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GENERALIZED SCHAUDER FRAMES

S.K. Kaushik and Shalu Sharma

Abstract. Schauder frames were introduced by Han and Larson [9] and
further studied by Casazza, Dilworth, Odell, Schlumprecht and Zsak [2]. In this
paper, we have introduced approximative Schauder frames as a generalization
of Schauder frames and a characterization for approximative Schauder frames
in Banach spaces in terms of sequence of non-zero endomorphism of finite rank
has been given. Further, weak* and weak approximative Schauder frames in
Banach spaces have been defined. Finally, it has been proved that E has a weak
approximative Schauder frame if and only if E∗ has a weak* approximative
Schauder frame.

1. Introduction

Dennis Gabor [8] in 1946 introduced a fundamental approach to signal decom-
position in terms of elementary signals. While addressing some deep problems in
non-harmonic Fourier series, Duffin and Schaeffer [6] in 1952 abstracted Gabor’s
method to define frames for Hilbert spaces. Later, in 1986, Daubechies, Grossmann
and Meyer [5] found new applications to wavelet and Gabor transforms in which
frames played an important role.

Frames are generalizations of orthnormal bases in Hilbert spaces. The main
property of frames which makes them useful is their redundancy. Representation of
signals using frames is advantageous over basis expansions in a variety of practical
applications. Many properties of frames make them useful in various applications
in mathematics, science and engineering. In particular, frames are widely used in
sampling theory, wavelet theory, wireless communication, signal processing, image
processing, differential equations, filter banks, geophysics, quantum computing,
wireless sensor network, multiple-antenna code design and many more. The reason
for such wide applications is that frames provide both great liberties in design of
vector space decompositions, as well as quantitative measure on computability and
robustness of the corresponding reconstructions. For a nice and comprehensive
survey on various types of frames, one may refer to [1, 4] and the references therein.

The notion of frames has been extended to Banach spaces by Feichtinger and
Grochenig [7]. They introduced the notion of atomic decomposition for Banach
spaces. Another notion called Banach frames for Banach spaces was introduced by
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Grochenig. Casazza, Han and Larson [3] carried out a study of atomic decomposi-
tions and Banach frames. Schauder frames for Banach spaces were introduced by
Han and Larson [9] and were further studied in [10, 11, 12, 14].

Recently, sparsity has become a key concept in various areas of applied ma-
thematics and engineering. Sparse signal processing methodologies explore the
fundamental fact that many types of signals can be represented by only a few
non-zero coefficients when choosing a suitable basis or, more generally, a frame. In
this paper, we introduce a generalization of a Schauder frame called approximative
Schauder frame which has sparsity in its nature in the sense that it can be charac-
terized by a sequence of non-zero endomorphisms of finite rank (Theorem 3.6). A
necessary and sufficient condition for approximative Schauder frames in Banach
spaces is given. Commuting approximative Schauder frames in Banach spaces
has been defined. A sufficient condition for shrinking commuting approximative
Schauder frame has been proved. Weak* and weak approximative Schauder frames
in Banach spaces have been defined. Finally it is shown that E has a weak approxi-
mative Schauder frames if and only if E∗ has a weak* approximative Schauder
frame.

2. Preliminaries

Throughout this paper E denotes an infinite dimensional Banach space over the
scalar field K (R or C) and E∗ denotes the conjugate space of E. For a sequence
{xn} ⊂ E and {fn} ⊂ E∗, [xn] denotes the closure of linear span of {xn} in the
norm toplogy of E and [f̃n] the closure of {fn} in σ (E∗, E) topology.

Definition 2.1 ([9]). Let E be a Banach space and let {xn} be a sequence in E
and {fn} be sequence in E∗. Then the pair ({xn}, {fn}) is called a Schauder frame
for E if

x =
∞∑
n=1

fn(x)xn , for all x ∈ E .

