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Basic properties of ideal-simple semirings are collected and stabilized.

The present pseudoexpository paper collects general observations and some other
results concerning ideal-simple semirings. All the stuff is fairly basic, and therefore
we will only scarcely attribute the results to particular sources.

1. P r e l i m i n a r i e s

A semiring is an algebraic structure equipped with two binary operations, tradition-
ally denoted as addition and multiplication, where the addition is commutative and
associative, the multiplication is associative and distributes over the addition from
both sides. The semiring is called commutative if the multiplication has this property.

Let S (= S (+, ·)) be a semiring. We say that S is additively idempotent (constant,
cancellative, etc.) if the additive semigroup (+) has the property. Similarly, S is mul-
tiplicatively idempotent (constant, cancellative, etc.) if the multiplicative semigroup
S (·) is such. The semiring S is bi-idempotent if both the semigroups are idempotent.

The semiring S need not have any additively and/or multiplicatively neutral ele-
ment. If S has such an element, the uniquely determined additively neutral element
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is denoted by 0S (or only 0) and the uniquely determined multiplicatively neutral ele-
ment is denoted by 1S (or only 1); we will also write 0S ∈ S or 1S ∈ S . The additively
absorbing element (if it exists) is denoted by oS or o. There is no specific way how to
denote multiplicatively absorbing elements.

If A, B are subsets of S then A + B = { a + b | a ∈ A, b ∈ B } and AB = { ab | a ∈
∈ A, b ∈ B }. A non-empty subset I of S is a left (right, resp.) ideal of S if (I+I)∪S I ⊆
⊆ I ((I+I)∪IS ⊆ I, resp.). A non-empty subset I of S is an ideal if (I+I)∪S I∪IS ⊆ I
(i.e., I is a left and right ideal). Clearly, S is an ideal of itself and a (left, right) ideal
I is called proper if I � S . A (left, right) ideal I is called trivial if |I| = 1.

The semiring S is called
– (left-, right-) ideal-simple if |S | ≥ 2 and S has no non-trivial proper (left,

right) ideal;
– (left-, right-) ideal-free if |S | ≥ 2 and S has no proper (left, right) ideal.

Clearly, every two-element semiring is left- and right-ideal-simple and the class of
(left-, right-) ideal-simple (-free) semirings is closed under non-trivial homomorphic
images.

The semiring S is called congruence-simple if it has just two congruence relations.
A non-empty subset I of S is a bi-ideal if (S + I) ∪ S I ∪ IS ⊆ I. The semiring

S is bi-ideal-simple if |S | ≥ 2 and S has no non-trivial proper bi-ideal. If I is a bi-
ideal then (I × I)∪ idS is a congruence of S . Consequently, every congruence-simple
semiring is bi-ideal-simple.

1.1 Lemma. (i) A one-element subset {w} is a (left, right) ideal if and only if w is
(right, left) multiplicatively absorbing.
(ii) A one-element subset {w} is a bi-ideal if and only if w is bi-absorbing (i.e., both
additively and mulitplicatively absorbing).

Proof. It is easy. �

1.2 Corollary. The semiring S has at most one trivial ideal. �

1.3 Corollary. The semiring S is ideal-free if and only if S is ideal-simple and has
no multiplicatively absorbing element.

1.4 Lemma. The set of additively idempotent elements of S is either empty or an
ideal of S .

Proof. It is easy. �

1.5 Lemma. The set S + S is a bi-ideal of S .

Proof. It is easy. �

1.6 Lemma. Let a ∈ S . Then the set {∑n
i=1 biaci | n ≥ 1, bi, ci ∈ S } is an ideal of S .
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Proof. It is easy. �

1.7 Lemma. Let n be a positive integer.
(i) The set nS = { a ∈ S | a ∈ S } is an ideal of S .
(ii) The set { a ∈ S | na = a } is either empty or an ideal of S .
(iii) If w ∈ S is multiplicatively absorbing then the set { a ∈ S | na = w } is an ideal
of S .

