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(Received October 3, 2012)

Abstract. We give a complete characterization of those f : [0, 1]→ X (where X is a Ba-
nach space) which allow an equivalent C1,BV parametrization (i.e., a C1 parametrization
whose derivative has bounded variation) or a parametrization with bounded convexity. Our
results are new also for X = R

n. We present examples which show applicability of our char-
acterizations. For example, we show that the C1,BV and C2 parametrization problems are
equivalent for X = R but are not equivalent for X = R

2.
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bounded convexity
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1. Introduction

Let X be a (real) Banach space, and let a continuous curve f : [a, b] → X be given.

More than sixty years ago several authors (i.e. Ward, Zahorski, Choquet, Tolstov)

investigated (in the case X = R
n) conditions under which f allows an equivalent

parametrization which is “smooth of the first order” (i.e., it is differentiable, or C1).

For more information and generalizations of these results to the case of an arbitraryX

see [7]; the characterization in the C1 case is recalled below (Theorem 6.3).

The problem of Cn (n ∈ N) parametrizations (and other types of “higher order

smooth” parametrizations) in the case X = R was settled in [14], [15]; see Section 4

The research of the first author was supported in part by ISF. The research of the
second author was supported in part by grant MSM 0021620839 and the grants GAČR
201/06/0198 and GAČR P201/12/0436.
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below. (The problem of n-times differentiable parametrizations in the case X = R

was solved in [6].)

The problem of “higher order smooth” parametrizations in the vector case (even

for X = R
2) is essentially more difficult than in the case X = R and the problem of

vector Cn parametrization for n > 3 is still open.

However, the case of vector C2 parametrizations (for X having a Fréchet smooth

norm) was settled in [10], the case of a C1,α (0 < α 6 1) parametrizations in [9], and

the case of twice differentiable parametrizations in [5].

In the present article, we will characterize those f : [a, b] → X which allow

parametrizations with bounded convexity (see Theorem 5.4) as well as functions

that allow C1,BV parametrizations (see Theorem 6.5). (Our exposition is essentially

an improved version of a part of the unpublished preprint [8], where the bounded

convexity parametrization problem was considered together with the C2 problem.)

Here a function f : [a, b] → X is called a C1,BV function if f is C1 and f ′ has

bounded variation on [a, b]. The notion of real functions with bounded convexity

goes back to de la Vallée Poussin (1908) and Riesz (1911) (see [18, p. 28]) and its

natural generalization to Banach-valued case was studied in detail in [21]. Note that

a continuous f : [a, b] → X has bounded convexity if and only if f ′
+ has bounded

variation on [a, b) (see Lemma 2.5 below), and thus f is C1,BV if and only if f is C1

and has bounded convexity.

If X = R, we show (see Theorem 4.1 below) that f allows a C1,BV parametrization

if and only if f allows a parametrization with bounded convexity, if and only if f

allows a C2 parametrization. However, if X = R
2, these parametrization problems

are pairwise non-equivalent (see Example 6.1, 6.7 and 7.4).

Our characterizations are based on the notion of a turn of a curve and on a special

type of 1/2-variation with a constraint (see Definition 3.5). The notion of a turn

is a generalization of the classical notion of integral curvature (see Remark 2.8 for

further information).

The structure of the present article is as follows. In Section 2, we introduce

basic definitions and recall or prove the needed (essentially well-known) properties

of curves with bounded convexity and curves with finite turn. In Section 3, we prove

special lemmas needed in our main arguments. In short Section 4, we solve our

parametrization problems in the easy case of real-valued functions. Section 5 contains

the characterization of curves that allow parametrizations with finite convexity and

Section 6 deals with curves allowing a parametrization in C1,BV. Finally, Section 7

contains examples that show applicability of our results.
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2. Preliminaries

By λ we will denote the Lebesgue measure on R. Throughout the whole article,

X will always be a (real) Banach space. By H1 we will denote the 1-dimensional

Hausdorff measure.

A mapping is L-Lipschitz provided it is Lipschitz with some constant L (not

necessarily the minimal one). If M ⊂ A ⊂ R and f : A → X are given, then we

define the variation of f on M as

V (f, M) := sup

{ n
∑

i=1

‖f(xi) − f(xi−1)‖
}

,

where the supremum is taken over all (xi)
n
i=0 ⊂ M such that x0 < x1 < . . . < xn.

(We set V (f, M) := 0, if M is empty or a singleton.) We say that f : [a, b] → X is

BV (or has bounded variation), provided V (f, [a, b]) < ∞.
For basic well-known properties of variation, see, i.e., [11] and [3]. In particular,

we will need the additivity of variation (see [3, (P3) on p. 263]):

(2.1) V (f, M) = V (f, M ∩ (−∞, t]) + V (f, M ∩ [t,∞)), whenever t ∈ M.

If f : [a, b] → X is BV, then we define vf (x) := V (f, [a, x]), x ∈ [a, b]. If f is also

continuous, then vf is continuous as well ([11], [3]). Moreover, clearly vf is (strictly)

increasing, if and only if f is not constant on any subinterval of [a, b]. We say that

f : [a, b] → X is parametrized by the arc-length, if V (f, [u, v]) = v − u for every

a 6 u < v 6 b. Obviously, each such f is 1-Lipschitz ([3, p. 267]).

Definition 2.1.

(a) Let f : [a, b] → X be a continuous mapping. We say that f∗ : [c, d] → X is

a parametrization of f if there exists an increasing homeomorphism h : [c, d] →
[a, b] such that f∗ = f ◦h. If f∗ is moreover parametrized by the arc-length, we

say that f∗ is an arc-length parametrization of f .

(b) If f : [a, b] → X is nonconstant, continuous and BV, then there exists (see [11,

§2.5.16] or [3, Theorem 3.1]) a unique F : [0, l] → X (where l := vf (b)) such

that f = F ◦ vf . We will denote this associated mapping F by Af .

Several times, we will apply the following easy lemma. For a proof, see [9,

Lemma 2.2].
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Lemma 2.2. Let f : [a, b] → X be continuous. Then the following assertions

hold.

(i) The function f has an arc-length parametrization if and only if f is BV and f is

not constant on any [u, v] ⊂ [a, b]. In this case, Af is an arc-length parametriza-

tion of f , Af = f ◦ (vf )−1, and a general arc-length parametrization of f is of

the form F s(x) = Af (x − s), x ∈ [s, s + l], where l := vf (b) and s ∈ R.

(ii) If f is BV on [a, b], and it is not constant on any subinterval of an interval

[α, β] ⊂ [a, b], thenAf |[vf (α),vf (β)] = f◦(vf |[α,β])
−1 is an arc-length parametriza-

tion of f |[α,β].

Let f : [a, b] → X . The derivative f ′ and the one-sided derivatives f ′
± are defined

in the usual way; at the endpoints we take f ′(a) := f ′
+(a), and f ′(b) := f ′

−(b). We say

that f : [a, b] → X is C1 provided f ′(x) exists for all x ∈ [a, b] and f ′ is continuous

on [a, b]. We say that f : [a, b] → X is C2 provided f ′ is C1. We say that f is C1,BV

provided f is C1, and f ′ is BV on [a, b]. Clearly, if f is C2, then f is C1,BV.

It is well known (see i.e. [21, p. 2], or use [12, Theorem 7] together with [11,

Theorem 2.10.13]) that if f : [a, b] → X is Lipschitz and f ′(x) exists for almost all

x ∈ [a, b], then

(2.2) V (f, [a, b]) =

∫ b

a

‖f ′(x)‖ dx.

For a proof of the following well-known version of Sard’s Theorem, see e.g. [12,

Theorem 7].

Lemma 2.3. Let f : [0, 1] → X be arbitrary. Let C := {x ∈ [0, 1] : f ′(x) = 0}.
Then H1(f(C)) = 0.

Let I = [a, b] and let a continuous f : I → X be given. The right and left unit

tangent vector of f at x ∈ I and the unit tangent vector of f at x ∈ I are defined,

respectively, as the limits

τ+(f, x) = lim
t→0+

f(x + t) − f(x)

‖f(x + t) − f(x)‖ , τ−(f, x) = lim
t→0−

− f(x + t) − f(x)

‖f(x + t) − f(x)‖ ,

τ(f, x) = lim
t→0

x+t∈I

sgn(t) · f(x + t) − f(x)

‖f(x + t) − f(x)‖ ,

and f is said to be tangentially smooth if the function τ(f, x) is defined and contin-

uous on I.

Clearly τ(f, x) exists if and only if τ+(f, x) = τ−(f, x).
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If f ′(x) or f ′
+(x) exists and is not equal to 0, then clearly τ(f, x) = f ′(x)/‖f ′(x)‖ or

τ+(f, x) = f ′
+(x)/‖f ′

+(x)‖, respectively. So, if f : I → X is C1 and f ′(x) 6= 0, x ∈ I,

then f is tangentially smooth.

The notion of “convexity” goes back to de la Vallée Poussin (1908) and F.Riesz

(1911); see [18, p. 28].

Definition 2.4. Let X be a Banach space and let f : [a, b] → X be given. For

every partition D = {a = x0 < x1 < . . . < xn = b} of [a, b] we put

K(f, D) =
n−1
∑

i=1

∥

∥

∥

f(xi+1) − f(xi)

xi+1 − xi
− f(xi) − f(xi−1)

xi − xi−1

∥

∥

∥
.