Definition 2.2 ([13]). A Banach space E is said to have bounded approximation
property if there exists λ ≥ 1 such that the identity operator IE : E → E can
be approximated, uniformly on every compact subset of E, by linear operators
of finite rank, of norm ≤ λ, that is, if there exists a constant λ ≥ 1 with the
property: for every compact subset Q ⊂ E and for every ε > 0 there exists an
endomorphism u = uQ,ε ∈ L(E,E) of finite rank, of norm ‖u‖ ≤ λ, such that
‖u(x)− x‖ < ε (x ∈ Q).

Definition 2.3 ([13]). A Banach space E is said to have a λ duality approximation
property, if for every ε > 0 and every pair of finite dimensional subspaces G of E
and Γ of E∗, there exists an endomorphism u ∈ L(E,E) of finite rank such that

‖u(y)− y‖ < ε ‖y‖ , (y ∈ G)
‖u∗(h)− h‖ < ε ‖h‖ , (h ∈ Γ)

‖u‖ < λ .
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3. Approximative Schauder frames

We begin with the following definition of approximative Schauder frames.

Definition 3.1. Let E be a Banach space, {xn} ⊂ E and {hn,i} i=1,2,...,mn
n∈N

⊂
E∗, where {mn} is an increasing sequence of positive integers. Then the pair(
{xn}, {hn,i} i=1,2,...,mn

n∈N

)
is called an approximative Schauder frame for E if

x = lim
n→∞

mn∑
i=1

hn,i(x)xi for all x ∈ E .

The following is an example of an approximative Schauder frame.

Example 3.2. Let E = l1. Let {en} be the sequence of unit vectors in E. Define
{xn} ⊂ E, and {fn} ⊂ E∗ by

x1 = e1

2 , x2 = e1

2 , xn = en−1 , n = 3, 4, . . .

f1(x) = ξ1 , f2(x) = ξ1 , fn(x) = ξn−1 , n ≥ 3 , x = {ξn} ∈ E .

Now, define {hn,i}i=1,2,...,n ⊂ E∗ by

h1,1 = f1 , h2,1 = f2 , h2,2 = f2 , hn,i = fi , i = 3, 4, . . . .

Note that

lim
n→∞

n∑
i=1

hn,i(x)ei = lim
n→∞

n∑
i=1

fi(x)ei = x , x ∈ E .

Hence ({xn}, {hn,i}i=1,2,...,n) is an approximative Schauder frame for E.

Remark 3.3.

(1) Every Schauder frame is an approximative Schauder frame. Indeed, let
({xn}, {fn}) be a Schauder frame for E. Put hn,i = fi, i = 1, 2, . . . , n;
n ∈ N. Then ({xn}, {hn,i} i=1,2,...,mn

n∈N
) is an approximative Schauder frame

for E as

lim
n→∞

n∑
i=1

hn,i(x)xi = lim
n→∞

n∑
i=1

fi(x)xi = x , x ∈ E .

(2) An approximative Schauder frame may not be a Schauder frame.

Next, we give an example of approximative Schauder frame which is not a
Schauder frame.

Example 3.4. Let E = c0, {en} be the sequence of unit vectors in E and {fn}
be the sequence of standard unit vectors in E∗. Then, ({en}, {fn}) is a Schauder
frame for E. Define {hn,i}i=1,2,...,n ⊂ E∗ by

hn,i = fi , i = 1, 2, . . . , n, n ∈ N .
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Note that

lim
n→∞

n∑
i=1

hn,i(x)ei = lim
n→∞

n∑
i=1

fi(x)ei = x, x ∈ E .

Hence ({en}, {hn,i}i=1,2,...,n) is an approximative Schauder frame for E but not a
Schauder frame for E. Indeed, if we let x = {ξn} ∈ E. Then

h1,1(x)e1 + h2,1(x)e2 + h2,2(x)e3 + h3,1(x)e4 + h3,2(x)e5 + h3,3(x)e6 + . . .

= ξ1e1 + ξ1e2 + . . .

= (ξ1, ξ1, ξ2, ξ1, . . . )

6= x .

