX ;
b) ḡ(FX,FX) = g(X,X) ,

holds for any X, Y , where P = ∇̄ − ∇ is the deformation tensor field of f , ψ is a
linear form.

In local notation formulas (6) have the following form:
(7) a) Γ̄hij(x) = Γhij(x) + δhi ψj + δhj ψi − δhī ψj̄ − δ

h
j̄ ψī , b) ḡ ī j̄ = gij ,

where Γhij , Γ̄hij , ḡij , ψi and Fhi are the components of ∇, ∇̄, ḡ, ψ and F , respectively.
Here and in the following we will use the conjugation operation of indices in the
way

A······ ī ··· = A······ α ··· F
α
i and A··· ī ······ = A··· α ······ F iα .

Equations (7) are equivalent to the equations
(8) a) ∇kḡij = 2ψkḡij + ψiḡjk + ψj ḡik + ψīḡj̄ k + ψj̄ ḡī k , b) ḡ ī j̄ = gij .

After contraction of (7) we obtain ψi = 1
n+ 2 (∂i

√
|det ḡ| −Γααi), where ∂i = ∂

∂xi
.

Moreover, if ∇ is an equiaffine connection ([6], [22, p. 35]) then a function G
exists for which Γααi = ∂iG. In this case

(9) ψi = ∂iΨ, Ψ = 1
n+ 2 (

√
|det ḡ| −G).

Because the holomorphically projective mapping is F3-planar, after elementary
modifications we have the following theorem ([17], [22]):
Theorem 4. Let An be a manifold with an equiaffine connection which satisfies
the assumption of Theorem 3. A manifold An admits holomorphically projective
mappings onto K̄n if and only if a regular symmetric tensor aij and a vector λi
satisfy the following equations:

(10) a) ∇kaij = λiδjk + λjδik + λīδj̄k + λj̄δīk , b) aī j̄ = aij .

From equations (8) we obtain (10) by the relations
aij = e−2Ψḡij , λi = −e−2Ψḡiαψα ,

where ‖ḡij‖ = ‖ḡij‖−1. On the other hand from equations (10) we obtain (8) by
the relations

ḡij = e2Ψaij , Ψ = ln
√
|det g̃| −G , ‖g̃ij‖ = ‖aij‖−1 .

Evidently, the results of Section 3 hold if
An = (M,∇, F ) ∈ C0 (

Γhij(x) ∈ C0, Fhi (x) ∈ C1)
and

K̄n = (M, ḡ, F ) ∈ C1 (
ḡij(x) ∈ C1) .
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4. Holomorphically projective mappings from An ∈ C1

onto K̄n ∈ C2

Let An = (M,∇, F ) be a manifold M with an equiaffine connection ∇ and with
a covariantly constant complex structure F and let An admit a holomorphically
projective mapping onto the Kähler manifold K̄n = (M, ḡ, F ). We suppose that

An ∈ C1 (Γhij(x) ∈ C1, Fhi (x) ∈ C1) and K̄n ∈ C2 (ḡij(x) ∈ C2) .
From ∇jFhi = 0 it follows that Fhi ∈ C2 and its integrability condition has the
form Rh̄ijk = Rh

ī jk
, where Rhijk is the cuvature tensor on An.

We shall investigate the integrability condition of equation (10). Let us differen-
tiate it covariantly by xl and then alternate it w.r. to the indices k and l. From
the Ricci identity we find the following:

(11) ∇lλiδjk +∇lλjδik −∇kλiδ
j
l −∇kλ

jδil+

∇lλīδj̄k +∇lλj̄δīk −∇kλīδ
j̄
l −∇kλ

j̄δīl = −aαiRjαkl − a
αjRiαkl .

Contracting (11) by the indices j and k, we obtain

(12) (n− 1) ∇lλi −∇l̄λī = µ · δil +∇αλᾱ · δīl − aαiRαl − aαβRiαβl ,

where µ def= ∇αλα, Rij
def= Rαiαj is the Ricci tensor, which is symmetric for the

equiaffine connection ∇.
When we contract (12) with F li and then use properties of the Riemann and

the Ricci tensors, we can see ∇αλᾱ = 0. We apply the conjugation operation bar
on the indices i and l, and subtract (12) from the result. After some calculations
we have

n · (∇l̄λī −∇lλi) = (aαiRαl + aαβRiαβl)− (aαīRαl̄ + aαβRī
αβl̄

) ,

and from (12) we find

(13) n∇lλi = µ δil − aαβT ilαβ ,

where
T ilαβ

def= n− 1
n

(δiβRαl +Riαβl) + 1
n

(δīβRαl̄ +Rī
αβl̄

) .

