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In this article we answer the following question: if one has a ring R of characteristics 2
satisfying xp = x, for some p; which values of p imply the identity x2 = x?

If we have a boolean algebra A, there is a classical way how to define a ring struc-
ture on A, namely

x + y = (x ∧ y′) ∨ (x′ ∧ y), x · y = x ∧ y.

Such a ring is boolean, that means unitary (with 1 as the multiplicative unit), of
characteristic 2 and satisfying the identity x2 = x. On the other hand, whenever one
has a boolean ring, defining

x ∨ y = x + y + xy, x ∧ y = x · y, x′ = 1 + x

we obtain a boolean algebra.
Ivan Chajda and Filip Švrček were considering a more general situation. Suppose,

that our unitary ring of characteristic 2 satisfies the identity xp = x, for some p > 2.
Is there a lattice (or lattice-like) structure on the ring that enables one to reconstruct
the ring operations? And they managed to find a structure satisfying all the lattice
axioms but the absorption [1].

To make their result more complete, the authors of [1] needed to know whether the
identity xp = x implies already x2 = x (and hence the ring is already boolean and the
solution is trivial) or there exist non-boolean examples. They tackled the problems
using elementary methods obtaining some partial results [2].
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In this paper we use structural properties of one-generated rings to answer the
question completely. It turns out that the only fundamental examples of rings, that
one has to consider, are finite fields.

Acknowledgement: The author would like to thank the unknown referee for sim-
plifying one of the proofs.

S o l u t i o n

We would like to find whether the identity xp = x, for a given p, implies x2 = x, in
a unitary ring of characteristic 2. Since it is an identity of a single variable, it suffices
to consider one-generated (sub)rings, more precisely, we are going to construct the
free one-generated ring of characteristic 2 with respect to xp = x.

The free one-generated ring of characteristic 2 is Z2[x]. Since our ring satisfies
xp = x, we have to factor over this identity, i.e. over the ideal generated by the
polynomial xp− x. However, this is not sufficient, we have to consider all the possible
identities f p = f , for every f ∈ Z2[x], and therefore the free ring of xp = x is Z2[x]/I
where I is the ideal generated by all the polynomials f p − f for all f ∈ Z2[x].

The ring Z2[x] is a principal ideal domain and therefore I is generated by a sin-
gle polynomial, namely by the greatest common divisor of I. And this generator is
square-free:

Lemma 1 Let d be a common divisor of all the polynomials f p − f , for all f ∈
∈ Z2[x]. Then d is not divisible by the square of a non-trivial polynomial.

Proof. Let f ∈ Z2[x]; we want to prove f 2 � | d. Since d is a divisor of f p − f , it
suffice to prove f 2 � | ( f p − f ). This follows from the fact that f 2| f p and f 2 � | f . �

The preceding lemma holds in fact in each characteristic and for all identities in
one variable with invertible linear coefficient—the proof remains the same.

Proposition 2 Any one-generated unitary ring of characteristic 2 satisfying the
identity xp = x is a product of finite fields.

Proof. Any such one-generated ring is a factor of Z2[x] over some ideal I. This
ideal has to contain all the polynomials f p − f . Hence I is generated by a common
divisor of f p − f , we denote it by d, and such d is square-free, according to Lemma 1
Hence d = d1 · · · dk, where all the di are irreducible and pairwise distinct. By the
Chinese remainder theorem,

Z2[x]/I � Z2[x]/d1 × · · · × Z2[x]/dk

and since all the di are irreducible, they generate maximal ideals and Z2[x]/di is a
(finite) field. �
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It is very likely that Proposition 2 is already known to some extent; however we
were not able to find a suitable reference. This is why we decided to include it in the
paper.

With this proposition at hand, we are able to decide when xp = x enforces x2 = x.

Theorem 3 There exists a non-boolean unitary ring of characteristics 2 satisfying
the identity xp = x, for some p ≥ 1, if and only if p = l · (2k − 1) + 1, for some l ≥ 0
and k ≥ 2.

Proof. “⇐” An example is the 2k-element field. Since the multiplication group
has 2k − 1 elements, all the non-zero elements satisty xl·(2k−1) = 1.
“⇒” Let R be a ring of characteristics 2 satisfying xp = x and take a ∈ R satisfying
a2 � a. The subring 〈a〉 is a product of fields, according to Proposition 2. As 〈a〉 is
not a product of 2-element fields, there must exist a larger field in the product. But, a
2k-element field satisfies the identity xp = x if and only if (p − 1) | (2k − 1), since the
multiplication group is cyclic of order 2k − 1 and an element x satisfies xp−1 = 1 only
if its order divides the order of the group. �
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