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We deal with a numerical solution of the nonstationary heat equation with mixed Di-
richlet/Neumann boundary conditions. The space semi-discretization is carried out with
the aid of the interior penalty Galerkin methods and the backward Euler method is employ-
ed for the time discretization. Supposing the shape regularity and local quasi-uniformity,
we derive a posteriori upper error bound. This approach is based on the Helmholtz decom-
position and the Oswald interpolation operator.

1. Introduction

Our aim is to develop a sufficiently accurate and efficient numerical method for
simulations of unsteady flows. A promising technique is a combination of the discon-
tinuous Galerkin finite element method (DGFEM) for the space discretization and the
backward difference formula for the time discretization, see [4]. In order to both apply
an adaptive algorithm and assess the discretization error, a posteriori error estimates
have to be developed.

Within this paper, we focus on simplified model problem, represented by the heat
equation, which is discretized by the low order DGFEM and the backward Euler
method. Our aim is to derive a posteriori error estimate of the discretization error.
For a review, see, e.g., [12]. The approach based on the flux reconstruction from
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the Raviart-Thomas-Nedelec (RTN) finite element space was presented in [S]. This
technique gives a guaranteed (that is, containing no undetermined constants) and fully
computable error estimates however it requires a reconstruction of the flux from the
RTN space.

Therefore, we were inspired by [10], where Crouzeix-Raviart finite element me-
thod is employed for spatial discretization of the heat equations. The derived a poste-
riori error estimates are based on the Helmholtz decomposition of the gradient of the
error.

In this paper, we apply the approach from [10] to the discontinuous Galerkin dis-
cretization. Hence, it represents an extension of [11], where homogeneous Dirichlet
boundary conditions are considered and a less efficient error indicator was derived.
We derive upper bound of the discretization error which is simply computable but it
suffers from a presence of undetermined constants.

2. Problem definition
Let Q ¢ R? (d = 2 or 3) be a bounded multiply connected polyhedral Lipschitz

domain with a boundary 0Q = 0Qp UdQy, T > 0and Qr = Q x (0,T). Let us
consider the problem:

oufot—Au = f in  QOr,
) U = up on 0Qpx(0,7),
Vu-n = gy on 0Qy x(0,T)
u(x,00 = u’(x) in Q.

We use a standard notation for the Lebesgue, Sobolev and Bochner spaces, see,
e.g. [9]. Specially, for a function v in an appropriate space, we will use the following

notation: [Mlkw = [Vllgt@w)» Mo = Ml Moo = Mll2@w)s V1260 = V12w

IVI-1/200 = IMlE-120w)> Mo = kW), Where o © Q. Recall that [Vl[g12w) =
= inf |lglland [Vlg-12¢0) == sup ”;(”Vl’/ﬁ); , where ((+, -)) denotes duality pairing
peH ! () weH/2(0w) 0w
¢=v on dw 0

between spaces H'/?(0w) and H™'*(dw). Moreover, H;,(Q) = {v € H'(Q); v =
=0 on 0Qp}, HZI’D(Q) ={veH' (Q);v=z on 0Qp) fora functionz: dQp —
- R.

3. Discretization

3.1 Time semidiscretization

LetO) =1 <t; <..<ty =T be a partition of the time interval [0, 7] and let
T, =t, —t,_1, T = max{r, : 1 <n < N}. We use the backward Euler scheme to get
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the semi-discrete problem: Find a sequence {u"}, <y, u" —u*(t,) € H})(Q) such that

n_ . n—1
2) fuvdx+fVu"-Vvdx:ff"vdx+f gyvds VVEHE(Q),
T Q 0Qy

where u*(t,) € H'(Q) has the trace uy, := up(-,1,) on 0Qp, f" := f(-,1,) and g}, :=
:= gn(-, 1,). For a simplicity, we assume that functions uj,, f" and g}, are piecewise
linear for each time 7,,. The solution of (2) is called the semi-discrete solution.

In the rest of the paper till the end of Section 4, the index n, denoting the time
level, attains values n = 1,..., N and we do not mention this fact explicitly.