5. Holomorphically projective mappings from An ∈ Cr (r ≥ 2)
onto K̄n ∈ C2

Let An = (M,∇, F ) be a manifold M with an equiaffine connection ∇ and
with a covariantly constant complex structure F (i.e. F 2 = − Id and ∇F = 0),
which admits holomorphically projective mappings onto the Kähler manifold K̄n

= (M, ḡ, F ). We suppose that

An ∈ Cr−1 (Γhij(x) ∈ Cr−1, r ≥ 2, Fhi (x) ∈ C1) and K̄n ∈ C2 (ḡij(x) ∈ C2) .

From ∇jFhi = 0 it follows that Fhi ∈ Cr. We proof the following theorem



300 I. HINTERLEITNER AND J. MIKEŠ

Theorem 5. If An ∈ Cr−1 (r ≥ 2) admits holomorphically projective mappings
onto K̄n ∈ C2, then K̄n ∈ Cr.

The proof of this theorem follows from the following lemmas.

Lemma 1 (see [11]). Let λh ∈ C1 be a vector field and % a function. If ∂iλh−% δhi ∈
C1, then λh ∈ C2 and % ∈ C1.

Lemma 2. If An ∈ C2 admits a holomorphically projective mapping onto K̄n ∈ C2,
then K̄n ∈ C3.

Proof. In this case equations (10) and (13) hold. According to our assumptions,
Γhij ∈ C2 and ḡij ∈ C2. By a simple check-up we find Ψ ∈ C2, ψi ∈ C1, aij ∈ C2,
λi ∈ C1 and Rhijk, Rij ∈ C1.

From the above-mentioned conditions we easily convince ourselves that from
equation (13) follows ∂lλi−µ/n ∈ C1. From Lemma 1 follows that λi ∈ C2, µ ∈ C1.
Differentiating (10) twice we convince ourselves that aij ∈ C3, and, evidently, also
Ψ ∈ C3 and ḡij ∈ C3. �

Further we covariantly differentiate (13) by xm, and after alternation of the
indices l and m and application of the Ricci identities and (10) we obtain:

(14) − nλαRiαlm = δil∇mµ− δim∇lµ− aαβ(∇mT ilαβ −∇lT imαβ)− λαΘi
αlm ,

where

Θi
αlm

def= T ilαm + T ilmα + T ilām + T ilmā − T imαl − T imlα − T imāl − T imlā .

We contract formula (14) w.r. to the indices i and m, and we get

(15) (n− 1)∇lµ = nλαRαl − aαβ(∇γT γlαβ −∇lT
γ
γαβ)− λαΘγ

αlγ .

The following theorem is the result of previous computations and Theorem 1.

Theorem 6. Let An (∈ Cr, r ≥ 2) be an equiaffine space with affine connection
and let be defined a covariantly constant affinor Fhi such that FhαFαi = −δhi . Then
An admits a holomorphically projective mapping onto a Kählerian space K̄n (∈ C2)
if and only if the following system of linear differential equations of Cauchy type is
solvable with respect to the unknown functions aij, λi and µ:

(16)

∇kaij = λiδjk + λjδik + λīδj̄k + λj̄δīk ;

n∇lλi = µ δil − aαβT ilαβ ;

(n− 1)∇lµ = nλαRαl − aαβ(∇γT γlαβ −∇lT
γ
γαβ)− λαΘγ

αlγ ,

where the matrix (aij) should further satisfy det‖aij‖ 6= 0 and the algebraic condi-
tions

(17) aij = aji ; aī j̄ = aij .

Here T and Θ are tensors which are explicitly expressed in terms of objects defined
on An, i.e. the affine connection An and the affinor Fhi .
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This theorem is a generalization of results in [5, 7, 1, 16, 19], see [18, 22, 26].
The system (16) does not have more than one solution for the initial Cauchy

conditions aij(xo) = aijo , λi(xo) = λio, µ(xo) = µo under the conditions (17).
Therefore the general solution of (14) does not depend on more than No =
1/4 (n+ 1)2 parameters. The question of existence of a solution of (14) leads to
the consideration of integrability conditions, which are linear equations w.r. to the
unknowns aij , λi and µ with coefficient functions defined on the manifold An.
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