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Supplementary balance laws for Cattaneo heat

propagation

Serge Preston

Abstract. In this work we determine for the Cattaneo heat propagation
system all the supplementary balance laws (shortly SBL) of the same order
(zero) as the system itself and extract the constitutive relations (expression
for the internal energy) dictated by the Entropy Principle. The space of
all supplementary balance laws (having the functional dimension 8) con-
tains four original balance laws and their deformations depending on 4
functions of temperature (λ0(ϑ),KA(ϑ), A = 1, 2, 3). The requirements of
the II law of thermodynamics leads to the exclusion of three functional de-
grees (KA = 0, A = 1, 2, 3) and to further restriction to the form of internal
energy. In its final formulation, entropy balance represents the deformation
of the energy balance law by the functional parameter λ0(ϑ).

1 Introduction
Systems of balance equations form the cornerstone of the Continuum Thermody-
namics, [1], [2], [4], [5]. With each system of this type, there is associated the space
of “supplementary balance laws” (see next Section) playing, for the systems of bal-
ance equations, the role similar to the role the conservation laws play for general
systems of differential equations. In this work we determine explicitly all supple-
mentary balance laws for the Cattaneo heat propagation system (CHP-system) (1)
of the same order (zero) that the Cattaneo system itself. We will solve directly
the Lagrange-Liu system of differential equations associated with the CHP model
[7], [8], and, on our way, specify the constitutive relation – the form of internal
energy as the function of temperature θ and heat flux q. If this condition is ful-
filled, the total space of SBL (modulo trivial balance laws) is 8-dimensional. If this
condition does not hold, there are no new SBL except trivial (see [6]). Then we
show that the positivity condition for the production in the new balance laws place
additional restriction to the form of internal energy and determine the unique SBL
having nonnegative production – the entropy balance law.
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2 Supplementary balance laws of a balance system
Let one have a system of balance equations for the fields yi(t, xA, A = 1, 2, 3)

∂tF
0
i + ∂xAF

A
i = Πi , i = 1, . . . ,m, (1)

with the densities F 0
i , fluxes FAi , A = 1, 2, 3 and sources Πi being functions of

space-time point (t, xA, A = 1, 2, 3), fields yi and their derivatives (by t, xA) up to
the order k = 0. Number k is called the order of balance system (1). In continuum
thermodynamics people mostly work with the balance system of order 0 (case of
Rational Extended Thermodynamics) and 1.

Definition 1. A balance law (2) of order r (in the same sense as the system (1) is
of order k)

∂tK
0 +

3∑
A=1

∂xAK
A = Q (2)

is called a supplementary balance law (SBL) for the system (1) if every solution of
the system (1) is, at the same time, solution of the balance equation (2).

Examples of supplementary balance laws are: entropy balance, provided the
Entropy Principle is admitted for system (1) (see [5], [10], [11]), Noether balance
laws corresponding to the Lie groups of symmetry (see [7], [8]) and some linear
combinations of the balance equations of original balance system with variable co-
efficients satisfying some condition (“gauge symmetries” of system (1), see [7], [8]).

As a rule, in classical physics one looks for entropy balance laws of the same
order as the original balance systems. Higher order SBL are also of an interest
for studying the balance system (1) – for example, a study of integrable systems
leads to the hierarchy of conservation laws (often having form of conservation laws
themselves) of higher order.

For a balance system (1) of order 0 (case of Rational extended Thermodynamics,
see [5]), density and flux of a SBL (2) satisfy the system of equations

λiFµi,yj = Kµ
,yj , (3)

where summation over repeated indices is considered. Functions λi(yj) (main fields
in terminology of [5]) are to be found from the conditions of solvability of this
system. We call this system the LL-system referring to the Liu method of using
Lagrange method for formulating dissipative inequality for a system (1), see [3], [5].
Source/production in the system (2) is then found as Q =

∑
i λ

iΠi.

3 Cattaneo Heat propagation balance system
Consider the heat propagation model containing the temperature ϑ and heat flux q
as the independent dynamical fields y0 = ϑ, yA = qA, A = 1, 2, 3.