3.2 Space discretization

We will carry out the space discretization with the aid of the first order DGFEM.
On each time level t,, n = 1,..., N, we consider a family {Thntnso of partitions of
Q into a finite number of closed triangles in 2D and tetrahedra in 3D with mutu-
ally disjoint interiors, possibly containing hanging nodes. These partitions are called
triangulations hereafter. We assume that the following conditions are satisfied:

h
(3) shape regularity: 3C; >0 : X< C;VKe T,
PK

(4) local quasi-uniformity: ACy > 0: hg < Cyhy VK, K € .y sharing a face,

where hg = diam(K) for K € 7, px denotes the diameter of the largest d-dimensio-
nal ball inscribed into K, and 0K denotes thi boundary of element K. Moreover,
we assume that there exists a triangulation .7}, satisfying (3) and (4) which is a
refinement of both .7}, ,,_; and },,, 1 <n < N and such that

_ ~ , , o hye
ACur >0: Y1<n<NVKe %, VK € T KK : hi < Cyr.
K
This condition reflects simultaneous presence of finite element functions defined on
different triangulations and restricts the coarsening rate.

By .%, h’ 7 th and .7 , We denote the set of all interior faces (edges for d = 2),
faces (edges for d = 2) on GQD and faces (edges ford = 2) on 8QN, respectlvely For
a simplicity, we put L?ID Ty, U L%f)n, f”y’lv ﬁhD U fﬁl, ﬁlN ﬁ’ U ﬁ,fvn,
%’n = 35,1’ WY FL D fN .ForeachT € .Z }{ there exist two elements KL and KR}
such that T C KL N KR We define a unit normal vector nr to eachT € & 5‘ F1 , S0 that
it points out of KL and we set hr = max(hKL hKR) I' € 7, . Finally, we assume
that np, I € % ffzv , has the same orientation as the outward normal to 0Q and we put
hr 1= max hye, T € OKE, T e Y.

Over the triangulation .7, we define the so-called broken Sobolev space

HY(Q, Ti) = vivlk € HK)VK € Ty}, 5> 1
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equipped with the norm ||v||? Forv € H'(Q, ) we define

~ 2
H(Q, Ty ) ZKE%,H HVHH“(K)'

the broken gradient V,v of v by (V,,v)|g := V(v|g) for VK € %n and use the following
notation: vlé stands for the trace of v| KL onT, v§ is the trace of | Kk On I, Wr =

= Tk +vB), vIr == vE =R, T € #!  Further, forT € .7 fD , we define vE as the
trace of VIK# onT’, and (v)r := [v]r := Vr If nr, [-Ir, and (-)r appear in an integral of

the form j; ...dS, we will omit the subscript I" and write, respectively, n, [-], and (:)
instead. Finally, we define the space of discontinuous piecewise linear functions

ST ={v;v e LXQ)x € PAK)V K € Tl

where P'(K) is the space of linear functions on K.
For u}, v}l € H*(Q, },,), we define the forms

HORAESDY f Vi Vvhdx— f (V- my[v']dS
K

KeT, rezp
+0 Z f(Vvh m)[u,1dS + Z fa'[uh][vh]dS
rezpP Te 7;‘,’1
)
o —ff " dx + fgmds +0 Z fvv;;-nu"Dds
rez), r rezp, r
+ Z fo-uDvh
Fe:%f’n
where u}, = up(-,t,) and the parameter ¢ = —1, 6 = 1, and 6 = 0 corresponds to the

symmetric, nonsymmetric, and incomplete variants of the DGFEM, respectively.
Now, we can state the discrete problem: For a given approximation ug € Sg of an
initial condition u°, find a sequence {up}1<nens uy € S such that

uz - uz_l n n n n
(6) — vy dx +a,(u,, vy) = G,(Vp) Vv, €S,
Q n

We call the solution of (6) the approximate solution. The reader is referred to [1] for
the derivation of discontinuous Galerkin formulation.

4. A posteriori analysis

In the following, we derive a residual-based a posteriori upper error bound on the
discretization error based on the Helmholtz decomposition of the gradient of the error.
This approach was developed in [10], where the heat equation was solved with the aid
of the combination of the Crouzeix-Raviart nonconforming finite elements in space
and the backward Euler scheme in time.
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In the analysis, we employ the standard results of the finite element theory, namely
the multiplicative trace inequality

(7 Mg < CulWliglvilg + B IME) Vv e HY(K), K € Ty,
the inverse inequality

®) ik < CilIvlle— ¥v e PAK), K € T,

the trace inequality

©) lIn - curlvil1 05 < Crlleurlvlle — ¥v e (H'(K), K € T,
and the approximation property of the L>-projection operator IT, on S 4
(10) v —Tlix < Cahdihoix  Yve H7U(K), K € Ty i = 0,1,

where Cy, C;, Cr, and Cy4 are constants independent of K, & and n and k = 1 for
d=2andk = 3 for d = 3. Let us recall that curl operator is defined by

