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KYB ERNET IK A — VO LUME 5 0 ( 2 0 1 4 ) , NUMBER 1 , PAGES 1 9 – 3 1

SWEEP COVERAGE OF DISCRETE TIME MULTI-ROBOT
NETWORKS WITH GENERAL TOPOLOGIES

Chao Zhai

This paper addresses a sweep coverage problem of multi-robot networks with general topolo-
gies. To deal with environmental uncertainties, we present discrete time sweep coverage algo-
rithms to guarantee the complete coverage of the given region by sweeping in parallel with
workload partition. Moreover, the error between actual coverage time and the optimal time is
estimated with the aid of continuous time results. Finally, numerical simulation is conducted
to verify the theoretical results.
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Classification: 93E12, 62A10

1. INTRODUCTION

Multi-robot networks and control have received increasingly attention in a wide variety
of applications, which play an important role in distributed collection and control infor-
mation. Distributed design with advantages such as low cost, reliability, and flexibility
provides a feasible way to deploy a large number of networked robots over a region of
interest to achieve desired collective tasks. In practice, robots are usually equipped with
various sensors. Since a single robot may be difficult to complete the task due to its
limited capacities, a group of robots (or viewed as a mobile sensor network) are usu-
ally teamed up to complete the tasks by communicating and coordinating their actions
through network. Various coordination tasks and algorithms for multiple robots have
been reported [6, 10, 15, 17].

Cooperative coverage problems of multiple robots have drawn much attention to the
researchers in recent years, particularly for robotic networks [8, 11]. There are various
dynamic coverage types including barrier coverage, sweep coverage, and blanket cover-
age [4]. Different from the set containment to drive the agents to a give set [13, 14], the
coverage problem is to design multi-robot motion within a given region. Compared with
the static coverage [1, 3], where the Voronoi partition was adopted with the locational
cost function as an index to optimize sensor locations, dynamic coverage is considered to
allow robots move around to cover the region of interest. Sweep coverage as a dynamic
coverage problem is to make a group of robots with sensing capability move across the
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given region to detect targets of interest or complete workload on the area. It is difficult
in that all the robots have to cooperate in order to optimize the operation time. [2] pro-
posed a formation-based sweep coverage strategy. Additionally, [16] proposed a sweep
coverage algorithm for the rectangular region based on the nearest neighbor’s informa-
tion. However, many problems of the sweep coverage with environmental uncertainties
in any bounded region remain to be solved.

The objective of this paper is to investigate the practical implementation of sweep
coverage algorithm in the uncertain environment for multi-robot networks with general
communication topologies. Although the parameter uncertainty in the environment was
studied based on adaptive control to learn environment information online in [11, 12],
we consider bounded uncertainties and cannot apply adaptive technique here. Because
of those uncertainties, we cannot give a fixed formation-based coverage strategy in ad-
vance. Instead, we have to deal with the uncertainty when we carry out the coverage
control. Thus, we propose a decentralized sweep coverage algorithm with two com-
bined operations: partition (to handle the uncertainties) and sweep (to complete the
coverage). Here a decentralized control technique is adopted to deal with the unknown
dynamical environment. Although it is impossible to achieve sweep coverage of the given
region with optimal operation time due to the uncertainty, we give the estimation on
the difference between the actual coverage time and the optimal time.

The rest of the paper is organized as follows. A discrete time formulation of sweep
coverage in uncertain environment is presented in section 2. Then, a decentralized sweep
coverage algorithm and the estimation of the extra time are shown in section 3, followed
by simulation results in section 4. Finally, conclusions are given in the last section.

2. PROBLEM FORMULATION

In this paper, we consider the practical implementation of sweep coverage algorithm for
multi-robot networks in uncertain environment.

To increase the effectiveness in the coverage control, the whole region is divided into
several subregions, and each robot is responsible for completing workload (such as dust
on the floor) on its own subregion. If there is no uncertainty and workload distribution
can be known for all the robots in advance, the optimal strategy to complete the coverage
can be carried out by partitioning the whole region into subregions with equal workload
for each robot, where the sweeping task can be completed in the shortest time without
regard to the shape of subregions. Unfortunately, limited sensing range of each robot
and unknown workload distribution make it impossible to get average workload on the
whole region for each robot at each moment.