The convexity of f on [a, b] we define as K(f, [a, b]) = supK(f, D), where the supre-

mum is taken over all partitionsD of [a, b] with#D > 3. We say that f has a bounded

(or finite) convexity, if K(f, [a, b]) < ∞.

Banach space-valued functions of bounded convexity were considered in [19], [20]

and [4]; their properties are studied in detail in [21].

The following basic fact immediately follows from [21, Theorem 3.1, Proposi-

tion 3.3, and Proposition 3.4 (iv)].

Lemma 2.5. Let X be a Banach space and let f : [a, b] → X be continuous.

Then the following conditions are equivalent.

(i) Kb
af < ∞.

(ii) f ′
+(x) exists for each x ∈ [a, b) and V (f ′

+, [a, b)) < ∞.
(iii) f ′

+(x) exists for each x ∈ (a, b) and V (f ′
+, (a, b)) < ∞.

(iv) The mapping g(x) := f ′
+(x), x ∈ [a, b), g(b) := f ′

−(b) is well defined and

V b
a g < ∞.

Moreover,

(2.3) Kb
af = V (f ′

+, [a, b)) = V (f ′
+, (a, b)) = V (g, [a, b]),

if one of the numbers is finite.

By Lemma 2.5,

(2.4) a function f is C1,BV iff f is C1 and has bounded convexity.

If f is C2 on [a, b], then (see [21, Theorem 3.8])

(2.5) K(f, [a, b]) =

∫ b

a

‖f ′′(x)‖ dx.
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Remark 2.6. Note also (see [4, Lemma 5.5] or [21, Remark 3.2]) that f is of

bounded convexity if and only if f is a restriction of a mapping g : (a−1, b+1) → X

that is delta-convex in the sense of [20], which holds if and only if f is d.c. with

a Lipschitz control function (see [21, Theorem 3.1]). However, we will not use these

facts.

We will need the following facts (see [21, Proposition A and Proposition 3.4]).

Lemma 2.7. Let f : [a, b] → X have bounded convexity. Then f is Lipschitz and

(i) f ′
+(x) and f ′

−(x) exist at each point of [a, b) and (a, b], respectively;

(ii) lim
t→x+

f ′
±(t) = f ′

+(x) for x ∈ [a, b), and lim
t→x−

f ′
±(t) = f ′

−(x) for x ∈ (a, b];

(iii) the set A := {x ∈ (a, b) : f ′
+(x) 6= f ′

−(x)} is countable and ∑

x∈A

‖f ′
+(x) −

f ′
−(x)‖ < ∞;

(iv) if [c, d] ⊂ [a, b), then V (f ′
+, [c, d]) = K(f, [c, d]) + ‖f ′

+(d) − f ′
−(d)‖.

Our characterization of curves which allow a C1,BV parametrization or a parame-

trization with bounded convexity is based on the notion of the turn of a curve,

which generalizes the classical notion of total (integral) curvature (see (2.10)) to

non-smooth curves.

Remark 2.8. The “angular” turn of general curves was investigated and used, i.e.,

in [17] and [1] for curves in Rn. We use the definition of turn which does not use the

notion of an angle between vectors and so is defined in a general Banach space. Our

(“nonangular”) turn T does not equal the “angular” turn even in R
n. However, the

results from [4] imply that in caseX is a Hilbert space, the “angular” turn Ta and the

turn T which we use are equivalent in the sense that T (f, I) 6 Ta(f, I) 6 (π/2)T (f, I)

(see [4, Remark 1.1]). Thus, it is easy to see that, if X is a Hilbert space, we could

also work with the “angular” turn. Indeed, our main results clearly hold also if

the variation W δ(f, G) and the notion of an (f, δ, K)-partition are defined using the

“angular” turn.

Definition 2.9. Let f : [a, b] → X be continuous, and suppose that g(x) :=

τ+(f, x) exists for all x ∈ [a, b), and that g(b) := τ−(f, b) also exists. Then we define

the (tangential) turn T (f, [a, b]) of f on [a, b] as V (g, [a, b]). We say that f has finite

turn on [a, b] provided T (f, [a, b]) < ∞. If f : G → X , where G ⊂ R is open, then

we say that f has locally finite turn on G provided T (f, [c, d]) < ∞ for each interval
[c, d] ⊂ G.

We will need the following fact.
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Lemma 2.10. Let f : [a, b] → X be continuous, let τ+(f, x) exist for each x ∈
(a, b), and V (τ+(f, ·), (a, b)) < ∞. Then f has finite turn on [a, b] and

(2.6) T (f, [a, b]) = V (τ+(f, ·), (a, b)) = V (τ+(f, ·), [a, b)).

P r o o f. The definition of variation and completeness of X easily imply (see [21,

Lemma 2.6 and Remark 2.7]) that lim
x→a+

τ+(f, x) =: w and lim
x→b−

τ+(f, x) =: z ex-

ist. By [4, Theorem 3.5], we obtain τ+(f, a) = w and τ−(b) = z. Let g be as in

Definition 2.9, and choose c ∈ (a, b). Using [21, Lemma 2.6 and Remark 2.7]) and

additivity of variation (2.1), we obtain

T (f, [a, b]) = V (g, [a, c]) + V (g, [c, b]) = V (g, (a, c]) + V (g, [c, b)) = V (τ+(f, ·), (a, b)).

By an obvious modification of the argument, also the second equality of (2.6) follows.

�

Using Lemma 2.10, we easily obtain that if T (f, [a, b]) < ∞ for an f : [a, b] → X ,

then

(2.7) T (f, [c, d]) 6 T (f, [a, b]) whenever [c, d] ⊂ [a, b].

Suppose that f : [a, b] → X is continuous and h is an increasing homeomorphism

of [c, d] onto [a, b]. Since clearly τ+(f ◦ h, t) = τ+(f, h(t)) (whenever t ∈ [a, b) and

one of the vectors is defined), (2.6) implies

(2.8) T (f ◦ h, [c, d]) = T (f, [a, b]),

if one side of this equality is defined. So, the notion of turn is a “geometrical one”

unlike the notion of convexity. However, these notions are very closely connected:

Lemma 2.11 ([4, Proposition 5.7]). Let X be a Banach space and let F : [a, b] →
X be parametrized by the arc-length. Then F has finite turn if and only if F has

bounded convexity. Moreover,

(2.9) T (F, [a, b]) = K(F, [a, b]) if one of the numbers is finite.

By (2.8), Lemma 2.11 and (2.5) we immediately obtain the following fact which

shows that the turn is a generalization of the classical total (integral) curvature.
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Lemma 2.12. Let f : [a, b] → X be continuous and let F : [c, d] → X be an

arc-length parametrization of f . If F is C2 smooth on [c, d], then

(2.10) T (f, [a, b]) =

∫ d

c

‖F ′′(x)‖ dx.

We will need also the following two easy lemmas on curves with finite turn.

Lemma 2.13. Let f : [a, b] → X be a continuous function with finite turn on

[a, b]. Then f is BV and is not constant on any interval. Let f1 : [c, d] → X be an

arc-length parametrization of f , and let η : [c, d] → [a, b] be the increasing homeo-

morphism for which f1 = f ◦ η. Then:

(i) (f1)
′
+(x) and (f1)

′
−(x) exist for all x ∈ [c, d) and x ∈ (c, d], respectively, and

(f1)
′
+(x) = τ+(f, η(x)) and (f1)

′
−(x) = τ−(f, η(x)) (and so ‖(f1)

′
+(x)‖ = 1 and

‖(f1)
′
−(x)‖ = 1) at all such points.

(ii) K(f1, [c, d]) = T (f, [a, b]) < ∞.

(iii) τ+(f, ·) is continuous from the right at all x ∈ [a, b).

(iv) If a < ξ < b, then T (f, [a, b]) = T (f, [a, ξ]) + T (f, [ξ, b]) + ‖τ+(f, ξ) − τ−(f, ξ)‖.
(v) If τ(f, x) exists for all x ∈ [a, b], then f is tangentially smooth on [a, b].

P r o o f. The function f is BV by [4, Corollary 3.4 and Lemma 4.4 (ii)]. Clearly

(by the definition of the turn and the definition of τ+(f, x)), the function f is not

constant on any subinterval of [a, b]. Part (i) follows from [4, Lemma 4.5 (i)]. Since

T (f, [a, b]) = T (f1, [c, d]) by (2.8), part (ii) follows from (2.9). Part (iii) follows from

(i), (ii), and Lemma 2.7 (ii). For part (iv), by (ii), (2.3), and (2.1), we have

(2.11) T (f, [a, b]) = K(f1, [c, d]) = V ((f1)
′
+, [c, d))

= V ((f1)
′
+, [c, u]) + V ((f1)

′
+, [u, d)),

where u := η−1(ξ). By Lemma 2.7(iv), we obtain

(2.12) V ((f1)
′
+, [c, u]) = K(f1, [c, u]) + ‖(f1)

′
+(u) − (f1)

′
−(u)‖.

Using (ii) (on suitable intervals), we have that K(f1, [c, u]) = T (f, [a, ξ]) and

V ((f1)
′
+, [u, d)) = K(f1, [u, d]) = T (f, [ξ, b]). Since (i) implies τ±(f, ξ) = (f1)

′
±(u),

the conclusion follows by (2.11) and (2.12). Part (v) easily follows by (i), (ii) and

Lemma 2.7(ii). �
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Lemma 2.14. Suppose that f : [a, b] → X is a continuous function with locally

finite turn in (a, b). Let µ ∈ (a, b), g(x) := T (f, [µ, x]) for x ∈ (µ, b) and h(x) :=

T (f, [x, µ]) for x ∈ (a, µ). Then

(i) g is continuous from the left at each x ∈ (µ, b) and g(µ+) = 0,

(ii) |g(x+) − g(x)| 6 2 for each x ∈ (µ, b),

(iii) h is continuous from the right at each x ∈ (a, µ), h(µ−) = 0, and

(iv) |h(x−) − h(x)| 6 2 for each x ∈ (a, µ).

