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We show that number of systems of k paralel triples in the definition of a trilinear alter-
nating form with respect to a basis B is modulo 2 an invariant of the form in the case the
underlying vector space of dimension 3k is over the two-element field. Values of this in-
variant can thus be computed only from the values on the basis vectors. If its value is equal
to 1, the form is nondegenerate (regular). Moreover, it is possible to extend this invariant
to the case dim V = 3k + 1.

1. I n t r o d u c t i o n

Let f : V3 → F be a trilinear form on a vector space V over a field F, dim V = n <
< ∞. The form f is called alternating if f (u, v,w) = 0 whenever two of the input
vectors are equal. Two forms f and g on V are equivalent if there exists an automor-
phism of V satisfying f (u, v,w) = g(φ(u), φ(v), φ(w)) for all u, v,w ∈ V . Classification
of classes of this equivalence seems to be a very difficult problem (unlike in the bilin-
ear case) even for small dimensions of V and not much has been done in this respect.
This classification was done for the case n ≤ 7 in [1] for a large family of fields
including all finite fields and Gurevitch [5], D. Djokovic [6] and L. Noui [7] solved
the case n = 8 for F = C, F = R and F algebraically closed field of arbitrary char-
acteristics, respectively. There are also results concerning invariants of the forms on
dimension 6 ([2]) and dimension 9 ([4]).

In this paper, the case of forms over the two-element field is studied, because
the motivation for this research comes from the theory of doubly even binary codes,
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of which trilinear alternating forms over the two-element field appears as important
invariants. There is also a connection to the so called code loops, see [3].

One of the possible approaches to the classification of trilinear forms is to use
invariants. In this paper we introduce an invariant in the case the dimension of the
underlying vector space is divisible by 3 and from this invariant another one for forms
on dimension 3k + 1 is derived. Both these invariants are quite easy to calculate,
especially if the number of triples of basis vectors satisfying f (bi, b j, bk) is low. On
the other hand, there are only two possible values of these invariants. But in the case
3 | dimV the form is nondegenerate whenever the value of the invariant is 1. This
seems to be a very effective way to prove the nondegenerateness of the form.

Tables in the paper contain representatives of all classes of equivalence for dimen-
sions 6 and 7 together with the values of the invariants. These tables are based on the
classification in [1].

2. I n v a r i a n t o n d i m e n s i o n 3k

Throughout this paper, let V be an n-dimensional vector space over the field GF(2)
and f be a trilinear alternating form. Then f satisfies the equality

f (vσ(1), vσ(2), vσ(3)) = sgn(σ) f (v1, v2, v3)

for every permutation σ ∈ S 3, which in the case of characteristics two collapses into
symmetry.

We shall write f [u] for the bilinear form f (u,−,−) and similarly f [u, v] shall de-
note the linear form f (u, v,−).

Let f be a trilinear form on V . The set

{v ∈ V; f [v] = 0}
is called the radical of f and will be denoted by Rad f . If Rad f is trivial (contains
only the zero vector), then f is called nondegenerate.

Let B = {b1, . . . , bn} be a basis of an n-dimensional vector space V over a field F
and let B∗ = {b∗1, . . . , b∗n} be its dual basis (defined as usually by b∗i (b j) = δi j). Given
B and B∗ as above, a trilinear alternating form f can be expressed as

fB =
∑

1≤i< j<k≤n

fi jkb∗i ∧ b∗j ∧ b∗k.

Denote by ∆ the set

∆ = {(i, j, k) | 1 ≤ i < j < k ≤ n, fi jk � 0}.
Then we can write fB =

∑
∆ fi jkbib jbk or even

fB =
∑
∆

fi jki jk.

Notice that f (bi, b j, bk) = fi jk holds for all 1 ≤ i, j, k ≤ n.
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If V is a vector space over the two element field F = GF(2) then to give a form f
means to point out triples {i, j, k} satisfying f (bi, b j, bk) = 1, i.e., to give the set ∆.

Using similar notation, we state well known classification of bilinear alternating
forms:

Proposition 2.1 Let f be a bilinear alternating form on a vector space V of di-
mension n. Then there exists a basis B = {b1, . . . , bn} and k ≤ n such that

fB = b1b2 + b3b4 + · · · + bk−1bk.