Balance equations of this model have the form{
∂t(ρε) + div(q) = 0 ,

∂t(τq) +∇Λ(ϑ) = −q .
(4)
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The second equation in (4) can be rewritten in the conventional form

∂t(τq) + λ · ∇ϑ = −q ,

where λ = ∂Λ
∂ϑ . If the coefficient λ may depend on the density ρ, the equation is

more complex.
Constitutive relations specify dependence of the internal energy ε on ϑ, q and

possible dependence of coefficients τ,Λ on the temperature (including the require-
ment Λ,ϑ 6= 0). The simplest case is the linear relation ε = kϑ, but for our purposes
it is too restrictive, see [2, Sec.2.1].

Since ρ is not considered here as a dynamical variable, we merge it with the
field ε and from now on and till the end it will be omitted. On the other hand, in
this model the energy ε depends on temperature ϑ and on the heat flux q (see [2,
Sec.2.1.2]) or, by change of variables, temperature ϑ = ϑ(ε, q) will be considered as
the function of dynamical variables.

Cattaneo equation q + τ∂t(q) = −λ · ∇ϑ has the form of the vectorial balance
law and, as a result there is no need for the constitutive relations to depend on the
derivatives of the basic fields. No derivatives appear in the constitutive relation,
therefore, this is the RET model. In the second equation there is a nonzero pro-
duction ΠA = −qA. The model is homogeneous, there is no explicit dependence of
any functions on t, xA.

4 LL-system for supplementary balance laws of CHP-system
To study the LL-system for the supplementary balance laws we start with the i×µ
matrix of density/flux components

Fµi =


ε τq1 τq2 τq3

q1 Λ(ϑ) 0 0
q2 0 Λ(ϑ) 0
q3 0 0 Λ(ϑ)

 .

Assuming that coefficients τ and the function Λ are independent on the heat flux
variables qA we get the “vertical (i.e. by fields ϑ, qA) differentials” of densities and
flux components Fµi

dvF
µ
i =


εϑ dϑ+ εqA dq

A τϑq
1 dϑ+ τ dq1 τϑq

2 dϑ+ τ dq2 τϑq
2 dϑ+ τ dq3

dq1 Λϑ dϑ 0 0
dq2 0 Λϑ dϑ 0
dq3 0 0 Λϑ dϑ

 .

Let now
∂tK

0(x, y) + ∂xAK
A(x, y) = Q(x, y) (5)

be a supplementary balance law for the Cattaneo balance system (4). It is easy to
see that the LL-system has the form:
Subsystem of LL-system with µ = 0 has the form:{

λ0εϑ + τϑλ
AqA = K0

,ϑ

λ0εqA + λAτ = K0
,qA

, A = 1, 2, 3 . (6)
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For µ = A = 1, 2, 3, using cyclic notations, we have LL-equations:
Λϑλ

A = KA
,ϑ

λ0 = KA
,qA

0 = KA
qA+1

0 = KA
qA+2

, A = 1, 2, 3 . (7)

Looking at systems (6), (7) we see that if we make the change of variables
ϑ̃ = Λ(ϑ) then the system of equations (6), (7) takes the form (wherever is the
derivative by ϑ we multiply this equation by Λ,ϑ){

λ0εϑ̃ + τϑ̃λ
AqA = K0

,ϑ̃

λ0εqA + λAτ = K0
qA

;

{
KA
,ϑ̃

= λA

KA
qB = λ0δAB

, A,B = 1, 2, 3. (8)

The second subsystem is equivalent to the relation

dvK
A = λAdϑ̃+ λ0dqA.

These integrability conditions imply the expression KA = KA(xµ, ϑ̃, qA) and

KA
qA = λ0, A = 1, 2, 3 ⇒ λ0 = λ0(ϑ̃).