In the following example, we construct an approximative Schauder frame for
`2(N) from a sequence which is not a frame for `2(N).

Example 3.5. Let H = `2(N) and {en} be the sequence of standard unit vectors
in H. The sequence {xn} ∈ H defined by xn = en

n
, n ∈ N, is not a frame for H but

there exist a sequence {hn,i} i=1,2,...,n
n∈N

∈ H such that ({xn}, {hn,i} i=1,2,...,n
n∈N

) is an
approximative Schauder frame for H. In fact, if we take hn,i = iei, i = 1, 2, . . . , n;
n ∈ N, then

lim
n→∞

n∑
i=1

hn,i(x)xi = lim
n→∞

n∑
i=1

i ei(x)ei
i

= x , x ∈ H .

Further, one may note that ({xn}, {hn,i} i=1,2,...,n
n∈N

) is not even a Schauder frame
for H.

Next, we give a characterization of an approximative Schauder frame in terms
of a sequence of non zero endomorphisms of finite rank.

Theorem 3.6. A Banach space E has an approximative Schauder frame if and
only if there exists a sequence {vn} ⊂ B(E) of non zero endomorphisms of finite
rank such that x =

∑∞
i=1 vi(x), x ∈ E and sup ‖

∑n
i=1 vi‖ ≤ λ, for some λ > 0.

Proof. Let {xn} ∈ E and {hn,i} ∈ E∗ be the sequences such that(
{xn}, {hn,i} i=1,2,...,mn

n∈N

)
is an approximative Schauder frame for E where {mn} is

an increasing sequence of positive integers. Define

un(x) =
mn∑
i=1

hn,i(x)xi , x ∈ E , n ∈ N .

Then for each n ∈ N, un is a well defined continuous linear mapping on E with
dim un(E) < ∞ such that lim

n→∞
un(x) = x, x ∈ E. Also by using the principle

of uniform boundedness, sup
1≤n<∞

‖un‖ < ∞. Without loss of generality we may
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assume that u1 6= 0 and un 6= un+1 for all n ∈ N. Define v1 = u1, v2n = v2n+1 =
1
2 (un+1 − un), for all n ∈ N.

Then {vn} is a sequence of non zero endomorphism of finite rank in B(E) such
that

n∑
i=1

vi(x) = u1(x) + 1
2{(u2(x)− u1(x)) + (u2(x)− u1(x))}

+ 1
2
{

(u3(x)− u2(x)) + (u3(x)− u2(x))
}

+ . . .

= un(x) , x ∈ E .

Therefore, we have

lim
n→∞

n∑
i=1

vi(x) = lim
n→∞

un(x) = x , x ∈ E .

Also

sup
1≤n<∞

∥∥ n∑
i=1

vi
∥∥ = sup

1≤n<∞
‖un‖ <∞ .

Conversely, taking un =
n∑
i=1

vi, n ∈ N, we have lim
n→∞

un(x) = x, x ∈ E. Since for

each n ∈ N, un(E) is finite dimensional, there exists a sequence {yn,i}mni=mn−1+1 in
E and a total sequence {gn,i}mni=mn−1+1 in E∗ such that

un(x) =
mn∑

i=mn−1+1
gn,i(x)yn,i , x ∈ E , n ∈ N ,

where {mn} is an increasing sequence of positive integers with m0 = 0. Define
{xn} ∈ E and {hn,i} ∈ E∗ by

xi = yn,i, i = mn−1 + 1, . . . ,mn , n ∈ N

and

hn,i =
{

0, if i = 1, 2, . . . ,mn−1;
gn,i if i = mn−1 + 1, . . . ,mn.

Then, for each x ∈ E and n ∈ N,

lim
n→∞

mn∑
i=1

hn,i(x)xi = lim
n→∞

un(x) = x .

Hence
(
{xn}, {hn,i} i=1,2,...,mn

n∈N

)
is an approximative Schauder frame for E. �

Remark 3.7. For the converse of the above result we do not require the assumption
sup

∥∥ n∑
i=1

vi
∥∥ <∞.