Proof. It is easy. �

1.8 Lemma. Let w ∈ S be such that for every a ∈ S there are b, c ∈ S with aw = b+w
or aw = w, and wa = c + w or wa = w. Then the set S + w is an ideal of S .

Proof. It is easy. �

1.9 Corollary. Let w ∈ S be multiplicatively absorbing. Then the set S + w is an
ideal of S . �

1.10 Lemma. Let w ∈ S be multiplicatively absorbing. Then the set { a ∈ S |w ∈
∈ S + a } is an ideal of S .

Proof. It is easy. �

1.11 Lemma. Let w ∈ S be multiplicatively absorbing. The the set { a ∈ S |w =
= na for some n ≥ 1 } is an ideal of S .

Proof. It is easy. �

1.12 Lemma. Let w ∈ S be multiplicatively absorbing. Then the sets { a ∈ S | S a =
= w } and { b ∈ S | bS = w } are ideals of S .

Proof. it is easy. �

1.13 Lemma. Let S be finite and additively idempotent. Then
∑

S (=
∑

a∈S a) is an
additively absorbing element.

Proof. It is easy. �

1.14 Lemma. Let a ∈ S and m ≥ 2 be such that am = a. Then ab = b = ba, where
b = a + a2 + · · · + am−1.

Proof. It is easy. �
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2. E x a m p l e s

2.1 Every two-element semiring is congruence-, left-ideal- and right-ideal-simple.
There are just ten (up to isomorphism) two-element semirings:

Z1(+) 0 1
0 0 0
1 0 0

Z1(·) 0 1
0 0 0
1 0 0

Z2(+) 0 1
0 0 0
1 0 0

Z2(·) 0 1
0 0 0
1 0 1

Z3(+) 0 1
0 0 0
1 0 1

Z3(·) 0 1
0 0 0
1 0 0

Z4(+) 0 1
0 0 0
1 0 1

Z4(·) 0 1
0 1 1
1 1 1

Z5(+) 0 1
0 0 0
1 0 1

Z5(·) 0 1
0 0 1
1 1 1

Z6(+) 0 1
0 0 0
1 0 1

Z6(·) 0 1
0 0 0
1 0 1

Z7(+) 0 1
0 0 1
1 1 0

Z7(·) 0 1
0 0 0
1 0 0

Z8(+) 0 1
0 0 1
1 1 0

Z8(·) 0 1
0 0 0
1 0 1

Z9(+) 0 1
0 0 0
1 0 1

Z9(·) 0 1
0 0 1
1 0 1

Z10(+) 0 1
0 0 0
1 0 1

Z10(·) 0 1
0 0 0
1 1 1

The semirings Z1, . . . ,Z8 are commutative and the semirings Z9, Z10 are not (these
two semirings are anti-isomorphic). The semirings Z3, . . . ,Z6, Z9, Z10 are additively
idempotent, the semirings Z2, Z5, Z6, Z8, Z9, Z10 are multiplicatively idempotent and
the semirings Z5, Z6, Z9, Z10 are bi-idempotent. The semirings Z1, Z2 are additively
constant, the semirings Z1, Z3, Z4, Z7 are multiplicatively constant and the semiring
Z1 is bi-constant. The semirings Z7, Z8 are rings. The semirings Z9, Z10 are ideal-free.
The semiring Z9 is right-ideal-free and the semiring Z10 is left-ideal-free.

2.2 Let S (·) be a semigroup containing an absorbing element o ∈ S . Setting a+ b = o
for all a, b ∈ S , we get an additively constant semiring S = S (+, ·). This semiring is
ideal-simple if and only if the semigroup S (·) is ideal-simple.
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2.3 Consider the following three-element semiring S :

S (+) 0 1 2
0 0 1 2
1 1 1 1
2 2 1 2

S (·) 0 1 2
0 0 0 0
1 0 1 1
2 0 2 2

Then S is bi-idempotent, left-ideal-simple and not congruence-simple. The ele-
ment 0 is additively neutral and multiplicatively absorbing, the element 1 is additively
absorbing and the elements 1, 2 are multiplicatively neutral.