Integrating equation KA
qA = λ0(ϑ̃) by qA we get

KA = λ0(ϑ̃)qA + K̃A(ϑ̃) (9)

with some functions K̃A(ϑ̃).
The first equation of each system now takes the form

λA = KA
ϑ̃

= λ0
ϑ̃
qA + K̃A

,ϑ̃
(ϑ̃). (10)

Substituting these expressions for λA into the 0-th system{
λ0εϑ̃ + τϑ̃λ

AqA = K0
,ϑ̃

λ0εqA + λAτ = K0
qA

, A = 1, 2, 3,

we get {
K0
,ϑ̃

= λ0εϑ̃ + τϑ̃
(
λ0
ϑ̃
‖q‖2 + K̃A

,ϑ̃
(ϑ̃)qA

)
K0
qA = λ0εqA + τ

(
λ0
ϑ̃
qA + K̃A

,ϑ̃
(ϑ̃)
) , A = 1, 2, 3, (11)

where ‖q‖2 =
∑
A q

A 2.
Integrating A-th equation by qA and comparing results for different A we obtain

the following representation

K0 = λ0ε+ τ(ϑ̃)
[1

2
λ0
ϑ̃
‖q‖2 + K̃A

,ϑ̃
(ϑ̃)qA

]
+ f(ϑ̃) (12)
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for some function f(ϑ̃, xµ).
Calculate derivative by ϑ̃ in the last formula for K0 and subtract the first

formula of the previous system. We get

0 = λ0
,ϑ̃
ε+ τ(ϑ̃)

[(1

2
λ0
ϑ̃
‖q‖2 + K̃A

,ϑ̃
(ϑ̃)qA

)]
,ϑ̃
− 1

2
τ,ϑ̃λ

0
,ϑ̃
‖q‖2 + f,ϑ̃(ϑ̃). (13)

This is the compatibility condition for the system (6) for K0. As such, it is real-
ization of the general compatibility system (8).

Take qA = 0 in the last equation, i.e. consider the case where there is no heat
flux. Then the internal energy reduces to its equilibrium value εeq(ϑ̃) and we get
f,ϑ̃(ϑ̃) = −λ0

,ϑ̃
εeq. Integrating here we find

f(ϑ̃) = f0(xµ)−
∫ ϑ̃

λ0
,ϑ̃

(s)εeq(s) ds . (14)

Substituting this value for f into the previous formula we get expressions for Kµ: K0 = λ0ε−
∫ ϑ̃

λ0
,ϑ̃
εeq ds+ τ(ϑ̃)

[1

2
λ0
ϑ̃
‖q‖2 + K̃A

,ϑ̃
(ϑ̃)qA

]
+ f0

KA = λ0(ϑ̃)qA + K̃A(ϑ̃)

, A = 1, 2, 3.

(15)
In addition to this, from (13) and obtained expression for f(ϑ̃), we get the expres-
sion for internal energy

ε = εeq(ϑ̃) +
1

2
τ,ϑ̃‖q‖

2 − τ(ϑ̃)

λ0
ϑ̃
(ϑ̃)

[1

2
λ0
,ϑ̃ϑ̃
‖q‖2 + K̃A

,ϑ̃ϑ̃
(ϑ̃)qA

]
. (16)

This form for internal energy presents the restriction to the constitutive relations
in Cattaneo model placed on it by the entropy principle.

The zeroth main field λ0 is an arbitrary function of ϑ̃ while λA are given by the
relations (15):

λA = (λ0
ϑ̃
qA + K̃A

,ϑ̃
(ϑ̃)). (17)

Using this we find the source/production term for the SBL (5)

Q = λAΠA = −λAqA = −
(
λ0
ϑ̃
‖q‖2 + K̃A

,ϑ̃
(ϑ̃)qA

)
.