Now, in view of the Theorem 3.6 we give definition for approximative Schauder
frame of operators and λ approximative frame of operators of a Banach space E.
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Definition 3.8. A sequence of finite rank endomorphisms {un} ⊂ L(E,E) is
called an approximative Schauder frame of operators of Banach space E, if

x = lim
n→∞

un(x) , x ∈ E .

If sup
1≤n<∞

‖un‖ ≤ λ, we say {un} is a λ-approximative Schauder frame(of opera-

tors) of E.
The following result gives a relation between λ duality approximation property

and λ- approximative Schauder frame.
Theorem 3.9. Let E be a Banach space such that E∗ is separabel. Let λ ≥ 1. Then
E has the λ-duality approximation property if and only if E has a λ-approximative
Schauder frame {un}n∈N satisfying

f = lim
n∈N

u∗n(f) , f ∈ E∗ .

Proof. Assume that E has λ-duality approximation property. Let {yn} ⊂ E and
{hn} ⊂ E∗ be dense sequences, Gn = [y1, y2, . . . , yn] and Γn = [h1, h2, . . . , hn].
Then by λ-duality approximation property, for each n ∈ N there exists a finite rank
endomorphism {un} ∈ B(E) such that

‖un(x)− x‖ ≤ 1
n
‖x‖ , (x ∈ Gn, n = 1, 2, . . . )

‖u∗n(f)− f‖ ≤ 1
n
‖f‖ , (f ∈ Γn, n = 1, 2, . . . )

‖un‖ ≤ λ , (n = 1, 2, . . . )
since Gn ⊂ Gn+1, Γn ⊂ Γn+1 and ‖un‖ ≤ λ, n ∈ N, it follows that

lim
n→∞

un(x) = x , x ∈ E and f = lim
n→∞

u∗n(f), f ∈ E∗

Conversely, let E has a λ-approximative Schauder frame satisfying
f = lim

n→∞
u∗n(f) , f ∈ E∗ .

So, there exists a sequence of endomorphism {un} ∈ L(E,E) of finite rank such
that

lim
n→∞

un(x) = x , x ∈ E

‖un‖ < λ .

This implies that E has λ-duality approximation property. �

Definition 3.10. Let E be a Banach space. A sequence of non zero endomorphisms
{un} ⊂ L(E,E) is called a commuting λ- approximative Schauder frame for Banach
space E if it is a λ- approximative Schauder frame satisfying

uiuj = ujui = ui, (i < j)
Next, we give a sufficient condition for shrinking commuting approximative

Schauder frame.
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Theorem 3.11. Let E be a Banach space such that E∗ is separable and let E
has λ-duality approximation property for some λ ≥ 1. Then E has a shrinking
commuting approximating Schauder frame {vn}n∈N (i.e. such that {v∗n}n∈N is a
commuting approximative Schauder frame of E∗).

Proof. Let 0 < εn < 1, lim
n→∞

εn = 0 and let {yn} be a dense sequence in E. For
any f ∈ E∗, the subspaces G1 = [y1] of E, Γ1 = [f ] of E∗ and for ε1 there exists
an operator v1 ∈ L(E,E) of finite rank, such that

v1|G1 = IG1 , v∗1 |Γ1 = IΓ1 , ‖v1‖ ≤ λ+ ε1 .

For G2 = [v1(E)
⋃
{y2}], Γ2 = v∗1(E∗) and ε2 there exists v2 ∈ L(E,E) of finite

rank, such that

v2|G2 = IG2 , v∗2 |Γ2 = IΓ2 , ‖v2‖ ≤ λ+ ε2 .

Taking G3 = [v2(E)
⋃
{y3}], Γ3 = v∗2(E∗) and ε3 and continuing in this way

indefinitely we obtain two sequences of subspaces {Gn}, {Γn} and a sequence of
endomorphisms {vn} ⊂ L(E,E) of finite rank. Now for each y ∈ Gn we have
y = vn(y) ∈ vn(E) and

G1 ⊂ v1(E) ⊂ G2 ⊂ v2(E) ⊂ G3 . . .