P r o o f. All the statements easily follow from the corresponding assertions of [21,

Proposition 3.7] on indefinite convexity via Lemma 2.13 (i), (ii). For example, to

prove (ii), fix x ∈ (µ, b) and choose ν ∈ (x, b). Then f∗ := f |[µ,ν] has finite turn.

Let f1 : [c, d] → X be an arc-length parametrization of f∗, and let η : [c, d] → [µ, ν]

be the increasing homeomorphism for which f1 = f∗ ◦ η. Denote y := η−1(x) and

p(t) := Kt
cf1, t ∈ (c, d). We have p(t) = g(η(t)) by Lemma 2.13 (ii). So, since

|p(y+) − p(y)| = ‖(f1)
′
+(y) − (f1)

′
−(y)‖ by [21, Proposition 3.7 (ii)], we obtain by

Lemma 2.13 (i)

|g(x+) − g(x)| = |p(y+) − p(y)| = ‖(f1)
′
+(y) − (f1)

′
−(y)‖ 6 2.

�

Let now f : [0, 1] → X with bounded convexity and [a, b] ⊂ [0, 1] be given. Then,

only for the use in the present paper, we will define

(2.13) K∗(f, [a, b]) := ‖f ′
−(a) − f ′

+(a)‖ + K(f, [a, b]) + ‖f ′
−(b) − f ′

+(b)‖,

where we put f ′
−(0) := f ′

+(0) and f ′
+(1) := f ′

−(1). Using (2.3), (2.1) and Lemma 2.7

(iii), it is easy to see that

(2.14) K∗(f) := sup

{

∑

I∈S

K∗(f, I)

}

< ∞,

where the supremum is taken over all finite systems S of closed pairwise non-
overlapping subintervals of [0, 1].
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3. Lemmas

Lemma 3.1. Let f : [0, 1] → X have bounded convexity. Let C := {x ∈ [0, 1] :

f ′
+(x) = 0 or f ′

−(x) = 0}. Then H1(f(C)) = 0.

P r o o f. Denote C∗ := {x ∈ [0, 1] : f ′(x) = 0}. Lemma 2.3 implies H1(f(C∗)) =

0. Since C \ C∗ is countable by Lemma 2.7 (i), (iii), the assertion follows. �

The following lemma is proved in [10, Lemma 2.5].

Lemma 3.2. Let f : [a, b] → X be continuous. Let ∅ 6= G ⊂ (a, b) be an open

set, H := [a, b]\G and let (at, bt), t ∈ T , be all (pairwise different) components of G.

Then:

(i) If H1(f(H)) = 0, then V (f, [a, b]) =
∑

t∈T

V (f, [at, bt]).

(ii) If V (f, [a, b]) =
∑

t∈T

V (f, [at, bt]) < ∞, then H1(f(H)) = 0.

(iii) If H1(f(H)) = 0 and f is L-Lipschitz on each [at, bt], then f is L-Lipschitz on

[a, b].

(iv) If f is BV and H1(f(H)) = 0, then λ(vf (H)) = 0.

The following easy inequality is well known (see i.e. [16, Lemma 5.1]):

(3.1) if u, v ∈ X \ {0}, then
∥

∥

∥

u

‖u‖ − v

‖v‖
∥

∥

∥
6

2

‖u‖ ‖u − v‖.

Lemma 3.3. Let I = [a, b] ⊂ [0, 1] and let f : I → X have bounded convexity

on I. Define i := inf
x∈[a,b)

‖f ′
+(x)‖, and S := sup

x∈[a,b)

‖f ′
+(x)‖. Then

(i) S − i 6 K(f, I),

(ii) V (f, I) 6 S · λ(I), and

(iii) if i > 0, then i · T (f, I) 6 2 · K(f, I).

P r o o f. Recall that f is Lipschitz by Lemma 2.7.

To prove (i), observe that for each ε > 0 we can choose p, q ∈ I such that S − i <

‖f ′
+(q) − f ′

+(p)‖ + ε. Thus the conclusion follows by equality (2.3).

By (2.2) and Lemma 2.7 (iii) we obtain V (f, I) =
∫ b

a
‖f ′

+(t)‖ dt 6 S · λ(I).

Finally, for part (iii), consider arbitrary points x0 < . . . < xm in [a, b). Apply-

ing (3.1) to u = f ′
+(xj+1) and v = f ′

+(xj), we obtain ‖τ+(f, xj+1) − τ+(f, xj)‖ 6

2i−1‖f ′
+(xj+1) − f ′

+(xj)‖, so (2.6) and (2.3) imply (iii). �

Our first basic lemma is the following (K∗(f, I) is defined in (2.13)):

Lemma 3.4. Let f : [0, 1] → X have bounded convexity and let I = [a, b] ⊂ [0, 1].
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(i) If inf{‖f ′
+(x)‖ : x ∈ I \ {1}} = 0 or inf{‖f ′

−(x)‖ : x ∈ I \ {0}} = 0, then we

have
√

V (f, I) 6 K∗(f, I)/2 + λ(I)/2.

(ii) If 0 < δ 6 T (f, I) < ∞, then
√

V (f, I) 6 (2 + δ)/(2δ)K∗(f, I) + λ(I)/2.

P r o o f. Denote K∗ := K∗(f, I) and put f ′
−(0) := f ′

+(0) and f ′
+(1) := f ′

−(1).

For part (i), let ε > 0 and w ∈ I be such that ‖f ′
+(w)‖ < ε or ‖f ′

−(w)‖ < ε.

Distinguishing the cases w = a, w = b and w ∈ (a, b), by Lemma 2.7 (ii) we can

clearly find a point w∗ ∈ [a, b) with ‖f ′
+(w∗)‖ < ε+‖f ′

+(a)−f ′
−(a)‖+‖f ′

+(b)−f ′
−(b)‖.

Thus, also using (2.3), we obtain ‖f ′
+(x)‖ 6 ‖f ′

+(x)− f ′
+(w∗)‖+ ‖f ′

+(w∗)‖ 6 K∗ + ε

for each x ∈ [a, b). Thus by (2.2) we have

√

V (f, I) =

√

∫

I

‖f ′
+(x)‖ dx 6

√

λ(I)(K∗ + ε) 6
1

2
(K∗(f, I) + ε + λ(I)).

Now we complete the proof by sending ε → 0.

To prove part (ii), we can assume that inf{‖f ′
+(x)‖ : x ∈ [a, b)} =: i > 0 (oth-

erwise the conclusion follows by part (i)). Let S := sup{‖f ′
+(x)‖ : x ∈ [a, b)}. By

Lemma 3.3 (iii), it follows that i · δ 6 i · T (f, I) 6 2 · K(f, I), and by part (i) of the

same lemma that S − i 6 K(f, I). It follows that S 6 S − i + i 6 (1 + 2/δ)K(f, I).

By Lemma 3.3 (ii) we have V (f, I) 6 S · λ(I). So, we obtain

√

V (f, I) 6
1

2

(

S +
V (f, I)

S

)

6
1

2

((

1 +
2

δ

)

K(f, I) + λ(I)
)

and the assertion of (ii) follows. �

Now we define a special type of a “1/2-variation”, which is crucial in our solution

of the parametrization problems considered.

Definition 3.5. Let f : [0, 1] → X be continuous and BV. Let ∅ 6= G ⊂ (0, 1)

be an open set and 0 < δ < ∞. If f has locally finite turn in G, then we define

W δ(f, G) = sup

{ n
∑

k=1

√

V (f, Ik)

}

,

where the supremum is taken over all non-overlapping systems I1, . . . , In of compact

intervals with int(Ik) ⊂ G such that T (f, Ik) > δ whenever Ik ⊂ G.

Remark 3.6. Let f , G and δ > 0 be as in Definition 3.5, and let ω : [0, 1] → [0, 1]

be an increasing homeomorphism. Then

W δ(f, G) = W δ(f ◦ ω, ω−1(G)).

This equality easily follows if we use (2.8) and observe that vf◦ω = vf ◦ ω.
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Remark 3.7. Let f , G and δ > 0 be as in Definition 3.5, and let I be the family
of all components of G. Then, using only Definition 3.5, we clearly obtain

∑

I∈I

√

V (f, I) 6 W δ(f, G).

Lemma 3.8. Let f : [0, 1] → X have bounded convexity, let ∅ 6= G ⊂ (0, 1) be

an open set, and let f have locally finite turn on G. Let f ′
+(e) = 0 or f ′

−(e) = 0

whenever e ∈ (0, 1) is an endpoint of any component of G. Then W δ(f, G) < ∞ for
each δ > 0.

P r o o f. Let I1, . . . , In be a system of pairwise non-overlapping compact intervals

with int(Ik) ⊂ G such that T (f, Ik) > δ whenever Ik ⊂ G. Consider an Ik with

Ik ∩ {0, 1} = ∅. Observing that if Ik \G 6= ∅, then f ′
+ or f ′

− vanishes at an endpoint

of Ik, by Lemma 3.4 we obtain that
√

V (f, Ik) 6 (2 + δ)/(2δ)K∗(f, Ik) + λ(Ik)/2.