0 0
curl v := (a—;z—a—;l) v:Q—>R2, d=2,
3V3 8vz 6v1 aV3 3V2 avl 3
lvi=|l— - - o~ v=01v,n) Q- R, d=3.
curty (6X2 0)(3 8x3 6)(1 6)(1 axz)v (Vl V2 VS) -

We introduce the space H(curl, Q) := {v € (L*(Q))*; curl v € (L*(Q))?}, where k = 1
for d = 2 and k = 3 for d = 3. Moreover, div curl y = 0 for y € (H'(K))", meaning
the operator div in the weak sense. Finally, curl y - n is meant in the following sense
(for the proof see [11]):

Lemma 1 Let Q € RY (d=2 or 3) be a bounded domain with Lipschitz-continuous
boundary. Then there exists a unique continuous linear operator

(11) T, : H(curl, Q) — H'2(6Q),
such that
(12) Yy € (C(Q)* T, =n-curlvlpa,

wherek =1 ford =2 and k = 3 ford = 3.

Let {u"},<,<y be the semi-discrete solution given by (2) and {u}}, .,y be the ap-
proximate solution given by (6). We set

(13) {e"hanenw = (" — 13} e

In order to derive a posteriori estimates, we introduce the interpolation operator
that maps H'(Q, 7},,) into S} N H},(Q) and the Helmholtz decomposition.
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4.1 Oswald interpolation operator

Let .1, be the set of all Lagrangian vertices of the elements of :7; ,» such that
functions from S} N H 1(Q) are uniquely determined by their values at nodes from
- It means that all hanging nodes are excluded from .4;,,. According to, e.g., [8],
we define the Oswald interpolation operator joDs (S, > SENH IIJ(Q) by

1
IEOD0) = s D k) v E M\ A
v/ Kew,

= 0, ve ,/122
where w, = {K € %n; v € K}, ’/th ={v € M,.;v € 0Qp}. Moreover, we define the
interpolation operator I, : H'(<, Thn) = S " N Hp(Q) by
(14) 1P ) = F2L0) VveH'(Q T,
where II;, is given by (10). The proof of the following theorem can be found in [7].

Theorem 1 Let % » be conforming or nonconforming triangulation satistying (3)
and (4). Then

(15 > = IR < Y MR Vv e S, i=0,1
Ke?f,,n ez

hn

where the constant Cy is independent of h and vy,.
4.2 Helmbholtz decomposition

We deal with nonconforming space S7, which brings some difficulties in compa-
rison with conforming methods. For that reason the Helmholtz decomposition of the
gradient of the error is carried out as follows (see, e.g., [3]):

Theorem 2 Let ¢" be given by (13), then there exists the decomposition
(16) Vye" = V¢ + curl ",

where ¢" € H})(Q) is the solution of the problem
(17) f V¢" - Vvdx = f Vie" - Vvdx Vve H)(Q),
Q Q

Y e (HY(Q) (k=1 ford=2andk =3 ford = 3) such that n - curl y* = 0 on 0Qy.
Moreover, the following holds: IIV;,e"II?2 = ||V¢”||?2 + ||curl)("||é.

The orthogonality of the splitting is crucial because it suffices to estimate each part
of the error independently. A proof of the above theorem can be found in [3]. Now,
we state several relations for the error ¢ given by (13) (see also [11]).
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Lemma 2 Letv, € S} N H}(Q), ¢ € H)(Q) and y € (H'(Q)* (k =1 ford =2
and k = 3 ford = 3) such that n - curl)( = 0 on 0Qy. The error ¢" satisties

(18) Z fVe Vvhdx—f - vhdx+02 f(Vvh m[u]1dSs,

KeT, rez],
Z fVe V¢dx_f(f - )¢dx— Z f Vil - npds,
KEThn KEThn
(19) +f gl¢dS
oQy

(20) Z fK V(" = ¢) - curl ydx = Z LK\MN (¢" —¢)curly - ndS.