2.4 Define two binary operations ∗ and ◦ on the set Z of integers by a ∗ b = min(a, b)
and a◦b = a+b for all a, b ∈ Z. Then Z1 = Z(∗, ◦) becomes an additively idempotent
commutative semiring that is both ideal-free and congruence-simple. The number 0
is a multiplicatively neutral element of the semiring Z1.

Let α � Z, Z2 = Z ∪ {α} and z ∗ α = α ∗ z, α ∗ α = α, z ◦ α = α ◦ z = α, α ◦ α = α
for every z ∈ Z. Again, Z2 is an additively idempotent commutative semiring, α
is additively neutral and multiplicatively absorbing and 0 is multiplicatively neutral.
The semiring Z2 is ideal-simple, but not congruence-simple.

2.5 Remark. (i) The following result is proved in [1, 14.1]:
The following conditions are equivalent for a commutative semiring S :
(a) S is finite and congruence-simple.
(b) S is finite and ideal-simple.

(ii) It seems to be an open problem whether there is a (finite) additively idempotent
semiring S such that S is ideal-simple, 0S ∈ S , 1S ∈ S , oS ∈ S and 0S is multiplica-
tively absorbing.

2.6 Consider the following semilattice A(+):

A(+) 0 a b c 1
0 0 a b c 1
a a a 1 1 1
b b 1 b 1 1
c c 1 1 c 1
1 1 1 1 1 1

Let E be the semiring of all endomorphisms f of A(+) such that f (0) = 0. Then E
is a finite additively idempotent congruence-simple semiring that is not ideal-simple.
The constant endomorphism x �→ 0 is additively neutral and multiplicatively ab-
sorbing. The constant endomorphism x �→ 1 is additively absorbing. The identity
automorphism idA is multiplicatively neutral.
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3. E l e m e n t a r y o b s e r v a t i o n s ( a )

In this section, let S be an ideal-simple semiring.

3.1 Proposition. Just one of the following three cases takes place:
(1) S has no additively idempotent element (then S is infinite and has no addi-

tively neutral element, no additively absorbing element and no multiplica-
tively absorbing element);

(2) S has a multiplicatively absorbing element w and w is the only additively
idempotent element;

(3) S is additively idempotent.

Proof. Combine 1.4 and 1.1(i). �

3.2 Proposition. Just one of the following two cases takes place:
(1) S + S = S ;
(2) S is additively constant, S + S = {o}, where o is bi-absorbing and the multi-

plicative semigroup S (·) is ideal-simple (see 2.2).

Proof. Combine 1.5 and 1.1(ii). �

3.3 Lemma. Let n be a positive integer. Then just one of the following two cases
takes place:

(1) nS = S ;
(2) S contains a multiplicatively absorbing element w and nS = {w}.

Proof. Combine 1.7(i) and 1.1(i). �

3.4 Lemma. Let n be a positive integer. Then just one of the following three cases
takes place:

(1) na � a for every a ∈ S ;
(2) na = a for every a ∈ S ;
(3) S contains a multiplicatively absorbing element w and na � a for every

a ∈ S \ {w}.

Proof. Combine 1.7(ii) and 1.1(i). �

3.5 Lemma. Let n be a positive integer. Then just one of the following four cases
takes place:

(1) na = a for every a ∈ S ;
(2) nS = S and na � a for every a ∈ S ;
(3) nS = S , S contains a multiplicatively absorbing element w and w � na � a

for every a ∈ S \ {w};
(4) S contains a multiplicatively absorbing element w and nS = {w}.
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Proof. Combine 1.7(iii), 3.3 and 3.4. �

3.6 Proposition. Let w ∈ S be multiplicatively absorbing. Then just one of the
following three cases takes place:

(1) w = oS is bi-absorbing;
(2) w = 0S is additively neutral and 0 � S + a for every a \ {0} (i.e., S \ {0} is a

subsemigroup of S (+));
(3) S is a ring.