Therefore, vi(E) ⊂ Gj for all i < j. Hence, we have

vjvi(x) = vi(x) , (i < j, x ∈ E) ,

i.e. vjvi = vi , (i < j) .

Similarly we have Γn ⊂ v∗n (E∗) = Γn+1 (n = 1, 2, . . . )

v∗j v
∗
i = v∗i , (i < j) .

Now

f (vivj(x)) = v∗j v
∗
i (f)(x) = v∗i (f)(x) = f (vi(x)) , x ∈ E , f ∈ E∗ , i < j

vivj(x) = vi(x) , (x ∈ E, i < j) .

Thus, we have
vivj = vjvi = vi , (i < j) .

Also

v∗i v
∗
j (f)(x) = f (vjvi) (x) = f (vi(x)) = v∗i (f)(x) ,

v∗i v
∗
j = v∗i .

Thus, we have
v∗i v
∗
j = v∗i = v∗j v

∗
i , (i < j) .

Further,
⋃
n
vn(E) = E and so for any arbitrary y ∈

⋃
n
vn(E), lim

n
vn(y) = y, for all

∈ E which proves the result. �

In view of the above theorem we have the following corollary.
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Corollary 3.12. Let E be a Banach space. If E∗ is separable and has bounded
approximation property, then E has a shrinking commuting approximative Schauder
frame.

4. Weak* approximative Schauder frames

Definition 4.1. Let E be a Banach space. A sequence of finite rank endomorphisms
{u∗n} ∈ L(E∗, E∗) is said to be a weak* approximative Schauder frame for E∗ if it
satisfies

f(x) = lim
n→∞

u∗n(f)(x) , (x ∈ E, f ∈ E∗) .

If sup
1≤n<∞

‖u∗n‖ ≤ λ, we say {u∗n} is a weak* λ-approximative Schauder frame (of

operators) of E.

Next, we give a characterization of weak* approximative Schauder frame.

Theorem 4.2. A separable Banach space E has an approximative Schauder frame
if and only if E∗ has a weak* approximative Schauder frame.

Proof. Let {v∗n} ∈ L(E∗, E∗) be a weak* approximative Schauder frame for E∗.
Then sup

1≤n<∞
‖v∗n‖ ≤ λ <∞ and for each finite dimensional subspace Γ of E∗ and

n ∈ N there exists a finite rank operator tΓ, 1
n

on E such that

t∗Γ, 1
n

= v∗n(h) , (h ∈ Γ)

∥∥tΓ, 1
n

∥∥ ≤ λ+ 1 .

Now, let D be the directed set of all pairs
(
Γ, 1

n

)
where Γ is a finite dimensional

subspace of E∗ and n ∈ N and where
(
Γ1,

1
n1

)
≥
(
Γ2,

1
n2

)
if and only if Γ1 ⊃ Γ2

and 1
n1
≤ 1

n2
. Furthermore, for each d =

(
Γ, 1

n

)
∈ D let td ∈ L(E,E) be a finite

rank endomorphism such that

‖t∗d(h)− h‖ ≤ ε ‖h‖ , (h ∈ Γ)

and

‖td‖ ≤ λ .

If f ∈ E∗ and ε > 0, then putting d0 =
(
[f ] , 1

n

)
it follows that

‖t∗d(f)− f‖ ≤ ε ‖f‖ , (d ≥ d0) .

Hence

lim
d∈D

t∗d(f) = f , (f ∈ E∗)

and

‖td‖ ≤ λ .
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Then, we have
lim
d∈D

f (td(x)) = lim
d∈D

t∗d(f)(x) = f(x) , (x ∈ E, f ∈ E∗)

this implies
td(x) w→ x , (x ∈ E) .