Now we combine obtained expressions for components of a secondary balance
law. We have to take into account that the LL-system defines Kµ only modC∞(X).
This means first of all that all the functions may depend explicitly on xµ. For en-
ergy ε, field Λ(ϑ) and the coefficient τ this dependence is determined by constitutive
relations and is, therefore, fixed. Looking at (16) we see that the coefficients of
terms linear and quadratic by qA are also defined by the constitutive relation, i.e.
in the representation

ε = εeq(ϑ̃) + µ(ϑ̃)‖q‖2 +MA(ϑ̃)qA

= εeq(ϑ̃) +
1

2
τ,ϑ̃‖q‖

2 − τ(ϑ̃)

λ0
ϑ̃
(ϑ̃)

[1

2
λ0
,ϑ̃ϑ̃
‖q‖2 + K̃A

,ϑ̃ϑ̃
(ϑ̃)qA

]
,

(18)
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coefficients

µ(ϑ̃, x) =
1

2
τ,ϑ̃ −

1

2

τ(ϑ̃)

λ0
ϑ̃
(ϑ̃)

λ0
ϑ̃ϑ̃
, MA = − τ(ϑ̃)

λ0
ϑ̃
(ϑ̃)

K̃A
,ϑ̃ϑ̃

(ϑ̃) (19)

are defined by the CR – by expression of internal energy as the quadratic function
of the heat flux.

More than this, quantities
λ0
ϑ̃ϑ̃

λ0
ϑ̃

and
K̃A
,ϑ̃ϑ̃

(ϑ̃)

λ0
ϑ̃

are also defined by the constitutive
relations.

Rewriting the first relation (18) we get

(
ln(λ0

ϑ̃
)
)
,ϑ̃

= ln(τ),ϑ̃ − 2
µ(ϑ̃)

τ(ϑ̃)
⇒ ln(λ0

ϑ̃
) = ln(τ) + b0 − 2

∫ ϑ̃ µ

τ
(s) ds

⇒ λ0
ϑ̃

= ατe−2
∫ ϑ̃ µ

τ (s)ds, α = eb
0

> 0 .

From this relation we find

λ0(ϑ̃, x) = a0 + αλ̂0 = a0 + α

∫ ϑ̃[
τe−2

∫ u µ(s)
τ(s)

ds] du (20)

Here a0 and α are constants (or, maybe, functions of xµ).

Using obtained expression for λ0(ϑ̃, x) in the second formula (19) we get the
expression for coefficients K̃A and, integrating twice by ϑ̃, for the functions KA(ϑ̃)

K̃A
,ϑ̃ϑ̃

= −MA ·
λ0
ϑ̃
(ϑ̃)

τ(ϑ̃)
= −MAαe

−2
∫ ϑ̃ µ

τ (s)ds

⇒ K̃A = kAϑ̃+mA + α · K̂A(ϑ̃)

= kAϑ̃+mA − α
∫ ϑ̃

dw

∫ w

[MA(u)e−2
∫ u µ

τ (s)ds] du .

(21)

Functions K̂A(ϑ̃) are defined by the second formula in the second line.

Thus, functions λ0
ϑ, K̃

A
,ϑϑ are defined by the constitutive relations while coeffi-

cients α > 0, a0, kA,mA are arbitrary functions of xµ.

5 Supplementary balance laws for CHP-system

Combining obtained results, returning to the variable ϑ (and using repeatedly the
relation f,ϑ̃ = ϑ,ϑ̃f,ϑ = (ϑ̃,ϑ)−1f,ϑ = Λ−1

,ϑ f,ϑ) we get the general expressions for
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admissible densities/fluxes of the supplementary balance laws

K0 = λ0ε−
∫ ϑ̃

λ0
,ϑ̃
εeq ds+ τ(ϑ̃)

[1

2
λ0
ϑ̃
‖q‖2 + K̃A

,ϑ̃
(ϑ̃)qA

]
+ f0

= (a0 + αλ̂0)ε− α
∫ ϑ

λ̂0
,ϑε

eq ds

+
τ(ϑ)

Λ,ϑ

[α
2
λ̂0
ϑ‖q‖2 +

(
Λ,ϑk

A + αK̂A
,ϑ(ϑ)

)
qA
]

+ f0,

KA = λ0(ϑ̃)qA + K̃A(ϑ̃)

= (a0 + αλ̂0(ϑ))qA + kAΛ(ϑ) +mA + αK̂A(ϑ) , A = 1, 2, 3

Q = −λAqA = −
(
λ0
ϑ̃
‖q‖2 + K̃A

,ϑ̃
(ϑ̃)qA

)
= −Λ−1

,ϑ

(
λ0
ϑ‖q‖2 + Λ,ϑk

AqA + αK̂A
,ϑ(ϑ)qA

)
= −Λ−1

,ϑ

(
αλ̂0

ϑ‖q‖2 + Λ,ϑk
AqA + αK̂A

,ϑ(ϑ)qA
)
.