Proof. By 1.9, S +w is an ideal of S and, of course, w ∈ S +w. If |S +w| = 1 then
w is bi-absorbing. If |S + w| ≥ 2 then S + w = S and we see that w = 0S . By 1.10,
the set A = { a ∈ S | 0 ∈ S + a } is an ideal of S and, of course, 0 ∈ A. If |A| = 1 then
(2) is true. If |A| ≥ 2 then A = S and S is a ring. �

3.7 Proposition. Just one of the following four cases takes place:
(1) nS = S for every positive integer n;
(2) S is a ring and pS = {0} for a prime number p;
(3) S + S = S and S contains a bi-absorbing element o such that nS = {o} for

every positive integer n (then S is infinite);
(4) S is additively constant (see 2.2 and 3.2(ii)).

Proof. Assume that (1) is not true. By 3.3, S contains a multiplicatively absorbing
element w such that mS = {w} for a positive integer m. Clearly, m ≥ 2. By 3.6, either
w = 0S is additively neutral or w = oS is bi-absorbing.

First, let w = 0S . Since mS = {0} and m ≥ 2, it follows that S is a ring. Let k be
the smallest positive integer with kS = {0}. Again, k ≥ 2, and if k is not prime then
k = k1k2, where k1 ≥ 2 and k2 ≥ 2. We have k2 < k, so that k2S = S by 3.3. Similarly,
k1 < k and {0} = kS = k1k2S = k1S = S , a contradiction. Thus (2) is true.

Next, let w = oS . Again, let k be the smallest positive integer with kS = {o}.
Clearly, k ≥ 2 and there is a non-negative integer l such that l < k and k + l is even.
We have (k + l)S = o + S = o. But k+l

2 < k, S = k+l
2 S and {o} = (2 k+l

2 )S = 2S .
We have proved that 2S = {o}. Since o is additively absorbing, we have nS = {o} for
every n ≥ 2.

Assume that S + S = S . If |S | = t were finite, t ≥ 2 and if a ∈ S \ {o} then
a = a1 + · · · + at+1 for some ai ∈ S . But ai = a j for some i < j, ai + a j = o and a = o,
a contradiction. Thus (3) is true.

Assume, finally, that S + S � S . Then S is additively constant by 3.2. �

3.8 Proposition. Assume that nS = S for every positive integer n (see 3.7). Then just
one of the following three cases takes place:

(1) S is additively idempotent;
(2) na � ma for all a ∈ S and positive integers n,m, n � m;
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(3) S contains a multiplicatively absorbing element w such that w � na � ma for
all a ∈ S \ {w} and positive integers n,m, n � m.

Proof. Assume that S is not additively idempotent. If S has no additively idem-
potent element then (2) is true. Consequently, let w ∈ S be such that 2w = w. By 3.1,
w is the only additively idempotent element of S and w is multiplicatively absorbing.
If na = w for some a ∈ S \ {w} and a positive integer n then if follows from 1.7(ii)
that nS = {w}, a contradiction. Thus (3) is true. �

3.9 Proposition. Let S be ideal-free. Then either S is additively idempotent or S
has no additively idempotent element and nS = S for every positive integer n (see
3.8(ii)). In the latter case, S is infinite.

Proof. Combine 3.7 and 3.8. �

3.10 Proposition. Let S be finite. Then just one of the following three cases takes
place:

(1) S is additively idempotent and oS ∈ S ;
(2) S is a ring and pS = 0 for a prime number p;
(3) S is additively constant.

Proof. Combine 3.7 and 3.8. �

3.11 Lemma. Let w ∈ S be multiplicatively absorbing and let S S � {w}. Then
S a � {w} � aS and S aS � {w} for every a ∈ S \ {w}.

Proof. The result follows easily from 1.12. �

3.12 Lemma. Let w ∈ S be multiplicatively absorbing and let S S � {w}. If a ∈ S \{w}
then S = {∑n

i=1 riasi | n ≥ 1, ri, si ∈ S }.