So (2.14) implies
n
∑

k=1

√

V (f, Ik) 6 (2 + δ)/(2δ)K∗(f) + 1/2 + 2
√

V (f, [0, 1]) < ∞,

and thus W δ(f, G) < ∞. �

Lemma 3.9. Let ai (i ∈ I), bj, cj (j ∈ J) be non-negative numbers, I countable,

and J finite. Then

(3.2)

√

∑

i∈I

ai 6
∑

i∈I

√
ai and

∑

j∈J

√

bjcj 6

√

∑

j∈J

bj ·
∑

j∈J

cj .

P r o o f. The first inequality is clear. The other is an immediate consequence of

the Cauchy-Schwartz inequality. �

Lemma 3.10. Let a continuous f : [0, 1] → X have bounded variation and let

it also have locally bounded turn in an open set ∅ 6= G ⊂ (0, 1). Suppose that S
is a family of pairwise non-overlapping compact intervals such that int(J) ⊂ G for

each J ∈ S and

(3.3)
∑

J∈S

V (f, J) = V (f, [0, 1]),
∑

J∈S

√

V (f, J) < ∞,
∑

J∈S

√

V (f, J) · T (f, J) < ∞.

Then W δ(f, G) < ∞ for each δ > 0.

(Note that (3.3) implies that f has finite turn on each J ∈ S.)

P r o o f. Let δ > 0 and consider a finite system K of non-overlapping compact
intervals with int(I) ⊂ G (I ∈ K) such that T (f, I) > δ whenever I ∈ K and I ⊂ G.

For each J ∈ S, let KJ := {I ∈ K : I ⊂ int(J)}. Set K1 :=
⋃{KJ : J ∈ S} and
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K2 := K \ K1. For each J ∈ S, we obtain by the second inequality of (3.2) and
Lemma 2.13 (iv) that

√
δ
∑

{
√

V (f, I) : I ∈ KJ} 6
∑

{
√

T (f, I) · V (f, I) : I ∈ KJ}

6
√

T (f, J) · V (f, J).

Therefore,

(3.4)
∑

{
√

V (f, I) : I ∈ K1} 6 (1/
√

δ)
∑

{
√

T (f, J) · V (f, J) : J ∈ S}.

For each I ∈ K2, denote by SI the set of all J ∈ S such that J ∩ int(I) 6= ∅. If
I = [a, b] ∈ K2, put a

∗ := minJa, if there exists Ja ∈ S with a ∈ int(Ja), and a∗ := a,

if such Ja does not exist. Similarly, put b∗ := maxJb, if there exists Jb ∈ S with
b ∈ int(Jb), and b∗ := b, if such Jb does not exist. The equality of (3.3) easily implies

that V (f, [a∗, b∗]) =
∑{V (f, J) : J ∈ SI}. (This can be proved either directly, or

using first Lemma 3.2 (ii) and then Lemma 3.2 (i).) Thus the first inequality of (3.2)

implies
√

V (f, [a∗, b∗]) 6
∑{

√

V (f, J) : J ∈ SI}. Observing that, for each J ∈ S,
the set {I ∈ K2 : J ∈ SI} contains at most two intervals, we obtain

(3.5)
∑

{
√

V (f, I) : I ∈ K2} 6 2
∑

{
√

V (f, J) : J ∈ S}.

Now (3.3), (3.4) and (3.5) imply W δ(f, G) < ∞. �

Another important technical notion is the following.

Definition 3.11.

(i) We say that I ⊂ Z is a Z-interval, if I = (l, m)∩Z, where l, m ∈ Z∪{−∞,∞}.
(ii) We will say that a family P of compact intervals is a generalized partition of
a bounded interval (a, b), if there exists a system (xi)i∈I such that I is an Z-

interval, the function i 7→ xi, i ∈ I, is strictly increasing, inf
i∈I

xi = a, sup
i∈I

xi = b

and P = {[xk, xk+1] : k, k + 1 ∈ I}.
(iii) We will say that a family P of compact intervals is a generalized partition of

a bounded open set ∅ 6= G ⊂ R, if
⋃{int(I) : I ∈ P} ⊂ G, and for each

component (a, b) of G, the family {I ∈ P : int(I) ⊂ (a, b)} is a generalized
partition of (a, b).

(iv) Suppose that f : [0, 1] → X has locally finite turn in an open set ∅ 6= G ⊂ (0, 1),

P is a generalized partition of G, 0 6 δ 6 K 6 ∞, and δ ∈ R. Then we say that

P is an (f, δ, K)-partition of G, if T (f, I) < ∞, T (f, I) 6 K for each I ∈ P ,
and T (f, I) > δ for each I ∈ P with I ⊂ G.
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Remark 3.12. Notice that in part (iv) of Definition 3.11, if I = [c, d] ∈ P but
c 6∈ G or d 6∈ G, then we do not require that T (f, I) > δ.

The following lemma immediately follows from definitions.

Lemma 3.13. Let f : [0, 1] → X be continuous and BV, let ∅ 6= G ⊂ (0, 1) be

open, and let f have locally finite turn in G. Let 0 < δ < ∞ and let P be an
(f, δ,∞)-partition of G. Then

∑

I∈P

√

V (f, I) 6 W δ(f, G).

Lemma 3.14. Let ∅ 6= G ⊂ (0, 1) be open, and let f : [0, 1] → X be a continuous

BV function. Let f have locally finite turn on G and 0 < δ < ∞.
Then there exists a generalized partition P of G which is an (f, δ, δ + 3)-partition

of G.

P r o o f. Without any loss of generality, we can assume that G = (a, b) ⊂ (0, 1).

Let x0 := (a + b)/2. We will construct points xi (i ∈ Z) with

(3.6) a 6 . . . 6 x−2 6 x−1 < x0 < x1 6 x2 6 x3 6 . . . 6 b

such that T (f, [xi, xi+1]) 6 δ + 3 if xi < xi+1, and, moreover, with

(3.7) T (f, [xi, xi+1]) > δ if xi < xi+1, xi 6= a and xi+1 6= b.

First, we will construct points xn (n ∈ N) by induction. So suppose that n ∈ N

and xn−1 was constructed. If xn−1 = b, then put xn := b. If xn−1 < b and

sup{T (f, [xn−1, x]) : x ∈ (xn−1, b)} 6 δ + 3, then also put xn := b. Then clearly,

V (τ+(f, ·), (xn−1, xn)) 6 δ + 3 and thus T (f, [xn−1, x]) 6 δ + 3 by Lemma 2.10. If

xn−1 < b and sup{T (f, [xn−1, x]) : x ∈ (xn−1, b)} > δ + 3, then set xn := sup{x ∈
(xn−1, b) : T (f, [xn−1, x]) 6 δ + 3}. Using Lemma 2.14 (i) (applied to µ = xn−1), we

obtain xn > xn−1. Further, using (2.7), we easily obtain xn < b.

Lemma 2.14 (i) implies T (f, [xn−1, xn]) 6 δ + 3. Moreover, T (f, [xn−1, xn]) > δ.

Indeed, otherwise Lemma 2.14 (ii) (with µ = xn−1, x = xn) yields a contradiction

with the definition of xn.

We define the points x−n (n ∈ N) in a quite symmetrical way (using now Lem-

ma 2.14 (iii), (iv)). Since f has locally finite turn in G, Lemma 2.13 (iv) and

(3.7) easily imply that sup
n∈N

xn = b and inf
n∈N

xn = a. So it is easy to check that

P := {[xi, xi+1] : i ∈ Z, xi < xi+1} is a generalized partition of (a, b) with the

desired properties. �
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Lemma 3.15. Let f : [0, 1] → X be continuous and BV, and let ∅ 6= G ⊂ (0, 1) be

open. Suppose that f is nonconstant on each interval contained in G and F := Af

(see Definition 2.1) is C2 on vf (G).

If W δ(f, G) < ∞ for some 0 < δ < ∞, then
∫

vf (G)

√

‖F ′′‖ < ∞.

P r o o f. By Lemma 2.12 we obtain, for each closed interval I ⊂ G,

(3.8) T (f, I) =

∫

vf (I)

‖F ′′‖ < ∞.

Suppose thatW δ(f, G) < ∞. Choose (by Lemma 3.14 (i)) an (f, δ, δ+3)-partition

P of G. Lemma 3.13 implies ∑

I∈P

√

V (f, I) < ∞. By the Cauchy-Schwartz inequality
and (3.8) we obtain, for each closed interval I ⊂ G,

∫

vf (I)

1 ·
√

‖F ′′‖ 6

√

λ(vf (I)) ·
√

∫

vf (I)

‖F ′′‖

=
√

V (f, I) ·
√

T (f, I) 6
√

V (f, I) ·
√

δ + 3.

Now it is easy to see that that the same inequalities hold for each I ∈ P (also for
those with I \ G 6= ∅).
Consequently,

∫

vf (G)

√

‖F ′′‖ 6
√

δ + 3 · ∑

I∈P

√

V (f, I) < ∞. �

In the basic constructions in Sections 5 and 6, we will need the following lemmas.

Lemma 3.16. Let (Iα)α∈A be a system of pairwise non-overlapping compact

subintervals of the interval [0, d]. Let
∑

α∈A

µα < ∞, where µα > 0, α ∈ A. Then

there exists an interval [0, d′] and an increasing homeomorphism Ψ: [0, d′] → [0, d]

such that λ(Ψ−1(Iα)) = µα and Ψ−1 is absolutely continuous.