Collecting previous results together we present obtained expressions for sec-
ondary balance laws first in short form and then in the form where original balance
laws and the trivial balance laws are separated from the general form of SBL


K0

K1

K2

K3

Q

 =



λ0ε−
∫ ϑ

λ0
,ϑε

eq ds+ τ(ϑ)Λ−1
ϑ [ 1

2λ
0
ϑ‖q‖2 + αK̃A

,ϑ(ϑ)qA] + f0

λ0(ϑ)q1 + K̃1(ϑ)

λ0(ϑ)q2 + K̃2(ϑ)

λ0(ϑ)q3 + K̃3(ϑ)

−Λ−1
,ϑ (λ0

,ϑ‖q‖2 + K̃A
,ϑ(ϑ)qA)



= a0


ε

q1

q2

q3

0

+
∑
A

kA


τ(ϑ)qA

δ1
AΛ(ϑ)

δ2
AΛ(ϑ)

δ3
AΛ(ϑ)

−qA

+



ατΛ(ϑ)−1K̂A
,ϑ(ϑ)qA

K̂1(ϑ)

K̂2(ϑ)

K̂3(ϑ)

−Λ−1
,ϑ K̂

A
,ϑ(ϑ)qA



+ α



λ̂0ε−
∫ ϑ

λ̂0
,ϑε

eq ds+ τ(ϑ)Λ−1
ϑ [ 1

2 λ̂
0
,ϑ‖q‖2]

λ̂0(ϑ)q1

λ̂0(ϑ)q2

λ̂0(ϑ)q3

−Λ−1
,ϑ λ̂

0
,ϑ‖q‖2


+


f0

m1

m2

m3

0

 .

(22)

To get the second presentation of the SBL we use the decompositions (21)

λ0 = αλ̂0 + a0 and (20) K̃A(ϑ̃) = kAϑ̃+mA − K̂A.

Remark 1. Notice the duality between the tensor structure of the basic fields of
Cattaneo system – one scalar field (temperature ϑ) and one vector field (heat
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flux qA, A = 1, 2, 3) – and the structure of space SBL(C) of supplementary balance
laws – elements of SBL(C) depend on one scalar function of temperature λ0(ϑ)
and one covector function of temperature K̂A.

Remark 2. It is easy to see that none of new SBL can be written as a linear com-
bination of original balance equations with variable coefficients (Noether balance
laws generated by vertical symmetries v = vk(yi)∂yk , see [7], [8]). The easiest way
to prove this is to compare the source terms of different balance equations.

Returning to the variable ϑ in the expression (16) and using the relation ∂ϑ̃ =
1

Λ(ϑ),ϑ
∂ϑ we get the expression for the internal energy

ε = εeq(ϑ) +
τ,ϑ

2Λ,ϑ
‖q‖2 − τ(ϑ)

λ0
,ϑ

[
1

2

(
λ0
,ϑ

Λ,ϑ

)
,ϑ

‖q‖2 +

(
K̃A
,ϑ

Λ,ϑ

)
,ϑ

qA
]

=Λ,ϑ=κ−const εeq(ϑ) +
τ,ϑ
2κ
‖q‖2 − τ(ϑ)

κλ0
,ϑ

[
1

2
λ0
,ϑϑ‖q‖2 + K̃A

,ϑϑq
A

]
.

Notice that for λ0 = 0, balance laws given by the 4th column in (22) (the
one with coefficient α) vanish. The same is true for deformations of the Cattaneo
equation (second column) defined by the third column when K̃A(ϑ) = 0.

