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We present a new numerical tool to simulate thermal cooling and spin evolution of a rotat-
ing body with freely deformable surface and complex rheology. While the long-term me-
chanical properties of the body are mimicked by visco-plastic rheology including different
creep mechanisms, its despinning is controlled by Andráde visco-elastic model. Variable-
density approximation (sticky air) and implicit description of the surface are combined in
order to track the surface evolution. We use this tool to investigate the shape of Saturn’s
moon Iapetus, whose topography shows enigmatic remnant features from the moon’s early
history when the spin rate and temperature were significantly higher than at present. Our
model is characterized by three parameters: the initial temperature (ranging from 230 to
270 K), the initial rotational period (8–15 hours), and the grain size of ice (0.01–100 mm)
defining the relative role of diffusion creep in total deformation. For these three parame-
ters, we systematically explore the model space and show for which combinations of pa-
rameters the body can be effectively despun while maintaining its strongly flattened shape.
Our results indicate that the despinning of Iapetus could not occur without interaction with
an external body.

1. I n t r o d u c t i o n

The topography of Iapetus, the most distant of Saturn’s major icy moons, shows
two enigmatic features: an exceptionally large equatorial bulge and a narrow equa-
torial ridge reaching heights of ˜13 km above the surrounding terrain. According
to Thomas et al. [2007], the strongly flattened shape with equatorial radius 747.4 ±
± 3.1 km and polar radius 712.4 ± 2.0 km corresponds to a rotational period of ˜16 h
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for a homogeneous body or ˜15 h for a differentiated body. However, the current syn-
chronous rotational period is 79.33 days. The equatorial ridge is located at the top
of the bulge and runs nearly parallel to the equator on the leading dark side of Iape-
tus. Recently, Giese et al. [2008] have detected signs of the ridge also on the trailing
bright hemisphere. Heavy cratering of the ridge, which indicates an ancient origin,
and further its location on top of the bulge are suggestive of a causal link between
the two features, see e.g. Czechowski and Leliwa-Kopystynski [2008], Levison et al.
[2011], Sandwell and Schubert [2010], Castillo-Rogez et al. [2007].

In this paper we consider the hypothesis of Castillo-Rogez et al. [2007] who pro-
posed that the present-day shape of Iapetus is a remnant from the times when the
moon rotated with a high spin rate and whose preservation was made possible by
creation of a lithosphere strong enough to resist deformations due to continuing de-
spinning. For the formation of the lithosphere, as well as for the onset of the despin-
ning, heat from the decay of short-lived radiogenic isotopes (SLRI) was crucial. The
scenario does not describe the formation of the ridge, but in their simulations with a
model that included 1-D purely conductive heat transfer and Maxwell rheology, the
authors used the presence of the ridge as a constraint on the strength and width of
admissible lithosphere. The scenario was also investigated by Robuchon et al. [2010]
on the basis of 3-D convection simulations incorporating a highly dissipative Burgers
rheology. Despite the differences in modeling strategies, both Castillo-Rogez et al.
[2007] and Robuchon et al. [2010] were able to successfully despin Iapetus and obtain
the correct flattening. The models are, however, strongly simplified: The model of
Castillo-Rogez et al. [2007, 2011] neglects the effect of convective cooling while the
model of Robuchon et al. [2010] oversimplifies the rheological description of viscous
flow and tidal dissipation. Here we devise a new model where the aforementioned
drawbacks are eliminated.

2. M o d e l

2.1. Governing equations

We consider a flow of highly viscous, incompressible fluid driven by thermally
dependent buoyancy forces. Governing equations of our model therefore constitute a
Stokes-Fourier system

(1)

∇ · �v = 0

−∇π + ∇ · (η
(
∇�v + (∇�v)T

))
+ ρ
(
�g + �b

)
= 0

ρmcp

(
∂T
∂t
+ �v · ∇T

)
= ∇ · (k∇T ) + q

ρ = ρm(1 − α(T − Tm)), α = const > 0



Ωt × (0, T ] ,

2.1
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where �v is the velocity of the flow, π is the Lagrange multiplier that ensures incom-
pressibility and η, ρ, k, cp and α are respectively the fluid’s viscosity, density, thermal
conductivity, specific heat and expansion coefficient, T is the thermodynamic tem-
perature, Tm is the reference temperature at which density takes the value ρm, �g is the
gravitational acceleration, �b is the centrifugal acceleration and q is the volumetric ra-
diogenic heat production. The equations are prescribed in domain Ωt corresponding
to the real shape of Iapetus.