KeT, KeT,

Proof By subtracting (6) from (2) (with v := v;) and the fact that [v,]r = 0 VI €
€ ,/h since v, € H! p(€), we get assertion (18). Further,

Z fVe V¢dx—fVu Ve dx — Z f Vil - npds =
KeT,

Ke‘%lﬂ

f(f" )<z>dx+fQ gyedS - Z f Vi) - ngds,

E‘%l n
where the first equality follows from Green’s theorem, the fact Auj = 0, and (13)
and the second equality follows from the definition of the semi-discrete problem (2).
Finally, (20) follows by integrating by parts and the fact that div curly = 0. O

4.3 Auxiliary results

For time level n > 1 we deﬁne the local error indicators

@Dy = he | - v Vi
ey
1/2 -1/2 -1/2
+ > Pl Ve + Z B P+ Y B — i
re7) ez} rezp
1/2 1/2
Mo = Y b+ Y gl = i,
e rezp

where .71, ZY, ZL denote the set of all interior faces (edges for d = 2) of element
K , faces (edges for d = 2) on 0Qy N 0K, and faces (edges for d = 2) on dQp N
N 0K, respectively. The indicators reflect the residuum of the equation, the jump in
the boundary conditions, the interelement jumps of the approximate solution and the
jump of its normal component of the gradient.
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We introduce, in addition, for z € H*((Q, ;; ») and g @ 0Qp — R the following
notation:

1/2
(22) I, = =] D MR+ Y Al glf
’ \ IﬂE‘g".I:.n Fe‘g’-hD,u
Further, we define:
n n—112
u, —u
(23) N A e I
= T |lg
KeTy,
ARSI (A
I“e?vh’ﬂ
@) = " hrllin - VagiR,
re7,
7 2
(M1ap 2= Z hr”g'](,—n~VuZ||r-
rezv

h.,n

Before we proceed to the proof of the a posteriori estimate, we prove auxiliary
assertions. Constant ¢ occurring in the estimates is a generic positive constant which
can differ from formula to formula and is independent of / and 7.

Lemma 3 Letw € H'(Q, J,,) and TI, given by (10), then, fori =0, 1
. . 2
(24) D IR < | D e+ (0] )
FE%”Z Ke%n

Proof: The following sequence of inequalities holds:

D WM < Y m I = wig +e Y BN

l"e%{‘j, KeT,, I'e @2
=2i+2), 12 1-2i 2 1-2i 2
<c YRl cre D IR+ e > Awig,
KE‘%” FE(%J‘ re'ghl.)n

where the first inequality follows from the triangle inequality and the local quasi-
uniformity and the second one from (7) and (10). Hence, due to definition (22), we
have the assertion. ]

Lemmad4 Letw € H'(Q, %n) and I;zn given by (14), then

2
(25) > helKVIR, o0 - mi < c(|w|§,] s+, 5 ) )
rez/!

h.n
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Proof: The following sequence of inequalities holds:

2 VI 00wl < e 3 eIV, 09l

rez/, Ke T,
<c > (VIR IKIVID, 00l k + B IVED, (0IR)
KeThn
<c Y IVIRIE <e D IVUR,m) = Tho)IE + > IV
Keﬁ,_n Ke?fm Ke?,,,,
-1 2 2 0 :
< 3 AIIONIE + vl 5 vl 5 wefvon’, 2 T
re7!

hn

where the first inequality follows from the local quasi-uniformity, the second one
from (7), the third one from (8) and the fourth one from the triangle inequality, the
fifth one from (15) and the boundedness of I1;, and the last one from (24) with i := 1.
O

Corollary 1 Letv e H;D’ p(€) and z € S} be arbitrary, where gp is the restriction
to 0Qp of a function in S} N H'(Q). Then

(26) Z hl_ZI”[Hh(V _ Z)]II% < C[ Z hi—%lv _ Zﬁ (J(Z)AD yhn) ]

re?ﬁ KE??T,,”
and
D 2 .
en Y VIR m -2 n>||r3c(| oz, (1O 9))
TeZ/

&

n

Moreover, let e" and ¢" be from (16), then

2
@) Vg - ¢ >IIK<C(Ie O+ (% 5 ) )

27
KeT,

Proof: The estimates (26) and (27) follow directly from (24) and (25) where we
put w := v — z and use that fact that J(v — 2)°, 5 = J(z)g" 5 sincev = gpon

h.n hn
0Qp. The estimate (28) follows from the two laszt llnes of the proof of Lemma 4 with
w := " — ¢" and the fact that J(e" — ¢")° L 7 = J(u") D%" since e" — ¢" = u}, — u}} on
8QD. O
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Lemma 5 Letw" € H'(Q, 7, and ¢ € H}(Q) be arbitrary, then