The first and second balance laws in (22) are the balance laws of the original
Cattaneo system. The last one is the trivial balance law. Third and fourth columns
give the balance law

∂t

[
λ̂0ε−

∫ ϑ

λ0
,ϑε

eq ds+ τ(ϑ)Λ−1
ϑ

[1

2
λ0
ϑ‖q‖2 + K̂A

,ϑ(ϑ)qA
]]

+ ∂xA
[
λ̂0(ϑ)qA + K̂A(ϑ)

]
= −Λ−1

,ϑ

(
λ̂0
ϑ‖q‖2 + K̂A

,ϑ(ϑ)qA
)
. (23)

Source/production term in (23) equation has the form

−Λ−1
,ϑ

(
λ̂0
ϑ‖q‖2 + K̂A

,ϑ(ϑ)qA
)

= −Λ−1
,ϑ λ̂

0
ϑ

(
‖q‖2 +

K̂A
,ϑ(ϑ)

λ̂0
ϑ

qA
)

= −Λ−1
,ϑ λ̂

0
ϑ

[∑
A

(
qA +

K̂A
,ϑ(ϑ)

2λ̂0
ϑ

)2

−
∑
A

(
K̂A
,ϑ(ϑ)

2λ̂0
ϑ

)2]
.

By physical reasons, Λ,ϑ > 0. As (20) shows, λ,ϑ may have any sign. We assume
that this sign does not depend on ϑ.

For a fixed ϑ expression for the production in the balance law (23) may have
constant sign for all values of qA if and only if K̂A

,ϑ(ϑ) = 0, A = 1, 2, 3. Therefore
this is possible only if the internal energy has the form

ε = εeq(ϑ) +

[
τ,ϑ

2Λ,ϑ
− τ(ϑ)

2λ̂0
,ϑ

(
λ̂0
,ϑ

Λ,ϑ

)
,ϑ

]
‖q‖2

=τ−const, Λ,ϑ−const εeq(ϑ)− τ(ϑ)

2kλ̂0
,ϑ

λ̂0
,ϑϑ‖q‖2



Supplementary balance laws 169

with some function λ̂0(ϑ). This being so, Cattaneo system has the entropy (sup-
plementary balance) law

∂t

[
λ̂0ε −

∫ ϑ

λ̂0
,ϑε

eq ds +
1

2
τ(ϑ)Λ−1

ϑ λ̂0
,ϑ‖q‖2

]
+ ∂xA

[
λ̂0
,ϑq

A
]

= −Λ−1
,ϑ λ̂

0
,ϑ‖q‖2

with the production term that may have constant sign – nonnegative, provided (we

use the fact that λ̂0
,ϑ = λ0

,ϑ)

Λ−1
,ϑ λ

0
,ϑ 5 0 . (24)

This inequality (which is equivalent, if Λ,ϑ = 0, to the inequality λ0
,ϑ 5 0) is the

II law of thermodynamics for Cattaneo heat propagation model.
If we take q = 0 in obtained entropy balance we have to get the value of entropy

at the equilibrium seq:

seq = λ̂0εeq −
∫ ϑ

λ0
,ϑε

eq ds =

∫ ϑ

λ̂0εeq
,ϑ dϑ.

From this it follows that at a homogeneous state dseq = λ̂0 dεeq. Comparing this
with the Gibbs relation dεeq = ϑdseq we conclude that

λ̂0 =
1

ϑ
. (25)

Using (17) we also conclude that

λA = −q
A

ϑ2
, A = 1, 2, 3 .

It follows from this that the condition (24) (II law) takes here the form well known
from thermodynamics (see [2], [4], [5]):

Λ,ϑ = 0 .

Substituting (14) into (17) and calculating

−τ(ϑ)

2λ̂0
,ϑ

(
λ̂0
,ϑ

Λ,ϑ

)
,ϑ

=
τ(ϑ)ϑ2

2

(
−1

ϑ2Λ,ϑ

)
,ϑ

= −τ(ϑ)ϑ2

2

−(2ϑΛ,ϑ + ϑ2Λ,ϑϑ)

ϑ4Λ2
,ϑ

=
τ(ϑ)

ϑΛ,ϑ
+
τ(ϑ)Λ,ϑϑ
2(Λ,ϑ)2

we get the expression for internal energy in the form

ε = εeq(ϑ) +

[
τ,ϑ

2Λ,ϑ
+

τ

ϑΛϑ
+

τΛ,ϑϑ
2(Λ,ϑ)2

]
‖q‖2

=τ−const, Λ,ϑ−const εeq(ϑ) +
τ

ϑΛ,ϑ
‖q‖2.