Following Castillo-Rogez et al. [2007] our model includes temperature-dependent
thermal parameters k and cp that are given by

(2)
k = fsksil + (1 − fs)kice, kice

[
Wm−1K−1

]
= 0.4685 + 488.12/T,

cp = χscsil
p + (1 − χs)cice

p , cice
p

[
J kg−1K−1

]
= 185 + 7.037T,

where ksil = 4.2 Wm−1K−1, csil
p = 920 J kg−1K−1 are the thermal conductivity and

specific heat of the silicates. In equations (2), fs = 0.063 and χs = 0.204 are the
volumetric and mass fraction of the silicates, respectively [Robuchon et al., 2010].

2.2. Rheology

Goldsby and Kohlstedt [2001] showed that for a realistic description of the defor-
mation of ice a single deformation mechanism is not sufficient. Instead, combination
of several different mechanisms yields results that are in excellent agreement with
experiments. They considered four such mechanisms: dislocation creep, diffusion
creep, basal slip and grain boundary sliding. Viscosity corresponding to each of the
mechanisms follows an Arrhenius-like flow law

(3) ηi =
1
2
ε̇εε−1+1/ni

II dpi/ni

[
Ai + exp

(
− Ei

RT

)]−1/ni

.

The dependence of mechanism’s viscosity on the second invariant of the strain-rate
tensor ε̇εε II , grain size d and temperature is thus controlled by its the grain-size ex-
ponent pi, stress exponent ni, pre-exponential factor Ai and activation energy Ei. In
Equation 3 R is the universal gas constant. We adopt values of parameters charac-
terizing individual mechanisms from Goldsby and Kohlstedt [2001] but unlike the
authors, we consider all the mechanisms in series. Hence, the final viscosity is given
as

(4)
1
η
=
∑

i

1
ηi
.

2.3. Despinning

Despite the large distance from Saturn (semi-major axis D = 3.51 × 106 km),
Iapetus experienced non-zero tidal forces induced by the gravitational field of Saturn.

2.3

2.2
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The evolution of spin rate ω is then given by Peale [1999]

(5)
dω
dt
= − 45

16π

k2 (t) GM2
pa (t)

ρD6Q (t) c (t)
,

where Mp is the Saturn’s mass, k2 is the tidal Love number, Q is the quality factor
characterizing the dissipation of energy in visco-elastic deformation, G is the gravi-
tational constant and a and c are the moon’s equatorial and polar radius, respectively.
In our model, anelastic properties of Iapetus are described by Andráde visco-elasic
model Efroimsky [2012]. The evolution of spin rate is coupled to the Stokes prob-
lem via centrifugal force which influences the character of flow and the shape of the
body. Especially at high spin rates, mass redistribution due to changes in shape is
significant. Consequently, self-gravity must be included in the gravitational force.

2.4. Model domain, surface evolution and boundary conditions

In order to reduce the computational costs we introduce two simplifications. First,
we do not consider a 3-D spherical domain, but instead, we perform our calculations
in a 2-D axisymmetric spherical geometry which represents an intersection between
the slice of Iapetus passing through rotational axis and the half-plane determined by
this axis and an arbitrary point in space. This simplification is well justified by the
rotational symmetry of both the investigated phenomena.