2
(29) Z Iw" = IP (Wl < ¢ Z h W[} ¢ +(J(w 1%")
KE:%,, KE:%“,
(30) D g~ 1D @k < clefi o
Ke%,,

Proof: Obviously,
D 2 2 D 2
DU = 1P I <2 T ! = Tl +2 ) T = 1P, ")
Ke%,, Ke%,, Kef??w

We estimate the first term by (10) and the second one with the aid of the combination
of (15) for i := 1 and (24) for i := 0. This proves (29). The relation (30) can be
estimated similarly as (29) together with J (¢)0 =0. m]

7" h,n

Lemma 6 Let¢p € H D(Q) be arbitrary. Then the following holds
31) > hitig - 1P, IR < cloli g

reFN

h.an

Proof: The following sequence of inequalities holds:

R A S W Ry o

l"efoﬁ’i KeT,

<c Y hgdle — 17, llle — 17,0l .k + i — 17, 11%)
=

< e ), hille = I g 3 16 = 1,00 0"
KeT KeF,

ve ) el = Il < clofi o,
KeT,

where the first inequality follows from the local quasi-uniformity, the second one
from (7), the third one from the Cauchy inequality, the fourth one from (30) and the
two last lines of the proof of Lemma 4 with w := ¢. O

Lemma 7 Letz € S}. Then the following holds

2
(32 veHllnf(Q) Z v Z”l/zalmy”’ = (J(Z)—l %m) ’
n KE:%,U
. 2
. D
(33) veHI‘?fy(Q) Z higllv = Z“l/zamf}‘”’ = (J(Z) hn)
‘D KG:%,n

where c is independent of h and H!, ,(Q) = {ve H'(Q); v=u}, on 0Qp)}.
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Proof: For the proof of (32), see [2, Lemma 4]. The inequality (33) can be proved
with the same technique as in the mentioned lemma. O

Lemma 8 Let x" be the function involved in Helmholtz decomposition (16). Then
(34) [curly" -nlr =0 V[ e Z!,
where the trace curl " - n on T is meant in the sense of Lemma 1.

Proof: Let us assume that ¢" — ¢" € C°°(§). Writing (17) elementwise, recalling
that Vj(e" — ¢") = curl y" and integrating by parts give

(35) 0=- Z f divV, "y dx + Z f [Vix" - nlvdsS
== JK — r

KeT, e ,{ﬂ
+ Z Vi -mvdS  Vve HL Q).
yeFN

h.n

Obviously, the first term and the last one in (35) vanish since divcurl y" = 0 and
Vix" - n = 0 on 0Qy, respectively. Now, it suffices to choose a non-zero test function
v on an interior face I' and we have that V,x" - n is continuous on I'. Finally, the

assertion of the Lemma follows from the density of C m(ﬁ)k in H(curl, Q), see [6,
Theorem 2.4 & 2.10]. a

Lemma 9 Let ¢" and x" be functions involved in Helmholtz decomposition (16).
There exists a constant ¢ > 0 such that

. . 7 2
36) > he"=¢"R = > hlleurl "I} < c(J(uZ)z_l_Dl% ) L i=0,1.
Ke%n Ke%n o

Proof: Letv € H;,, p(€2) be arbitrary and u" be the semi-discrete solution at ,.
7.
First, we present a property separately fori =0andi = 1. Fori =0

(37) Z f " — ¢"Mcurl " - ndS = Z f veurl y" - ndS,
Keg, < OK\0 Keo, V K\

since curl y" has continuous normal traces on I € .%, }{ , according to Lemma 8, ¢" = 0
onl'e ZP andu"=v=u}onl € FP.
For i = I, by using (4) and arguments above, we can write

(38) Z 2 fa K\aQN(u"—qb”)curl Y- nds

KE‘?’UI

< Z C%,h% f(u" —¢M[curl ¥ - n]dS + Z C%,h%fu"D curl " - ndS
Teéj{{n r TG%‘?,, :

<> cﬁ,hﬁ(f veurly" - ndS.
Ke. K\IQy
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Finally, using (20), (37), (38) we obtain for i = 0 as well as i = 1