(26)



170 Serge Preston

For the entropy density we have

s = seq + λ̂0(ε− εeq) +
1

2
τ(ϑ)Λ−1

ϑ λ̂0
,ϑ‖q‖2 =

= seq +
1

ϑ

[
τ,ϑ

2Λ,ϑ
+

τ

ϑΛϑ
+

τΛ,ϑϑ
2(Λ,ϑ)2

]
‖q‖2 − τ(ϑ)

2ϑ2Λϑ
‖q‖2

= seq +
1

ϑ

[
τ,ϑ

2Λ,ϑ
+

τ

2ϑΛϑ
+

τΛ,ϑϑ
2(Λ,ϑ)2

]
‖q‖2

= seq +
τ

2ϑΛ,ϑ

[
τ,ϑ
τ

+
1

ϑ
+

Λ,ϑϑ
Λ,ϑ

]
‖q‖2

=τ−const, Λ,ϑ−const seq +
τ

2ϑ2Λ,ϑ
‖q‖2.

(27)

Correspondingly, the entropy balance law takes the form

∂t

(
seq +

τ

2ϑΛ,ϑ

[
τ,ϑ
τ

+
1

ϑ
+

Λ,ϑϑ
Λ,ϑ

]
‖q‖2

)
+ ∂xA

(
qA

ϑ

)
=

1

Λ,ϑ

∥∥∥ q
ϑ

∥∥∥2

.

Remark 3. If in the absence of the heat flow (q = 0) the “equilibrium state” is
not homogeneous, more general constitutive relations with λ0 different from (25)
and more general form of energy and entropy balances satisfying the II law of
Thermodynamics, are possible.

We collect obtained results in the following

Theorem 1. 1. For the Cattaneo heat propagation balance system (1) compati-
ble with the entropy principle and having a nontrivial supplementary balance
law that is not a linear combination of the original balance laws with con-
stant coefficients, the internal energy has the form (7). If (7) holds, all
supplementary balance laws for Cattaneo balance system (including original
equations and the trivial ones) are listed in (6). New supplementary balance

laws depend on the 4 functions of temperature – λ̂0(ϑ), K̃A(ϑ), A = 1, 2, 3.
Corresponding main fields λµ, µ = 0, 1, 2, 3, have the form (17), (20).

2. The additional balance law (23) given by the sum of third and fourth columns
in (22) has the nonnegative production term if and only if the internal energy ε
has the form (26) and, in addition, the condition (24) holds. Cattaneo systems
satisfying these conditions depend on one arbitrary function of time εeq(ϑ).

3. The supplementary balance law having nonnegative production term (en-
tropy) is unique modulo linear combination of original balance laws and the
trivial balance laws.

6 Conclusion
Description of the supplementary balance laws for Cattaneo heat propagation sys-
tem given in this paper can probably be carried over for other systems of balance
equations for the couples of fields: scalar + vector field.
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One observes a kind of duality between the tensorial structure of dynami-
cal fields (here ϑ, q) and the list of free functions of temperature λ0(ϑ), K̃A(ϑ),
A = 1, 2, 3 entering the description of SBL.

It would be interesting to follow up if similar duality exists for the balance
systems of more complex tensorial structure and for the systems of order 1 (recently
the author completed the classification of SBL of order 0 and 1 for the Navier-Stokes
fluid balance system, [9]).

In the case of Cattaneo heat propagation system, the II law of thermodynam-
ics – existence of the SBL having the nonnegative production term – defines the
entropy balance uniquely (modulo addition of trivial balance laws and the linear
combination of the original balance laws). It would be interesting to look at other
balance systems to determine the character of non-unicity of the SBL with the
positive production – “abstract entropy balances” – to find the place of “physical
entropy” in this list and to see if this “physical entropy balance” is “optimal” in
some sense.
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