Since the outer boundary of this domain represents an evolving surface, the force
acting on it should be SSS · �n = �0, with SSS and �n being the Cauchy stress tensor and
the outer unit normal, respectively. The condition allows the surface to deform freely
but substantial computational expanses arise upon its implementation due to accurate
evaluation of surface normals at each time step. Further, if Eulerian description is
used, the evolving surface affects size of the matrix of the problem, as the number
of Eulerian nodes that are part of the physical/computational domain changes with
time. To avoid the highly demanding assembly of the matrix at each time step, we
use the variable-density approximation where the computational domain is fixed (to-
gether with the dimension of the problem matrix) and its volume is sufficiently large
to contain the physical domain throughout the whole time evolution. The additional
volume above the physical surface is then filled with material whose properties al-
low the physical surface to deform freely. In this approximation, the physical surface
is identical to the interface between the two materials – ice within the physical do-
main and a low-viscosity and low-density “sticky air” above it. In our model, we
describe the interface as an implicit function H(r, θ, t) = 0 whose evolution is an
initial-boundary-value problem with the governing equation

(6)
∂H
∂t
+ �v · ∇H = 0.

2.4
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Since in variable-density approximation the fixed boundary of the computational
domain does not coincide with the evolving boundary of the physical domain, sim-
plified boundary conditions can be used on the outer boundary. In our simulations,
we prescribed here a free-slip condition and constant temperature of 90 K. On the in-
ner boundary free-slip and zero heat flux were used. Finally, on the axial boundaries
conditions requiring symmetry of velocity, temperature and surface were prescribed.

2.5. Model space exploration

The initial state of Iapetus, characterized by an initial temperature profile T0(r, θ),
rotational period τ0 and grain size d, is largely unknown. To estimate the initial con-
ditions which are compatible with the present-day flattening and rotational period, we
test different combinations of the above initial parameters by simulating the thermal
evolution of the moon. For each set of parameters we obtain spin rate and flattening
as functions of time and we compare them with the present values. We consider the
initial rotational period between 8 and 15 hours, which corresponds to initial flatten-
ing a − c between 170 km and 40 km. For these values of periods, Robuchon et al.
[2010] were able to successfully despin Iapetus and obtain the observed flattening. It
should be noted, that while investigation of bigger initial rotational periods is likely
unnecessary due to correspondence between the current shape and 16-hour rotational
period, values as small as Roches’s limit of 4 h should be included in numerical sim-
ulations. However, at the moment of writing such simulations are outside the authors’
computational capabilities.

We vary the grain sizes between 0.01 mm and 100 mm, in agreement with the
values given by Czechowski and Leliwa-Kopystynski [2008] who studied convection
in mid-sized icy satellites (the effect of grain size is illustrated in the top panel of
Figure 1).

Finally, we consider high constant initial temperature T0 ∈ [230 K, 270 K] in order
to aid the dissipation. The temperature is assumed to result from initial accretion
processes and the radiogenic decay of SLRI. We assume that at the start of numerical
simulations all SLRI are burned out and it is only the LLRI that keep heating the
interior up. Moreover, following Robuchon et al. [2010], we assume no internal
differentiation of Iapetus and hence the heating to be homogeneous. Initial amount
of LLRI then depends on the time difference ∆t between accretion and the simulation
start. Nevertheless, since half-lives of the dominant LLRI are close to 1 Byr the effect
of ∆t on radiogenic heating is negligible. In the presented results we set ∆t = 10 Myr.

3. R e s u l t s

We investigated the discretized model space

(d, τ0, T0) ∈ {0.01, 0.1, 1.0, 10.0, 100.0}mm × {8, 12, 15} h × {230, 250, 270}K.

2.5
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Figure 1. (Top) Contour maps of decadic logarithm of viscosity in Pa s
as a function of strain rate and temperature for two boundary values of
grain sizes considered in the study. For the largest grain size low viscos-
ity regions are confined to large values of temperatures and strain rates.
For the smallest grain size, low viscosities are obtained at T > 230 K
independent of the strain-rate suggesting that viscosity is controlled by
the diffusion creep. (Bottom) Evolution of flattening, rotational period
and dissipation factor for model with d = 0.1 mm,T0 = 230 K and three
different values of τ0. In the first plot shaded gray region indicates con-
fidence interval of the measurements of the current flattening of Iapetus
a − c = 35.0 ± 3.7 km [Thomas et al., 2007].
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Table 1. Rotational periods (gray columns) and flattening (white
columns) obtained after 1 Byr for models with grain size 100 mm and
0.01 mm.