P r o o f. We can define Ψ := ω−1, where ω(x) =
∫ x

0
ϕ (x ∈ [0, d]), and ϕ(t) =

µα/λ(Iα) for t ∈ int(Iα) and ϕ(t) = 1 for t ∈ [0, d′] \ ⋃{int(Iα) : α ∈ A}. �

Lemma 3.17. Let P be a generalized partition of an open set ∅ 6= G ⊂ (0, d).

Let g : [0, d] → X be such that V :=
∑

I∈P

V (g, I ∩ G) < ∞, g(x) = 0 for each

x ∈ F := [0, d]\G, and let g be continuous at all points of F . Then V (g, [0, d]) < ∞.

P r o o f. Let J be the family of all components of G. Using the continuity of g,
it is easy to show that, for each J ∈ J ,

V (g, J) =
∑

{V (g, I) : I ∈ P , I ⊂ J} =
∑

{V (g, I ∩ G) : I ∈ P , I ⊂ J}.
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Now consider arbitrary points 0 = x0 < x1 < . . . < xm = d. It is easy to see that we

can choose points 0 = y0 < y1 < . . . < yn = d such that {x0, . . . , xm} ⊂ {y0, . . . , yn}
and, for each 0 6 k < n, either {yk, yk+1} ⊂ F or (yk, yk+1) ⊂ G. Then clearly

m−1
∑

i=0

‖g(xi+1) − g(xi)‖ 6

n−1
∑

k=0

‖g(yk+1) − g(yk)‖ 6
∑

{V (g, J) : J ∈ J } = V.

�

Lemma 3.18. Let G1, G2 be bounded open subsets of R and let ϕ : G2 → G1

be an increasing differentiable homeomorphism. Let Z ⊂ G2 be an interval (of

an arbitrary type) such that ϕ′(z) ∈ R exists for each z ∈ Z and V (ϕ′, Z) < ∞. Let
h : G1 → X be such that h′

+(x) exists for each x ∈ ϕ(Z) and V (h′
+, ϕ(Z)) < ∞.

Then

(3.9) V ((h ◦ ϕ)′+, Z) 6 sup
t∈Z

|ϕ′(t)| · V (h′
+, ϕ(Z)) + sup

x∈ϕ(Z)

‖h′
+(x)‖ · V (ϕ′, Z).

P r o o f. Let t0 < t1 < . . . < tn be arbitrary points in Z. Observe that

(h ◦ ϕ)′+(t) = ϕ′(t)h′
+(ϕ(t)) for each t ∈ Z, and thus

‖(h ◦ ϕ)′+(ti+1) − (h ◦ ϕ)′+(ti)‖
6 ‖ϕ′(ti+1)h

′
+(ϕ(ti+1)) − ϕ′(ti)h

′
+(ϕ(ti+1))‖ + ‖ϕ′(ti)h′

+(ϕ(ti+1)) − ϕ′(ti)h′
+(ϕ(ti))‖

6 sup
x∈ϕ(Z)

‖h′
+(x)‖ · |ϕ′(ti+1) − ϕ′(ti)| + sup

t∈Z
|ϕ′(t)| · ‖h′

+(ϕ(ti+1)) − h′
+(ϕ(ti))‖.

Now the assertion of the lemma follows easily. �

4. The case of real valued functions

As mentioned in Introduction, functions f : [0, 1] → R which alow a C2 parametri-

zation were completely characterized in [14] and [15]. We will show that the same

characterization holds if it is required that the parametrization has bounded con-

vexity or a continuous BV derivative. We prove this result easily by using results

from [14] and [15]; however, we could obtain this result also from our theorems on

vector functions which we prove without using results of [14] and [15].

Lebedev showed that for a continuous f : [0, 1] → R there exists a homeomorphism

h of [0, 1] onto itself such that f ◦ h is a Cn function (n ∈ N) if and only if

(4.1) λ(f(Mf )) = 0 and
∑

α∈A

(ωf
α)1/n < ∞,
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where Iα(α ∈ A) are all maximal open intervals in [0, 1] on which f is constant or

strictly monotone,Mf := [0, 1]\ ⋃

α∈A

Iα is the set of points “of varying monotonicity”

of f , and ωf
α is the oscillation of f on Iα.

Laczkovich and Preiss showed that the same (for a continuous f) holds if and only

if

(4.2) V1/n(f, Mf ) < ∞,

where

V1/n(f, Mf ) := sup

{ m
∑

i=1

|f(di) − f(ci)|1/n

}

,

the supremum being taken over all systems [ci, di], i = 1, . . . , m, of pairwise non-

overlapping subintervals of [0, 1] with ci, di ∈ Mf . Note that Mf is called Kf in [14].

Theorem 4.1. Let f : [0, 1] → R be continuous. Then the following conditions

are equivalent.

(i) There exists a homeomorphism h of [0, 1] onto itself such that f ◦h has bounded

convexity.

(ii) There exists a homeomorphism h of [0, 1] onto itself such that f ◦ h is C1,BV.

(iii) There exists a homeomorphism h of [0, 1] onto itself such that f ◦ h is C2.

(iv) Lebedev condition (4.1) holds for n = 2.

(v) Laczkovich-Preiss condition (4.2) holds for n = 2.

P r o o f. By results of [14] and [15] which were mentioned at the beginning of this

section, the conditions (iii), (iv) and (v) are equivalent. Since (iii) implies (ii) and

(ii) implies (i) (see (2.4)), it is sufficient to prove that (i) implies (v). Thus suppose

that h as in (i) is given and denote g := f ◦ h. Let ci, di be as in the definition

of V1/2(g, Mg). We claim that, for each x ∈ Mg ∩ [0, 1), we have

(4.3) either g′−(x) 6 0 6 g′+(x) or g′+(x) 6 0 6 g′−(x) (where g′−(0) := 0).

Indeed, otherwise min(g′+(x), g′−(x)) > 0 or max(g′+(x), g′−(x)) < 0. Provided

min(g′+(x), g′−(x)) > 0, then by Lemma 2.7 (ii) there exists δ > 0 such that g′+(y) > 0

for all y ∈ (x − δ, x + δ). Since g is Lipschitz by Lemma 2.7, we have g(t) − g(s) =
∫ t

s
g′+(ξ) dξ > 0 for all x − δ < s < t < x + δ, which contradicts x ∈ Mg. If

max(g′+(x), g′−(x)) < 0, then we obtain a contradiction in an analogous way.

For each y ∈ (ci, di), (4.3) easily implies

|g′+(y)| 6 |g′+(ci) − g′−(ci)| + V (g′+, [ci, di)) =: Si.

1073



Therefore, we subsequently obtain

|g(di) − g(ci)| 6 Si |di − ci|, |g(di) − g(ci)|1/2
6

√

Si|di − ci| 6
Si + (di − ci)

2
,

m
∑

i=1

|g(di) − g(ci)|1/2 6
1

2

m
∑

i=1

(Si + (di − ci)) 6 C,

where C is a constant depending only on g (see (2.14) and (2.3)). Consequently

V1/2(g, Mg) < ∞, and so also V1/2(f, Mf ) < ∞, since clearly Mg = h−1(Mf ). �

5. Parametrizations with bounded convexity

The problem of a parametrization with bounded convexity and non-zero unilateral

derivatives has a very simple solution.

Proposition 5.1. Let X be a Banach space, and let f : [0, 1] → X be continuous.

Then the following conditions are equivalent:

(i) There exists a homeomorphism h of [0, 1] onto itself such that f ◦h has bounded

convexity, (f ◦ h)′+(x) 6= 0 for x ∈ [0, 1), and (f ◦ h)′−(x) 6= 0 for x ∈ (0, 1].

(ii) f has finite turn.

P r o o f. Suppose that (i) holds. Then [4, Proposition 5.11] and (2.8) easily imply

that f has finite turn. (Alternatively, we can apply Lemma 3.3 (iii) to f ◦ h, since

Lemma 2.7 (ii) easily implies that inf
x∈[0,1)

‖(f ◦ h)′+(x)‖ > 0.)

Suppose that (ii) holds. Then Lemma 2.13 (ii), (i) imply that F = f ◦ v−1
f has

bounded convexity and F ′
±(x) = τ±(F, x) 6= 0, respectively, for all x ∈ [0, l) or

x ∈ (0, l], where l = vf (1). Thus we can put h(t) := v−1
f (l · t) for t ∈ [0, 1]. �

Lemma 5.2. Suppose that a continuous f : [0, 1] → X has bounded variation,

∅ 6= G ⊂ (0, 1) is an open set and f has locally finite turn in G. Suppose that

P is an (f, 0, K)-partition of G for some 0 < K < ∞ such that
∑

I∈P

√

V (f, I) <

∞ and H1(f(H)) = 0, where H := [0, 1] \ G. Then there exists an increasing

homeomorphism h : [0, 1] → [0, 1] such that:

(i) f ◦ h has bounded convexity and (f ◦ h)′+(x) 6= 0, (f ◦ h)′−(x) 6= 0 for each

x ∈ h−1(G);

(ii) if f is tangentially smooth on G, then f ◦ h is C1;

(iii) if f is nonconstant on any interval, then λ(h−1(H)) = 0.
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P r o o f. Let U be the maximal open set on which f is locally constant. Set

v∗(x) := vf (x) + λ([0, x] ∩ U), x ∈ [0, 1]. It is clear that v∗ is continuous and

increasing. Put d1 := v∗(1) and ξ := (v∗)−1; clearly ξ : [0, d1] → [0, 1] is an increasing

homeomorphism. Denote f1 := f ◦ ξ, G1 := ξ−1(G) and P1 := {ξ−1(I) : I ∈ P}.
Clearly

∑{
√

λ(J) : J ∈ P1} =
∑

I∈P

√

V (f, I) < ∞. By (2.8) we have that T (f1, J) 6

K for each J ∈ P1.