Proof. The result follows easily from 3.11. �

3.13 Proposition. Let 0s ∈ S . Then just one of the following five cases takes place:
(1) S is additively idempotent and 0 is multiplicatively absorbing;
(2) S is additively idempotent, 02 = 0 and S = {∑n

i=1 ri0si | n ≥ 1, ri, si ∈ S };
(3) S is a ring;
(4) 0 is multiplicatively absorbing, it is the only additively idempotent element of

S and T + T = T, where T = S \ {0} (then T is a subsemigroup of S (+) and
S is infinite);

(5) S � Z3.
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Proof. First, assume that S is additively idempotent. If 0 is not multiplicatively
absorbing and A = {∑ ri0si} then A is an ideal of S and either A = S or A = {w},
where w ∈ S is multiplicatively absorbing and w � 0. In the former case, ab =
= (a + 0)(b + 0) = ab + a0 + 0b = 02, ab + 02 = ab for all a, b ∈ S , ri0si + 02 = ri0si

and 02 = 0. Thus (2) is true. In the latter case, we get S S = {w} by 3.12. Now, {0,w}
is a two-element ideal of S , S = {0,w} and S � Z3.

Now, assume that S is not additively idempotent. By 3.1(2), 0 is multiplicatively
absorbing and it is the only additively idempotent element of S . If S is not a ring then
(4) follows from 1.10. �

3.14 Corollary. If 0S ∈ S and 0 is not multiplicatively absorbing then either S �
� Z3 or 3.13(2) is true. (Notice that 0 is not multiplicatively absorbing if S is ideal-
free.) �

4. E l e m e n t a r y o b s e r v a t i o n s ( b )

In this part, let S be a semiring such that o = oS ∈ S (o is additively absorbing).

4.1 Lemma. For all a, b, c ∈ S there is d ∈ S with oao = bac + d.

Proof. oao = (b + o)a(c + o) = (ba + oa)(c + o) = bac + oac + bao + oao and
d = oac + bao + oao. �

4.2 Lemma. For all a, b, c, d ∈ S and n ≥ 1 such that b + c = noao there is e ∈ S
with db + e = noao.

Proof. noao = n(do+o)ao = ndoao+noao = db+dc+b+c and e = dc+b+c. �

4.3 Lemma. For all a, b, c, d ∈ S and n ≥ 1 such that b + c = noao there is e ∈ S
with bd + e = noao.

Proof. Symmetric to 4.2. �

4.4 Lemma. For all a, b, c, d, e ∈ S and n ≥ 1 such that b + c = noao there is f ∈ S
with dbe + f = noao.

Proof. noao = n(do+o)a(oe+o) = n(doa+oa)(oe+o) = ndoaoe+ndoao+noaoe+
+noao = dbe+dce+db+dc+be+ce+b+c and f = dce+db+dc+be+ce+b+c. �

4.5 Lemma. Assume that S is ideal-simple and the element owo is multiplicatively
absorbing for some w ∈ S . Then just one of the following three cases takes place:

(1) owo = o and o is bi-absorbing;
(2) S is additively idempotent and owo = w = 0S ;
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(3) S � Z4.

Proof. If the element owo is additively absorbing then owo = o is bi-absorbing.
Now, assume that owo � o. Then, by 3.6, owo = 0 is additively neutral. If w = 0 then
S is additively idempotent by 3.1 and (2) is true.

Let, finally, w � 0. Again, S is additively idempotent by 3.1. Clearly, S is not
a ring and, by 3.6, T + T ⊆ T , where T = S \ {0}. On the other hand, by 4.1,
0 = owo ∈ S + bwc for all b, c ∈ S . Consequently, S wS = {0} and S S = {0} follows
from 1.12. Now, it is clear that {0, o} is an ideal of S . Thus {0, o} = S and S � Z4. �

4.6 Lemma. Assume that S is ideal-simple and the element owo is not multiplica-
tively absorbing for some w ∈ S . Then S is additively idempotent and owo = o.