For the rest of this section assume that n = 3k, k ∈ N and that a trilinear form
f is given with respect to a basis B = {b1, . . . , bn}. Denote by P = PB the set of
all partitions {α1, . . . , αk} of B, where every αr, 1 ≤ r ≤ k, contains exactly three
elements. Call such a partition a 3-partition. If αr = {bi, bk, bl}, 1 ≤ i, k, l ≤ n, we
shall denote by αi j

r the set {b j, bk, bl} (the element bi was replaced with b j, 1 ≤ j ≤
≤ n). The expression f (αr) is a shorthand for f (bi, bk, bl) (since f is alternating, this
notation is correct).

Now for fB define the value In( fB) ∈ F as follows:

In( fB) =
∑

{α1,...,αk}∈P
(

k∏
p=1

f (αp)). (1)

Notice that the sum runs over all possible 3-partitions of B. Since the computation is
done in GF(2), there are only two possible results. Every member of the sum (1) is
a product and thus is equal to 1 only if all f (αi) in a given 3-partition are equal to 1,
i.e., it is a partition of B into “paralel lines” with three elements, where α being a line
means that f (α) = 1.

Theorem 2.2 Let f be a trilinear alternating form on a vector space of dimension
3k over the two-element field and let B be a basis of V. Then In( fB) defined in (1)
does not depend on the basis B.

Proof. It is clear that a permutation of vectors of the basis does not change the
value of In. If B and C are two bases of V we can find a sequence of bases B1, . . . , B2s

such that B = B1,C = B2s, B2t is obtained by permuting vectors of B2t−1, and if
B2t = {b1, . . . , bn} then B2t+1 = {b1 + b2, b2, . . . , bn}. Thus it is enough to prove that
the value In( fB2t+1 ) is equal to In( fB2t ).

We shall write Pt instead of PBt . Without loss of generality we can assume that
b1 + b2 ∈ α1 for every 3-partition {α1, . . . , αk} of B2t+1. Then we can compute:

In( fB2t+1 ) =
∑

{α1,...,αk}∈P2t+1


k∏

p=1

f (αp)

 =

=
∑

{α1,...,αk}∈P2t

[
f (α1) + f (α12

1 )
] k∏

p=2

f (αp)) =
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=
∑

{α1,...,αk}∈P2t

 f (α1)
k∏

p=2

f (αp)

 +
∑

{α1,...,αk}∈P2t

 f (α12
1 )

k∏
p=2

f (αp)

 =

= In( fB2t ) +
∑

{α1,...,αk}∈P2t

 f (α12
1 )

k∏
p=2

f (αp)

 .

We have to prove that the second term is equal to zero. Use P instead of P2t. If b2 ∈ α1
then f (α12

1 ) = 0 (the form is alternating) and thus we can suppose that the summation
runs only over the set Q of partitions satisfying b2 � α1. Let A = {α1, . . . , αk} be a
partition and suppose that b2 ∈ α2. Define partition A′ = {α12

1 , α
21
2 , α3, . . . , αk}. Since

(A′)′ = A we can choose sets Q′ and Q′′ such that:

Q′ ∪ Q′′ = Q,Q′ ∩ Q′′ = ∅ and A ∈ Q′′ ⇒ A′ ∈ Q′.

Now, we can finish the proof:
∑

{α1,...,αk}∈P

 f (α12
1 )

k∏
p=2

f (αp)

 =

=
∑
A∈Q′

 f (α12
1 ) f (α2)

k∏
p=3

f (αp)

 +
∑
A∈Q′

 f ((α21
2 )12) f (α12

1 )
k∏

p=3

f (αp)

 =

=
∑
A∈Q′

 f (α12
1 ) f (α2)

k∏
p=3

f (αp) + f (α2) f (α12
1 )

k∏
p=3

f (αp)

 = 0,

because all the terms in the brackets are equal to zero (the field has the characteristics
equal to 2). �

Since the dimension of V is given by the the form considered, we shall write I( f )
instead of I3k( fB).

Corollary 2.3 Let V be a vector space of dimension n = 3k over GF(2) and let f
be a trilinear form. If I( f ) = 1 then f is nondegenerate.

Proof. Let f be a degenerate form. Choose a basis B such that b1 ∈ Rad f . Then
we have f (b1, b j, bk) = 0 for all 1 ≤ j, k ≤ n and thus every member of the sum (1) is
equal to zero, because the element f (αr), 1 ∈ αr, is. �

The next example shows that this invariant can also be effectively used when the
form is given with respect to a “rich” basis. We show that the presented form is
nondegenerate.