If the interval (γ, δ) is a component of G1, then f1|[γ,δ] is clearly an arc-length

parametrization of f |[ξ(γ),ξ(δ)]. So Lemma 2.13 (i) implies that

‖(f1)
′
+(x)‖ = ‖(f1)

′
−(x)‖ = 1 whenever x ∈ G1, and(5.1)

f1 is C1 on G1 if f is tangentially smooth on G.(5.2)

Using (5.1), Lemma 2.13 (ii) and Lemma 2.7 (iv), we easily get

(5.3) V ((f1)
′
+, J ∩ G1) 6 K + 2 whenever J ∈ P1.

If J = [α, β] ∈ P1, set c(J) :=
√

λ(J). Further, if α /∈ G, let b(J) := 0, and

if α ∈ G, set b(J) := min(c(J), c(Jl)), where Jl ∈ P1 is the interval whose right

endpoint is α. Similarly, if β /∈ G, let d(J) := 0, and if β ∈ G, set d(J) :=

min(c(J), c(Jr)), where Jr ∈ P1 is the interval whose left endpoint is β. Finally, set

µ(J) := 6λ(J)(b(J) + 4c(J) + d(J))−1.

Since µ(J) 6 2
√

λ(J), we can use Lemma 3.16 and choose 0 < d2 < ∞ and

an increasing homeomorphism Ψ: [0, d2] → [0, d1] such that Ψ−1 is absolutely con-

tinuous and λ(Ψ−1(J)) = µ(J) for each J ∈ P1. Set P2 := {Ψ−1(J) : J ∈ P1},
G2 := Ψ−1(G1) and H2 := [0, d2] \ G2.

For each interval I = [p, q] ∈ P2, let J := Ψ(I) and let gI be the continuous

function on I such that gI(p) = b(J), gI(q) = d(J), gI(x) = c(J) for each x ∈
[p + (q − p)/3, p + 2(q − p)/3], and gI is linear on the intervals [p, p + (q − p)/3],

[p + 2(q − p)/3, q]. Further put ϕI(x) := Ψ(p) +
∫ x

p gI for x ∈ I. We see that

ϕI(q) − ϕI(p) = (q − p) · (b(J) + 4c(J) + d(J))/6 = λ(J).

Thus, setting ϕ(x) := ϕI(x) if x ∈ I ∈ P2 and ϕ(x) := Ψ(x) if x ∈ [0, d2] \
⋃P2, we

easily see that ϕ : [0, d2] → [0, d1] is an increasing homeomorphism which is C1 with

ϕ′ > 0 on G2 and ϕ′(x) 6 c(J) whenever x ∈ I ∩ G2, where I ∈ P2 and J = ϕ(I).

Put f2 := f1 ◦ϕ. Consider I ∈ P2 and J = ϕ(I) ∈ P1. Using (5.1), we obtain that

(5.4) ‖(f2)
′
−(x)‖ = ‖(f2)

′
+(x)‖ = |ϕ′(x)| = |gI(x)| 6 c(J) if x ∈ I ∩ G2.
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Using (5.3), (5.1), and the obvious inequality V (ϕ′, I∩G2) = V (gI , I∩G2) 6 2c(J),

we apply Lemma 3.18 (with Z := I ∩ G2 and h := f1) and obtain that

V ((f2)
′
+, I ∩ G2) 6 (K + 2)c(J) + 2c(J),

and therefore

(5.5)
∑

I∈P2

V ((f2)
′
+, I ∩ G2) < ∞.

Now we will show that (setting (f2)
′
+(d2) := 0)

(5.6) for each u ∈ H2, (f2)
′(u) = 0 and (f2)

′
+ is continuous at u.

Let u ∈ H2 and ε > 0 be given. If u is a left endpoint of some I ∈ P2, observe

that gI(u) = 0 and gI is right continuous at u. Thus (5.4) and [2, Chap. I, par. 2,

Proposition 3] clearly imply that there exists v > u such that f2 is ε-Lipschitz on

[u, v].

If u 6= d2 and u is not a left endpoint of an I ∈ P2, then observe that c(J) > ε for

finitely many J ∈ P1 and therefore we can by (5.4) find a v > u, v ∈ H2, such that

‖(f2)
′
+(x)‖ 6 ε for each x ∈ G2 ∩ [u, v]. So [2, Chap. I, par. 2, Proposition 3] implies

that f2 is ε-Lipschitz on each component of G2 ∩ (u, v). Since clearly H1(f2(H2)) =

H1(f(H)) = 0, Lemma 3.2 (iii) implies that f2 is ε-Lipschitz on [u, v].

Quite similarly we get for each 0 6= u ∈ H2 a v < u such that f2 is ε-Lipschitz

on [v, u]. Now it is easy to see that (5.6) holds. Using (5.5) and (5.6), we apply

Lemma 3.17 (with G := G2 and g := (f2)
′
+, g(d2) = 0) and obtain, also using (2.3),

that g has bounded convexity on [0, d2].

By (5.4) and the definition of gI we have that (f2)
′
+(x) 6= 0 and (f2)

′
−(x) 6= 0 for

each x ∈ G2. Moreover, if f is tangentially smooth on G, then (5.2) implies that

f2 is C1 on G2. Using (5.6), we obtain that f2 is C1 on [0, d2].

Thus, to complete the proof of (i) and (ii), it is sufficient to define h := ξ ◦
ϕ ◦ π, where π(x) = d2x, x ∈ [0, 1]. To prove (iii), suppose that f is nonconstant

on any interval. Then v∗ = vf = ξ−1; so Lemma 3.2 (iv) implies λ(ξ−1(H)) =

0. Since Ψ−1 is absolutely continuous and ϕ−1(ξ−1(H)) = Ψ−1(ξ−1(H)), we have

λ((ξ ◦ ϕ)−1(H)) = 0, and thus also λ(h−1(H)) = 0. �

Let f : [0, 1] → X . We define the set Tf as the set of all points in [0, 1] such that

there is no open interval U containing x such that f has finite turn on U . Clearly,

Tf is closed, {0, 1} ⊂ Tf , and f is not constant on any interval I ⊂ [0, 1] \ Tf .

Note that G := [0, 1] \ Tf is the maximal open set in which f has locally finite

turn.
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Further, if h is a homeomorphism of [0, 1] onto itself, then (2.8) implies

(5.7) Tf◦h = h−1(Tf).

We need the following simple lemma.

Lemma 5.3. Suppose that f : [0, 1] → X has bounded convexity, and x ∈ Tf .

Then we have that either x ∈ {0, 1} or f ′
+(x) = 0 or f ′

−(x) = 0.

P r o o f. Let x ∈ (0, 1) ∩ Tf with f ′
+(x) 6= 0 and f ′

−(x) 6= 0. By Lemma 2.7 (ii)

there exist δ > 0, η > 0 such that ‖f ′
+(x)‖ > η for all y ∈ [x − δ, x + δ]. Thus

Lemma 3.3 (iii) implies that

T (f, [x − δ, x + δ]) 6
2

η
K(f, [x − δ, x + δ]) < ∞,

and we have a contradiction with x ∈ Tf . �

The main result of the present section is the following theorem which solves the

bounded convexity parametrization problem. (Observe that condition (i) is clearly

equivalent to the existence of a parametrization of f with bounded convexity, and

implies that f is BV.)

Theorem 5.4. Let f : [0, 1] → X be BV continuous nonconstant and G :=

[0, 1] \ Tf . Then the following assertions are equivalent.

(i) There exists a homeomorphism h of [0, 1] onto itself such that f ◦h has bounded

convexity.

(ii) There exists a homeomorphism ϕ of [0, 1] onto itself such that f ◦ϕ has bounded

convexity, and (f ◦ ϕ)′±(x) 6= 0 for each x ∈ ϕ−1(G).

(iii) H1(f(Tf )) = 0 and W δ(f, G) < ∞ for each δ > 0.

(iv) H1(f(Tf )) = 0 and W δ(f, G) < ∞ for some δ > 0.

(v) H1(f(Tf )) = 0 and
∑

I∈P

√

V (f, I) < ∞ whenever P is an (f, δ,∞)-partition of

G with δ > 0.

(vi) H1(f(Tf )) = 0 and
∑

I∈P∗

√

V (f, I) < ∞ for some (f, 0, K∗)-partition P∗ of G

with K∗ < ∞.
(vii) There exists a family S of pairwise non-overlapping compact intervals such that

int(J) ⊂ G for each J ∈ S and

(5.8)
∑

J∈S

V (f, J) = V (f, [0, 1]),
∑

J∈S

√

V (f, J) < ∞,
∑

J∈S

√

V (f, J) · T (f, J) < ∞.