Proof. If o is multiplicatively absorbing then owo = o, a contradiction. Thus o is
not multiplicatively absorbing and S is additively idempotent by 3.1. Put A = { a ∈
∈ S | owo ∈ S + a }. Using 4.2, 4.3 and the fact that S is additively idempotent, we
check easily that A is an ideal of S and owo ∈ A. Since owo is not mulitplicatively
absorbing, we have A � {owo}. Consequently, A = S and owo ∈ S + {o} = {o}. Thus
owo = o. �

4.7 Proposition. Let S be ideal-simple. Then just one of the following four cases
takes place:

(1) S is additively idempotent, S has no multiplicatively absorbing element,
oS o = {o}, o2 = o, S = {∑n

i=1 riosi | n ≥ 1, ri, si ∈ S };
(2) S is additively idempotent, 0 = 0S ∈ S is additively neutral and multiplica-

tively absorbing, 0 � o = o2, oS o = {0, o}, oao = o for every a � 0 and
S = {∑n

i=1 riosi | n ≥ 1, ri, si ∈ S };
(3) o is bi-absorbing (and so S oS = {o} = oS o);
(4) S � Z4 (and so S oS = {0S } = oS o).

Proof. First, assume that S has no multiplicatively absorbing element. By 3.1, S
is additively idempotent. By 4.6, oS o =}o}. In particular, o3 = o, o4 = oo2o = o
and o2 = oo = oo3 = o4 = o. Since o is not multiplicatively absorbing and S has no
multiplicatively absorbing element at all, (1) follows from 1.6.

Next, assume that S has a multiplicatively absorbing element w. If w = o then (3)
is true. Henceforth, let w � o. Put A = { a ∈ S | oao = w } and B = { b ∈ S | obo = o }.
Clearly, A ∩ B = ∅ and, by 4.6, we have A ∪ B = S . Moreover, if B � ∅ then S is
additively idempotent.

We have w ∈ A, so that A � ∅ and, by 4.5, w = owo = 0S ∈ S . If A = {0} then
B = S \ {0} � ∅, S is additively idempotent abd obo = o for every b ∈ S \ {0}. In
particular, o3 = o, and hence o2 � 0, o4 = oo2o = o and o2 = o. Thus (2) is true.
Finally, if A � {0} then S � Z4 by 4.5. �
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4.8 Corollary. If S is ideal-free then 4.7(1) is satisfied. �

4.9 Remark. Assume that S is ideal-simple, 0 = 0S ∈ S and o = oS ∈ S . Then 0 � o
and S is additively idempotent.
(i) If 0 is multiplicatively absorbing then either 4.7(2) is true or S � Z4.
(ii) If o is multiplicatively absorbing then either 3.13(2) is true or S � Z3.
(iii) Assume that S has no multiplicatively absorbing element (i.e., S is ideal-free).
By 3.13, we have 02 = 0 and S = {∑n

i=1 ri0si}. By 4.7, we have o2 = o, oS o = {o}
and S = {∑n

i=1 riosi}.
(iii1) Let 0 be left multiplicatively absorbing, i.e., 0S = {0}. Then S 0 = S and it
follows that o0 = o (if a0 = o then o0 = (a + o)0 = o + o0 = o) and 0 is right
multiplicatively neutral. Furthermore, oa = o(a + 0) = oa + o = o, so that o is left
multiplicatively absorbing, S o = S and o is right multiplicatively neutral. Of course,
ab = a0b = a0 = a for all a, b ∈ S .
(iii2) Similarly, if 0 is right multiplicatively absorbing then ab = b for all a, b ∈ S .
(iii3) If o is left multiplicatively absorbing then oS = {o}, S = S o and o is right
multiplicatively neutral. We have 0 = 0o = 0(a + o) = 0a + 0o = 0a + 0 = 0a and 0
is left multiplicatively absorbing. By (iii1), ab = a for all a, b ∈ S .
(iii4) Similarly, if o is right multiplicatively absorbing then ab = b for all a, b ∈ S .