Let {yn} be a dense sequence in E. Then we have sequences {dn} ⊂ D and {mn} ⊂
N with m1 < m2 < . . . and for each n, nonnegative numbers αmn−1+1, . . . αmn
with

∑mn
i=mn−1+1 αi = 1 such that∥∥∥ mn∑
i=mn−1+1

αitdi(yj)− yj
∥∥∥ < 1

n
(j = 1, 2, . . . n;n = 1, 2, . . . ) .

Then for the finite rank operators,

un =
mn∑

i=mn−1+1
αitdi

we have

lim
n→∞

un(yj) =
mn∑

i=mn−1+1
αitdi(yj) = yj , (j = 1, 2, . . . )

and

‖un‖ ≤
mn∑

i=mn−1+1
αi ‖tdi‖ ≤ λ+ 1 (n = 1, 2, . . . ) .

This implies lim
n→∞

un(x) = x, x ∈ E. So {un} is an approximative Schauder frame
for E.
Conversely, assume that {un} ⊂ L(E,E) be an approximative Schauder frame for
E. Then

lim
n→∞

un(x) = x , x ∈ E .

Now, we have
f(x) = lim

n→∞
f (un(x)) = lim

n→∞
u∗n(f)(x) , (x ∈ E, f ∈ E∗)

this implies {u∗n} is a weak* approximative Schauder frame. �

5. Weak approximative Schauder frames

Definition 5.1. Let E be a Banach space. A sequence of finite rank endomorphisms
{un} ∈ L(E,E) is said to be a weak approximative Schauder frame for E if it
satisfies

f(x) = lim
n→∞

f (un(x)) , (x ∈ E, f ∈ E∗) .

If here sup
1≤n<∞

‖un‖ ≤ λ, we say {un} is a weak λ-approximative Schauder frame

(of operators) of E.

Next, we give a characterization of weak approximative Schauder frame.
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Theorem 5.2. A separable Banach space E has a weak approximative Schauder
frame if and only if E∗ has a weak* approximative Schauder frame.

Proof. Assume that {u∗n} is a weak* λ- approximative Schauder frame for E∗.
Then for each finite dimensional subspace Γ of E∗ and n ∈ N there exists a finite
rank operator tΓ, 1

n
on E such that

t∗Γ, 1
n

= u∗n(h) (h ∈ Γ)∥∥tΓ, 1
n

∥∥ ≤ λ+ 1 .

Now, let A be the directed set of all pairs
(
Γ, 1

n

)
where Γ is a finite dimensional

subspace of E∗ and n ∈ N and where
(
Γ1,

1
n1

)
≥
(
Γ2,

1
n2

)
if and only if Γ1 ⊃ Γ2

and 1
n1
≤ 1

n2
. Furthermore, for each α =

(
Γ, 1

n

)
∈ A, tα ∈ L(E,E) be a finite rank

endomorphism. Let x ∈ E, f ∈ E∗ and ε > 0 be arbitrary. Then by definition of
weak∗ Schauder frame there exist n0 ∈ N such that

|u∗n(f)(x)− f(x)| < ε (n ≥ n0) .
Putting α0 =

(
[f ] , 1

n0

)
∈ A and using above inequality, we have

|f (tα(x))− f(x)| = |t∗α(f)(x)− u∗n(f)(x) + u∗n(f)(x)− f(x)|
≤ |t∗α(f)(x)− u∗n(f)(x)|+ |u∗n(f)(x)− f(x)|
= |u∗n(f)(x)− f(x)|
< ε , (α ≥ α0) .

This implies lim
α
f (tα(x)) = f(x), x ∈ E, f ∈ E∗. Hence E has a weak approxima-

tive schauder frame.
Conversely, assume that E has a weak approximative Schauder frame. Then we
have

lim
n→∞

f (un(x)) = f(x) , x ∈ E, f ∈ E∗ .

Now,
f(x) = lim

n→∞
f (un(x)) = lim

n→∞
u∗n(f)(x) .

This implies {u∗n} is a weak* approximative Schauder frame. �
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