d 100 mm 0.01 mm

T0

τ0 8 h 12 h 15 h 8 h 12 h 15 h

230 K 8.7 h 140 km 13.4 h 55 km 17.2 h 33 km 9.8 h 106 km 16.6 h 35 km 28.0 h 12.3 km
250 K 8.9 h 131 km 14.1 h 50 km 18.5 h 28 km 9.9 h 105 km 17.6 h 31 km 28.1 h 12.1 km
270 K 9.0 h 128 km 14.6 h 46 km 19.4 h 25 km 9.9 h 104 km 17.9 h 30 km 28.6 h 11.7 km

Between individual elements of the model space there are significant differences in
initial flattening and viscosity that are induced by initial rotational period, initial tem-
perature and grain size. Despite this fact, the models share common characteristics.
There is a trade-off between the achieved rotational period and the obtained flatten-
ing. In Figure 1 (bottom), the flattening becomes constant for all initial rotational
periods after ˜800 Myr suggesting that the shape is frozen. Flattening of the model
with τ0 = 12 hours is in very good agreement with the measurements. However, nei-
ther of the models despun into synchronous rotation – the corresponding rotational
periods never exceeded 25 hours. Moreover, at t > 800 Myr all the models dissipate
only a little energy (Q > 1000) and thus are unlikely to despin even if time intervals
longer than 1 Byr were investigated.

The trade-off is apparent also in Table 1 which represents a summary of our re-
sults. As the response of the models is monotonous in grain size, we present outputs
obtained only for the end-member values of d. For grain size d = 100 mm, the rota-
tional period varies between τ = 8.7 hours and τ = 19.4 hours and the final flattening
a − c ranges from 140 km to 25 km. In models with the smallest grain size, viscosity
η drops to a value of 1012 Pa s (cf. Figure 1). As a result, the interior is more dissi-
pative and larger rotational periods are achieved (τ = 28.6 hours for the model with
τ0 = 15 hours and T0 = 270 K), but, at the same time, the strength of the lithosphere
is decreased and the obtained flattening is small (a − c ˜ 12 km for the models with
τ0 = 15 hours). Still, the rotational periods obtained for the smallest grain size are
much smaller than the present-day period of 79.33 days.

4. C o n c l u s i o n s

Successful despining of Iapetus requires a relatively low value of quality factor Q.
Such a value can only be obtained for very low values of viscosity, corresponding
to high temperatures and/or small grain sizes. In turn, viscosity is the parameter
controlling the thermal evolution of the interior: if the viscosity is too low, the body
cools quickly and its temperature decreases. This leads to an increase of Q and a less
efficient despinning. To predict a correct final rotational period, the cooling must be
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rather slow to keep the body warm and dissipative for sufficiently long time, and, at
the same time, the viscosity must be large enough for the flattening to be preserved.

In all the models we have investigated, the heat transfer is mainly convective. More
importantly, due to high initial temperatures, the convection is very vigorous in the
early stage which leads to a fast cooling of the interior. As a consequence, the de-
spinning is quickly suppressed and the rotational period is locked at a value that is
much smaller than that observed at present. The question is whether low initial tem-
peratures could give more promising results. Figure 1 suggests that for temperatures
smaller than 180 K, Iapetus would cool by pure conduction. This temperature cor-
responds to viscosity 1017 Pa s which is considered to be a limit value for the onset
of convection. However, such a value of viscosity would provide sufficiently small
values of Q only for rotational periods that are significantly larger than the period of
16 hours corresponding to the present day flattening.

In contrast to the previous studies by Castillo-Rogez et al. [2007] and Robuchon et
al. [2010], which used simplified cooling models or strongly simplified rheology, our
results suggest that the despinning of Iapetus could not occur only due to tidal dis-
sipation. Gravitational interaction with an external body or collision with a mid-size
(R > 50 km) body was thus necessary to slow down, at least partially, the spin rate of
Iapetus. Once the rotational period increased above certain limit, the despinning due
to tidal forces became efficient even for low internal temperature which eventually
led to the synchronous rotation of Iapetus that we observe today.
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