If f is nonconstant on any interval, then in (ii) we can also assert λ(ϕ−1(G)) = 1.
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P r o o f. It is sufficient to prove the implications (ii) =⇒ (i) =⇒ (iii) =⇒ (iv) =⇒
(vi) =⇒ (vii) =⇒ (iii), (vi) =⇒ (ii), and (iii) =⇒ (v) =⇒ (vi).
Note that (since f is nonconstant) both H1(f(Tf )) = 0 and the equality of (5.8)

imply G 6= ∅ by Lemma 3.2 (i). The implications (ii) =⇒ (i) and (iii) =⇒ (iv)

are trivial; (v) =⇒ (vi) holds on account of Lemma 3.14. Lemma 3.13 implies the
obvious implication (iii) =⇒ (v), and (vii) =⇒ (iii) holds by Lemma 3.2 (ii) and

Lemma 3.10. If (vi) holds, then Lemma 5.2 gives (ii) (and also λ(ϕ−1(G)) = 1 if f

is nonconstant on any interval).

To show that (iv) =⇒ (vi), let δ > 0 be as in (iv), and put K∗ := δ + 3.

Lemma 3.14 (i) implies that there exists an (f, δ, K∗)-partition P∗ of G and we

have that
∑

I∈P∗

√

V (f, I) < ∞ by Lemma 3.13.
To prove (vi) =⇒ (vii) suppose that (vi) holds and P∗ is given. Put S := P∗.

Then the equality of (5.8) holds by Lemma 3.2 (i) (applied to G :=
⋃

J∈S

int(J)). Since
√

T (f, J) 6
√

K∗ for each J ∈ S, also both inequalities of (5.8) hold.
To prove that (i) =⇒ (iii), let h be as in (i), put g := f ◦ h and G∗ := h−1(G) =

[0, 1] \ Tg. Using (5.7), Lemma 5.3 and Lemma 3.1, we easily obtain H1(f(Tf )) =

H1(g(Tg)) = 0. By (5.7), Lemma 5.3, and Lemma 3.8 we obtain W δ(g, G∗) < ∞; so
W δ(f, G) < ∞ by Remark 3.6. �

Remark 5.5.

(i) Conditions (v) and (vi) give an “algorithmic” way how to decide whether (i)

holds:

Decide whether H1(f(Tf )) = 0. If it holds, then choose an (f, δ, K)-partition

P of G := [0, 1] \ Tf with δ > 0 and K < ∞ (such a partition exists by

Lemma 3.14) and decide whether
∑

I∈P

√

V (f, I) < ∞.
(ii) Condition (vii) is elegant and needs no auxiliary notions for its formulation. On

the other hand, it is not easily applicable in the case when (i) does not hold.

(iii) For a very simple necessary and sufficient condition in an interesting, very spe-

cial case see Proposition 6.10.

Remark 5.6. Let f : [0, 1] → X be BV continuous and G := [0, 1]\Tf . Then the

following assertions are equivalent.

(a) There exists a homeomorphism h of [0, 1] onto itself such that f ◦h has bounded

convexity and (f ◦ h)′(x) 6= 0 almost everywhere.

(b) f is nonconstant on any interval and any of conditions (iii)–(vii) holds.

It follows immediately from Theorem 5.4 and the simple observation that (a)

implies that f is nonconstant on any interval.
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Proposition 5.7. Let a nonconstant function f : [0, 1] → X allow an equivalent

parametrization with bounded convexity. Set G := [0, 1]\Tf . Suppose that F := Af

(see Definition 2.1) is C2 on vf (G). Then
∫

vf (G)

√

‖F ′′‖ < ∞.

P r o o f. For each δ > 0, we have W δ(f, G) < ∞ by Theorem 5.4. Thus the

assertion follows from Lemma 3.15. �

Concerning natural questions about the strength of the condition from the pre-

ceding proposition, see Example 7.3, and Proposition 6.10.

6. C1,BV
-parametrizations

By Theorem 4.1, a real function f : [0, 1] → R allows a C1,BV-parametrization if

and only it allows a parametrization with bounded convexity. The following elemen-

tary example shows that it is not true for vector-valued functions.

Example 6.1. There exists a function f : [0, 1] → R
2 with bounded convexity

which does not admit a C1 parametrization.

P r o o f. Take {an : n ∈ N} to be a dense subset of (0, 1), and g : [0, 1] → R

a convex Lipschitz function with g′+(an) 6= g′−(an) for all n. Let f(x) = (x, g(x)), x ∈
[0, 1]. Using Lemma 2.5, it is easy to show that f has bounded convexity. Suppose

that f admits a C1 parametrization. Then there exists an increasing homeomorphism

h of [0, 1] onto itself such that f ◦ h is C1 on [0, 1]. Then h is C1 on [0, 1] (since it is

the first component of f ◦ h) and thus there exists an open interval I ⊂ [0, 1] such

that h′ > 0 on I and thus h−1 is differentiable on h(I). Choose j ∈ N with aj ∈ h(I).

Since g = (g ◦ h) ◦ h−1, we obtain that g is differentiable at aj, a contradiction. �

Further, recall (see (2.4)) that C1,BV functions coincide with C1 functions with

bounded convexity. So, it is not surprising that the characterization in the case

of C1,BV parametrizations is very similar to the characterization in the case of

parametrizations with bounded convexity (and the proofs of these characteriza-

tions are almost identical). On the other hand, it seems that the results on C1,BV

parametrizations cannnot be easily deduced from the results on parametrizations

with bounded convexity (see Example 6.7).

Now we show that the problem of a C1,BV parametrization with non-zero derivative

has a very simple solution.
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Proposition 6.2. Let X be a Banach space, and let f : [0, 1] → X be continuous.

Then the following conditions are equivalent:

(i) There exists a homeomorphism h of [0, 1] onto itself such that f ◦ h is C1,BV

and (f ◦ h)′(x) 6= 0 for all x ∈ [0, 1].

(ii) f has finite turn and τ(f, x) exists for all x ∈ [0, 1].

(iii) f has finite turn and is tangentially smooth.

P r o o f. Suppose that (i) holds. By Proposition 5.1, f has finite turn. Since

(f ◦ h)′(x) 6= 0, we have that τ(f ◦ h, x) exists for each x ∈ [0, 1], and thus τ(f, y)

exists for each y ∈ [0, 1]. So (ii) holds.

Now suppose that (ii) holds. Then Lemma 2.13 (ii) implies that F := f ◦ v−1
f has

bounded convexity, and Lemma 2.13 (i) implies that F ′(x) = τ(F, x) 6= 0 at all points

x ∈ [0, l] (where l = vf (1)); F is C1 by Lemma 2.7 (ii). So, setting h(t) := v−1
f (l · t),

t ∈ [0, 1], we obtain (i).

Since (ii) is equivalent to (iii) by Lemma 2.13 (v), the proof is complete. �

For f : [0, 1] → X we define Sf as the set of all points x ∈ [0, 1] such that there

is no neighbourhood U of x such that f is either constant or tangentially smooth on

U . Clearly Sf is closed and {0, 1} ⊂ Sf . Further, if h is a homeomorphism of [0, 1]

onto itself, then clearly

(6.1) Sf◦h = h−1(Sf ).

The following theorem was proved in [7].

Theorem 6.3 ([7]). Let X be a Banach space, and let f : [0, 1] → X . Then there

is a homeomorphism h of [0, 1] onto itself such that f ◦ h is C1 if and only if f is

continuous, BV, and H1(f(Sf )) = 0.

Lemma 6.4. Let g : [0, 1] → X be C1 and let x ∈ Sg. Then either g′(x) = 0 or

x ∈ {0, 1}.

P r o o f. For a contradiction, suppose that x ∈ (0, 1) and g′(x) 6= 0. Since g is

C1, there exist η, δ > 0 such that ‖g′(y)‖ > η for all y ∈ [x − δ, x + δ]. But then

τ(g, y) = g′(y)/‖g′(y)‖ is continuous on [x − δ, x + δ], and we have a contradiction

with x ∈ Sg. �

The main result of the present section is the following.
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Theorem 6.5. Let f : [0, 1] → X be BV continuous nonconstant and G :=

[0, 1] \ (Tf ∪ Sf). Then the following conditions are equivalent.

(i) There exists a homeomorphism h of [0, 1] onto itself such that f ◦ h is a C1,BV

function.

(ii) There exists a homeomorphism ϕ of [0, 1] onto itself such that f ◦ ϕ is C1,BV,

and (f ◦ ϕ)′(x) 6= 0 for each x ∈ ϕ−1(G).

(iii) H1(f(Tf ∪ Sf )) = 0 and W δ(f, G) < ∞ for each δ > 0.

(iv) H1(f(Tf ∪ Sf )) = 0 and W δ(f, G) < ∞ for some δ > 0.

(v) H1(f(Tf ∪ Sf )) = 0 and
∑

I∈P

√

V (f, I) < ∞ for each P which is an (f, δ,∞)-

partition of G with δ > 0.

(vi) H1(f(Tf ∪ Sf )) = 0 and
∑

I∈P∗

√

V (f, I) < ∞ for some (f, 0, K∗)-partition P∗

of G with K∗ < ∞.
(vii) There exists a family S of pairwise non-overlapping compact intervals such that

int(J) ⊂ G for each J ∈ S and

(6.2)
∑

J∈S

V (f, J) = V (f, [0, 1]),
∑

J∈S

√

V (f, J) < ∞,
∑

J∈S

√

V (f, J) · T (f, J) < ∞.

If f is nonconstant on any interval, then in (ii) we can also assert λ(ϕ−1(G)) = 1.