(39 > me ¢ = > hllcur ¥k

KeT, Ke T,

= Z h f curl y" - V(" — ¢") dx = Z h f (" — ¢Mcurl y - ndS
KE%,, K Kef?v;m IK\OQy

< Z CHn¥ f (v —uy) curl y" - ndS
KeF,, OK\OQy

Therefore, with the aid of the Cauchy inequality, the trace inequality (9), and
(32)—(33), we have

> chin f (v —u)curly" - ndS

KeF, OK\OQy
172 12

2 2 2 2
<c E hKl”V_”ZHI/Z,oK\aQN E hK’HCHranHK
KeF,, KeF,,

1/2
<), o | Y hilleurl ¢l
7 ke,

The last inequality follows from (32)—(33) and the fact that v was arbitrary. Hence,
we can take a sequence of {v;} € H,i,, p(€2) converging to the infimum and with the aid
e

of the limit passage we obtain the desired inequality. Now, the assertion immediately
follows. O

Corollary 2 The combination of (29) and (36) together with J(e" — ¢")° =

%’yhﬂ
J
=JW")'®_ gives
h’l Zz
5T

1/2

(40) D, e =en =1 @ =ik | < TP .

KE%,,

5. Upper error bound

Now, we state the main result, an upper bound on the error.

Theorem 3 Let {u"}, .,y and {u}}, <<y be the semi-discrete solution given by (2)
and be the approximate solution given by (6), respectively. Let 1 < N < N. Then the
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errore" = u" — ”Z’ n=1,...,N satisfies

D e ||K+Zrn > IVl

KE%,N n=1 K€<7hn

0
Z lle ||K+ZC[Tn Z (771<1) + Z (Ukz)]
KeT, KT, KeT,

where a constant C is independent of the mesh parameter and the time step.
Proof: According to (16), we can write

o Y Ve =T, Y fK Ve Ve dr (=t u)

KE,%,, KEfgvh,u

+71, Z fVe”curl/\/”dx. (=:14n)
= Jk
Ke T,

(41)

Setting ¢ := ¢" in (19) multiplied by 7,, and adding a 7,-multiple of the difference of
the right-hand and the left-hand sides of (18) with v, := I}lznqb” yield

n—1
“42) v =1, f (- gt Y f Vi - ng" ds
Tn 0K

I(eﬁz,,
+ Tnf gnN¢n ds - Tn Z f Ven . VI}?n¢n dx
oQy Ke%n K
&l — e
+T,,f . I,?ngb dx + 7,0 Z f<w’?"¢ -m)[u']dS.
Q n
rez!

h,n
By expressing term —7, 2 ¢ > fK Ve - Vlfn¢” dx according to identity (19), ad-

n_ n-1
ding and subtracting term 7, 3 . 5 - fK( - %)q&” dx, and reordering the terms
we have

n_ . n—1

@ wen Y [ - e ds

KeT,
-] f(e”—e”_l)gb”dx—rn > f Vil - n(¢" 1P ¢ dS
=~ K — oK
KGL?/”, Ke%n
+7, f (9" —I0,6MdS + 7,0 > f (VIP ¢" - m[u}1dS.
oQy r
re.z!

h,n
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Putting (43) in (41), expressing i, with the aid of (20) and adding terms
+ ZKef?‘,?n fK(e” — e D" - I,fn(e" — ¢")) dx, we obtain

2
T > Ive'l

KeF,
= Z f(eﬂ _ en—l)((en _¢n) _I/I,?n(en _¢n)) dx (:: §1)
Ke%,, K
+ ) f (@ =" NP (" ¢ dx (=1 &)
KeZn VK
+ Z f nnldx_ Z ||e”||2dx
Key;, Key

l/tn un 1
(44) + 7, %; f(f - )(¢ IhD,n¢ )dx (:: é:S)

f [Vuj, - nl(¢" = I}, ¢")dS  (=: &)

Feff’

+70 ) f (VID¢" - mu]dS  (=: &5)
I‘E‘?}Zn r

v Y [V m@ - ends (= g0
Fe%ﬁ’n r

+ T Z f Scurl " - ndS (=1 &).
KeF, OK\OQy

Now, we have to estimate all terms in (44). The Cauchy inequality and (40) gives

12
s) 1] < [ Z lle" — e”‘llli] [ Z li(e" = ¢™) — 17 (" — "I

KE.&T,',, Keﬁn
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<clle” = "o Ju) "~ .
3>F han
With the aid of (18) we have