4.10 Proposition. Let S be ideal-simple and let 0 = 0S ∈ S and o = oS ∈ S . Assume
that neither 0 nor o is mulitplicatively absorbing. Then:
(i) S is additively idempotent and has no multiplicatively absorbing element (then S
is ideal-free).
(ii) oS o = {o}, 0S 0 = {0}, o2 = o and 02 = 0.
(iii) If 0o = 0 or o0 = o then ab = a for all a, b ∈ S .
(iv) If o0 = 0 or 0o = o then ab = b for all a, b ∈ S .
(v) If ab � a and cd � d for some a, b, c, d ∈ S then 0o � {0, o}, o0 � {o, 0}, 0o·o0 = 0,
o0 · 0o = o.

Proof. (i) By 3.1, S is additively idempotent. According to 3.6, S has no multi-
plicatively absorbing element.
(ii) By 4.7(1), we have o2 = o and oS o = {o}. By 3.13(2), 02 = 0. Moreover,
by 4.7(1), 0 =

∑
riosi. Since S is additively idempotent, we have 0 = ros. But

ros = (r + 0)0(s + 0) = ros + 0os + ro0 + 0o0 and 0o0 = 0. Consequently,
0 = 0o0 = 0(a + o)0 = 0a0 + 0o0 = 0a0 for every a ∈ S and 0S 0 = {0}.
(iii) and (iv) See 4.9.
(v) Use (ii), (iii) and (iv). �

5. E l e m e n t a r y o b s e r v a t i o n s ( c )

In this section, let S be a semiring such that ab = ac for all a, b, c ∈ S .
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5.1 Proposition. There is an endomorphism α of the semiring S such that α2 = α,
ab = α(a) for all a, b ∈ S and:
(i) T = α(S ) is a bi-idempotent subsemiring of S and uv = u for all u, v ∈ T.
(ii) T is an ideal of S .
(iii) If I is a left ideal of S then T ⊆ I.
(iv) If A is a subsemigroup of S (+) with T ⊆ A then A is an ideal of S .
(v) α is injective if and only if α is projective and if and only if α = idS (then ab = a
for all a, b ∈ S ).
(vi) If R is a block of ker(α) then R is a subsemiring of S and |RR| = 1.

Proof. There is a transformation α of S such that ab = α(a) for all a, b ∈ S . We
have α(a) = a(a + a) = a2 + a2 = α(a) + α(a), α(a) = a · aa = aa · a = α(aa) = α(a),
α(a + b) = (a + b)a = a2 + ba = α(a) + α(b) and α(ab) = α2(a) = α(a)α(b)
for all a, b ∈ S . We have checked that α is an endomorphism of S , α2 = α and
2α(a) = α(a). The image T = α(S ) is a subsemiring of S and α(u) = u for every
u ∈ T . Consequently, uv = u for all u, v ∈ T and T is bi-idempotent. It is clear
that T is an ideal of S . If I is a left ideal of S then T = α(S ) = S I ⊆ I. If A is a
subsemigroup of S (+) and T ⊆ A then S A = T ⊆ A and AS = α(A) ⊆ T ⊆ A. Thus
A is an ideal of S .

If α is injective (projective, resp.) then α2 = α implies α = idS. Finally, if R is a
block of ker(α) then RR = α(R) and |α(R)| = 1. �

5.2 Proposition. S is ideal-simple if and only if at least one (and then just one) of the
following three cases takes place:

(1) |S | ≥ 2 and ab = a for all a, b ∈ S (then S is additively idempotent);
(2) S is a zero multiplication ring of finite prime order;
(3) S is isomorphic to one of Z1, Z2, Z3.

Proof. If T = S (see 5.1) then (1) is true. If |T | = 1 then, due to 5.1(iv), A = S
whenever A is a subsemigroup of S (+) with T ⊆ A and |A| ≥ 2. Now, it is easy to see
that either (2) or (3) is true. �

5.3 Corollary. Assume that S is ideal-simple and |S S | = 1 (i.e., S has constant
multiplication). Then either S is a zero multiplication ring of finite prime order or S
is isomorphic to one of Z1, Z2, Z3. �
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