P r o o f. The proof is literally the same as the proof of Theorem 5.4, except for

the implication (i) =⇒ (iii).
To prove that (i) =⇒ (iii), let h be as in (i), put g := f◦h and G∗ := h−1(G). Using

(5.7), (6.1), Lemma 5.3, Lemma 6.4, and Lemma 3.1, we easily obtain H1(f(Tf ∪
Sf )) = H1(g(Tg ∪ Sg)) = 0. Note that G∗ = [0, 1] \ (Tg ∪ Sg) by (5.7) and (6.1).

Lemma 5.3 and Lemma 6.4 give that we can apply Lemma 3.8 (with G := G∗ and

f := g) and obtain W δ(g, G∗) < ∞ for each δ > 0. So W δ(f, G) < ∞ for each δ > 0

by Remark 3.6. �

Remark 6.6. Let f : [0, 1] → X be BV continuous and G := [0, 1] \ (Tf ∪ Sf ).

Then the following conditions are equivalent.

(a) There exists a homeomorphism h of [0, 1] onto itself such that f ◦ h is C1,BV

and (f ◦ h)′(x) 6= 0 for a.e. x ∈ [0, 1].

(b) f is nonconstant on any interval and any of conditions (iii)–(vii) holds.

This follows immediately from Theorem 6.5 and the simple observation that (a)

implies that f is nonconstant on any interval.

The following example suggests that Theorem 6.5 cannot be easily deduced from

Theorem 5.4.
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Example 6.7. There exists a function f : [0, 1] → R
2 with bounded convexity,

such that f ◦ h is a C1 function for some homeomorphism h of [0, 1] onto itself, but

f ◦ ϕ is not a C1,BV function for any homeomorphism ϕ of [0, 1] onto itself.

P r o o f. Find 1 > x1 > x2 > . . . > 0 such that limxn = 0 and xj − xj+1 =

cj−2 for some c > 0. Choose a Lipschitz convex function g on [0, 1] for which

{x1, x2, . . .} is the set of all points x ∈ (0, 1) at which g is not differentiable. Let

f(x) := (x, g(x)), x ∈ [0, 1]. Using Lemma 2.5, it is easy to show that f has bounded

convexity. It is easy to check that Sf = {0, 1, x1, x2, . . .}. Since f has finite turn by

Lemma 3.3, we have Tf = {0, 1}. Using Theorem 6.3, we obtain that there exists
a homeomorphism h of [0, 1] onto itself such that f ◦h is a C1 function. On the other

hand, since
∞
∑

j=1

√

V (f, [xj+1, xj ]) >
∞
∑

j=1

√

cj−2 = ∞, f ◦ ϕ is not a C1,BV function

for any homeomorphism ϕ of [0, 1] onto itself. Indeed, otherwise condition (iii) of

Theorem 6.5 holds and so Remark 3.7 gives a contradiction. �

Remark 6.8. Example 6.7 shows that the problems of a parametrization with

bounded convexity and of a C1,BV parametrization are not necessarily equivalent

even when Tf = {0, 1} and Sf is countable with only one point of accumulation. The

following proposition shows that these two parametrization problems are equivalent

if Sf \ Tf is finite.

Proposition 6.9. Let f : [0, 1] → X be continuous BV. Suppose that Sf \ Tf is

finite. Then f admits a C1,BV parametrization if and only if f admits a parametriza-

tion with bounded convexity.

P r o o f. The “only if” implication is obvious. So, suppose that f admits

a parametrization with bounded convexity, and choose a family S from condi-
tion (vii) of Theorem 5.4. Dividing members of S by points of Sf \ Tf , we obtain

a nonoverlapping system S∗ of compact intervals (such that
⋃

I∈S∗

int(I) ⊂ ⋃

J∈S

int(J)

and
⋃

J∈S

int(J) \ ⋃

I∈S∗

int(I) = (Sf \ Tf ) ∩ ⋃

J∈S

int(J)). Since S∗ clearly witnesses

that condition (vii) of Theorem 6.5 holds, f admits a C1,BV parametrization by

Theorem 6.5. �

The following proposition shows additional assumptions under which Proposi-

tion 5.7 can be reversed.

Proposition 6.10. Let X be a Banach space with a Fréchet smooth norm. As-

sume that f : [0, 1] → X is continuous, BV and nonconstant on any interval. Let

F := f ◦ v−1
f and l := vf (1). Suppose that F ′′ is continuous on (0, l) and for some

δ > 0 we have that ‖F ′′‖ is monotone on (0, δ) and on (l − δ, l).
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Then the following assertions are equivalent.

(i)
∫ l

0

√

‖F ′′(t)‖ dt < ∞.
(ii) f admits a C2 parametrization.

(iii) f admits a C1,BV parametrization.

(iv) f admits a parametrization with bounded convexity.

P r o o f. The implication (i) =⇒ (ii) is part of [10, Proposition 4.8]. The impli-
cations (ii) =⇒ (iii) and (iii) =⇒ (iv) follow from (2.5) and (2.4). The implication
(iv) =⇒ (i) follows from Proposition 5.7. �

Example 7.3 below shows that the implication (i) =⇒ (iv) does not hold without
the assumption on the monotonicity of ‖F ′′‖.

7. Examples

Example 7.1. For s > 0, consider the spiral f : [0, 1] → R
2 defined by f(0) = 0

and

f(t) = (x(t), y(t)) = (ts cos(1/t), ts sin(1/t)), 0 < t 6 1.

By [10, Example 6.3], f is BV if and only if s > 1 and f allows a C2 parametriza-

tion if and only if s > 2. Since it is shown in [10, Example 6.3] that (if s > 1) the

assumptions of Proposition 6.10 are satisfied, we obtain that f allows a parametriza-

tion with bounded convexity (a C1,BV parametrization) if and only if s > 2.

In the following two examples, we need the following well-known fact.

Lemma 7.2. Let k : (0, 1) → R be positive andC∞. Then there is a continuous f :

[0, 1] → R
2 parametrized by the arc-length, C∞ on (0, 1), and such that ‖f ′′(x)‖ =

k(x) for x ∈ (0, 1).

P r o o f. By the Fundamental Theorem of the local theory of curves (see i.e. [13,

Theorem 2.15]), there exists g : (0, 1) → R
2 parametrized by the arc-length, which

is C∞, and ‖g′′(x)‖ = k(x) for x ∈ (0, 1). Since g is 1-Lipschitz, it has a continuous

extension f to [0, 1], which has all the desired properties. �

Example 7.3. There exists a continuous f : [0, 1] → R
2 which is parametrized

by the arc-length, is C∞ on (0, 1), does not allow a parametrization with bounded

convexity, but
∫ 1

0

√

‖f ′′‖ < ∞.

P r o o f. Let P = {In : n ∈ N} be a generalized partition of (0, 1) such that

In ⊂ (0, 1) and λ(In) = c/n2 for some c > 0. Choose closed intervals Jn ⊂ In

with λ(Jn) = c/n4. We can clearly choose a positive C∞ function k : (0, 1) → R
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such that, for each n ∈ N, we have max
x∈Jn

k(x) = n4, k(x) 6 1 for x ∈ In \ Jn, and
∫

Jn
k > c/2. Choose f corresponding to k by Lemma 7.2. By Lemma 2.12 we see

that P is an (f, c/2,∞)-partition of (0, 1), but
∑

I∈P

√

λ(I) = ∞, and therefore f does

not allow a parametrization with bounded convexity (see Theorem 5.4 (v)). On the

other hand,
∫ 1

0

√

‖f ′′‖ 6 1 +
∑

(c/n4)
√

n4 < ∞. �

Example 7.4. There exists a continuous f : [0, 1] → R
2 parametrized by the

arc-length such that f is C∞ on (0, 1), f allows a C1,BV parametrization but f does

not allow a C1,1 parametrization (and the less so a C2 parametrization).

P r o o f. Let P = {In : n ∈ N} be a generalized partition of (0, 1) such that

In ⊂ (0, 1) and λ(In) = c/n4 for some c > 0. Divide each interval In into closed

subintervals Jj
n (j = 1, . . . , jn) so that

∑

j

√

λ(Jj
n) > 1 and put P∗ := {Jj

n : n ∈ N,

1 6 j 6 jn}. We can clearly choose a positive C∞ function k : (0, 1) → R such that

max
x∈J

k(x) = 1/λ(J) for each J ∈ P∗ and
∫

I k 6 1 for each I ∈ P . Choose f corre-

sponding to k by Lemma 7.2. By Lemma 2.12, P is an (f, 0, 1)-partition of (0, 1) with
∑

I∈P

√

λ(I) < ∞, and thus f allows a C1,BV parametrization by Theorem 6.5 (vi).

Since the arc-length parametrization of f (which equals f) is C2 on the interior of

its domain, [9, Proposition 6.5] implies that f allows a C1,1 parametrization if and

only if f allows a C2 parametrization.

Now observe that P∗ is a generalized partition of (0, 1) such that

sup
x∈J

‖f ′′(x)‖ · V (f, J) = max
x∈J

k(x) · λ(J) = 1 for each J ∈ P∗

and
∑

J∈P∗

√

V (f, J) =
∑

J∈P∗

√

λ(J) = ∞.

Therefore condition (v) from [10, Theorem 4.5] does not hold (since f is parametri-

zed by the arc-length, we have shown that P∗ is an (f, 1,∞)-partition of (0, 1) in the

sense of [10, Definition 3.8]), and so [10, Theorem 4.5] implies that f does not allow

a C2 parametrization. �
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