&= 0 Y, [GIE -8 muds =g

rez!

h,n

=y fK VeVIP (& - ¢ dx (= én)

KeT,,
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Application of the Cauchy inequality, (23), and (27) with settings v := u" — ¢",
z:=uy, gp = uy, yield

P <75 > helKVID, " = ¢ - miF x D eI
re.z! reZ!
(46) h,n h,n
2.n n n2 N :
<Tclle’ — ¢ Q. + J(uh)—%,%ﬁ .
Moreover, the Cauchy inequality and (28) gives

2 2 n2 D / n ny|12
< _ —
el < Ty, D VIR = 6

(47) KG'%I,"
2| ,n2 n n2 J(u" up :
< el z\l¢ ez, ( (”h)—%,%,,,) :
Further, the Cauchy inequality and (30) gives
1/2
(48) &Gl <Tamk| D) I =108 k| < Tl o
Ke%n
Moreover, the Cauchy inequality and (31) yields
1/2

(49) sl < Tty | DRl = P8R | < caiyld o

(g.h,,/l
Similarly, the Cauchy inequality, the estimate |f| < 1, and (27) with settings v :=
=¢",7:=0, gp =0 give
1/2, 1/2

50) sl <] Y ARG IR | Y BN < cnaleh o
re‘;:z,n re‘éz.n
Again, the Cauchy inequality and (31) imply
1/2
(51) ol < Tl | D 116" — I8 < cTailé o
FZN

h.n

Due to the Lemma 8, u” can be substituted for any function v € H,i,, p(€) in &7 as
i
follows:

€71 = 70 E f (v —u)curl y" - ndS|,
= Jok\ooy
KeFi,
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which together with the Cauchy inequality and (32) yield

n 2
2 2 n\"p n 2
(52) |§7| <cT, (J(uh)_%’%m) §~ ||Cur1/\/ : ”||—1/2,(9K\agz,v-
KeThn

Finally, using a trace inequality (9) in (52) leads to

R 2
(53) &7 < et? (J(u;)‘:g P ) llcurl |13,
27 hpn

Now, relation (44) with the particular estimates of &, [ = 1,...,7 given in
(45)—(53) gives

2 2
Dol + T ) IVellk

KEA?;”, KE%H
< ctuld" 1ok + Mgy + M +17)

n n—1 N
+clle” — € JW}) P —
s || lo TP

uVl
+ C(Tnleanl(Q’fg‘h'”) + 77?)(](“2) D1 9?1 + |en - ¢n|H1(Q’§‘h’”))
, 3. P }

+CT,,J(uZ)L:Dl 5 [lcurl x"||q + Z e"e" ! dx.
e KeTn

Multiplying (54) by 2, application of Young’s inequality, and the relation

le” = "R = lle"l, - 2 f e dx + 1l R,
Q

give
2 > ey + 2t Y Vel
K n K
KT, KeTyn
2 -112
< DN+ D e
KeT, KET,
(55)

uy 2 Tn, n
+er, ((n"R>2 # ) + O + OB + (T | ) + R,
25 h.n
uy 2 uf 2 2

el e o)

Tny 2 n n2 np2
+ 2R 5ol = R g 5+ leurl ).
Moving some terms from the right-hand side of (55), using (36), and

<2lp" — " +2le"?

6", > = >
H'(©Q.7,,) H(©.7,,) H(Q.7,,)
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we derive

2 2
DTN+ > IVe Il

Ke%n K€§hn
n—172 ny\2 no \2 n \2 n\2 n\UT 2
< NI + ey ((mo # ) + O + 017 + (70 ) )
KeTn e
N 2 N 2 n\2
+c||J(u, 7 + J(uh)%,%‘” +))
which together with the definitions (21), (22), and (23) finally yield
DTN+ Y IVe Il
KeF,, KeT,
< e i el D O+ D @)’
Ke:?;n Kef??,.n Ka%,,
Summing the inequality onn = 1,... , N, we come to the assertion of the theorem. O

6. Conclusion

We derived the error upper bound for the heat conduction equation discretized by
the low order DGFEM in space and the backward Euler scheme in time. Analogously
to [10], the Helmholtz decomposition was used to overcome difficulties arising due
to the nonconformity of the DGFEM.
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