Example Let B = {b1, . . . , b6} be a basis of a vector space V . Define a trilinear
alternating form f by:

f (bi, b j, bk) = 1 iff {i, j, k} � {1, 2, 3}.
There are

(
6
3

)
/2 = 10 3-partitions of 6 points, nine of them contribute to the I6 and the

partition {1, 2, 3}, {4, 5, 6} does not. Thus I6( f ) is equal to 9 ≡ 1 (mod 2).
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Similar approach can be used for general m-linear alternating forms on dimensions
n = mk, but the m-linear forms, m > 3, are even less known (and studied) then the
trilinear ones. In the bilinear case, this invariant yields 1 iff the form is the only (up
to equivalence) nondegenerate form (see 2.1) and thus can be of some use.

Example Let f be a form on V of dimension 6 over GF(2). Using the result in [1]
(the numbers of forms coincide), f is equivalent to exactly one of the forms listed in
Table 1 together with the values of I6. Notice that the forms f0, f1, f2 are degenerate.
The last column contains the values of the invariant I6 for these forms.

T 1. Values of I6

f I6( f )

f0 0 0

f1 123 0

f2 123 + 345 0

f3 123 + 456 1

f4 123 + 345 + 156 0

f10 123 + 234 + 345 + 246 + 156 1

3. E x t e n s i o n t o d i m e n s i o n 3k + 1

Let f be a form on V and let W be a 3k-dimensional subspace of V . Denote by g
the restriction of f to W. We shall write I3k(W) (or even I(W)) instead of I3k(g).

Proposition 3.1 Let f be a form on V of dimension n = 3k + 1, k ∈ N over the
two-element field. If there is a hyperplane W such that I3k(W) = 1, then there exist
exactly 2n−1 hyperplanes satisfying I3k(X) = 1.

Proof. Choose a hyperplane Y � W and let B = {b1, . . . , b3k−1,w, y} be a basis of
V such that {b1, . . . , b3k−1} ∈ W ∩ Y , w ∈ W and y ∈ Y . Denote by Y ′ the hyperplane
〈{b1, . . . , b3k−1,w + y}〉. Using the definition of I3k we obtain:

I3k(Y ′) = I3k(W) + I3k(Y). (2)

Since (Y ′)′ is equal to Y , there is a bijection between the set of hyperplanes A0 =

= {Y; Y � W, I(Y) = 0} and the set A1 = {X; X � W, I(X) = 1}. Now it is enough to
realize, that number of hyperplanes not equal to W is 2n − 2. �

Based on Proposition 3.1, we can define an invariant I3k+1( f ) for a form on a vector
space V of dimension n = 3k + 1:

• I3k+1( f ) = 1 iff there exists a hyperplane (and thus 2n−1 hyperplanes) W ≤ V
with I3k(W) = 1, and
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T 2. Values of I7

form I7

f5 123 + 345 + 567 0

f6 123 + 145 + 167 + 357 0

f7 123 + 167 + 246 + 357 1

f8 123 + 145 + 167 0

f9 123 + 145 + 167 + 246 + 357 1

f11 123 + 234 + 345 + 246 + 156 + 367 1

• I3k+1( f ) = 0 otherwise.
Let B = {b1, . . . , b3k+1} be a basis of V . Denote by Bi the hyperplane Bi =

= 〈b1, . . . , bi−1, bi+1, . . . , b3k+1〉 and by fi the restriction of f to Bi. It is possible to
identify a hyperplane W with the nonzero linear form fW with kernel W and then the
equation (2) says that I3k is zero for all nonzero forms fW ∈ V∗ or there is a hyper-
plane X∗ ≤ V∗ such that I3k(W) = 1 iff fW ∈ W∗. Since fBi are linear independent in
V∗, if there is a hyperplane W with I3k(W) = 1 then there exist at least one i such that
fBi ∈ W∗. We can conclude:

Theorem 3.2 Let f be a trilinear alternating form on a vector space of dimension
n = 3k + 1 over the two-element field and let B be a basis of V. Then

(1) In( fB) does not depend on the basis B.
(2) In( f ) = 1 iff In−1( fBi ) = 1 for at least one i ∈ {1, . . . , n}.

Example Let f be a nondegenerate form on V of dimension 7 over GF(2). Using
again the classification in [1], f is equivalent to exactly one of the forms listed in
Table 2. Values of I7 are easily seen from the representatives and are in the second
column. The degenerate forms on dimension 7 are (up to one dimensional radical)
forms in Table 1. Since I7( f ) is equal to one iff there is a hyperplane W with I6(W) =
= 1, the values I7 of these degenerate forms are the values given in Table 1.

Corollary 3.3 Using the notation from Tables 1 and 2, nondegenerate forms f5, f6
and f8 have no hyperplane equivalent to either f3 or f10.
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