Consider a rectangular region D with width la and length lb (see Figure 1, and only
3 robots are deployed in the plot.). All the robots line up at the left boundary of D, and
they will move to the right boundary by sweeping all the rectangular region. Notice that
the actuation range of each robot is d, so when it sweeps when it moves, it will clean
up a stripe with width d. Thus, the whole region is partitioned into stripes with length
la and width d, and the robots sweep these stripes one by one to complete the whole
region coverage. For convenience, we assume lb = qd for some integer q. To shorten
the whole time for coverage, each stripe is partitioned into sub-stripes for each robot so
that each robot has the same workload. Then each robot sweeps its own sub-stripe and
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Fig. 1. Sweep coverage of multiple robots in region D.

simultaneously partitions the next stripes for sweep.
The workload distribution on D is denoted by ρ(x, y), which is continuous and always

larger than 0 on D. With respect to ρ(x, y), we have the following assumption [16].

Assumption 1. There exist positive constants ρ and ρ̄ such that

ρ ≤ ρ(x, y) ≤ ρ̄.

For simplicity, suppose the first stripe has been partitioned into sub-stripes with equal
workload for each agent. Moreover, each robot has the same sweeping rate ν. Obviously,
the completion time of sweeping each sub-stripe only depends on ν and workload on the
sub-stripe. In addition, each robot detects the workload around its position and gets the
workload information of its neighbors on the next stripe. When each robot sweeps its
own sub-stripe, the partition on the next stripe is conducted according to the proposed
partition algorithm. Once all the robots finish sweeping their own sub-stripes, partition
operation stops. Then, all the robots move to the newly partitioned stripes and repeat
previous operations until the whole sweeping task is completed.

Naturally, the workload on the ith sub-stripe of a stripe (say Ak) is given by

mk
i =

∫ xk
i

xk
i−1

ωk(τ) dτ

where ωk(τ) =
∫ yk

yk−1
ρ(τ, y) dy with y0 = 0, yq = lb and yk = yk−1+d, 1 ≤ k ≤ q. Clearly,
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xk
i−1 and xk

i are vertical positions of partition marks i−1 and i on Ak, respectively (where
i ∈ En = {1, 2, . . . , n}, xk

0 = 0 and xk
n = la).

The discrete time dynamics on Ak for partition mark i is given as follows

xk
i (zTs + Ts)− xk

i (zTs)
Ts

= ui(zTs), i = 1, . . . , n− 1 (1)

where Ts denotes the sampling period, z ∈ N+, and ui(zTs) is the partition control
input as follows

ui(zTs) = κ
∑
j∈Ni

(mk
j (zTs)−mk

i (zTs)). (2)

Here, κ > 0 is a given constant and Ni represents the neighbor set of robot i. For
simplicity of notation, Ts in brackets is omitted when no confusion is caused. Moreover,
Figure 2 describes the implementation of discrete time sweep coverage algorithm for ith
robot.

3. MAIN RESULTS

In this section, we give the theoretical analysis for the proposed sweep coverage algo-
rithm. The basic idea is to estimate the extra time for the discrete time sweep coverage
algorithm with the help of the continuous time model and some numerical methods since
it is difficult to investigate the discrete time model directly (see Figure 3). Here, the
extra time denotes the error between actual coverage time and optimal coverage time.
The discrete time model can be obtained by discretizing the continuous time model with
numerical methods such as Euler method. Moreover, the truncation error caused by the
discretization can be easily estimated. Then we can get the upper bound of the extra
time for the discrete time model by using the error and results in continuous time model.
First of all, the workload partition algorithm for robot i on each stripe is presented as
follows: each robot collects the workload information on neighbors’sub-stripes; and all
the robots update the position of partition mark i with (1) and (2). Combining (1) and
(2), we get the following dynamics of the partition marks:

xk
i (z + 1)− xk

i (z)
Ts

= κ
∑
j∈Ni

(mk
j (z)−mk

i (z)), i = 1, . . . , n− 1. (3)

Clearly, as the sampling period Ts tends to 0, we get the continuous time partition
dynamics of mark i

ẋk
i = κ

∑
j∈Ni

(mk
j −mk

i ), i = 1, . . . , n− 1. (4)

Notice that the time derivative of mk
i along (4) can be expressed as

ṁk
i = ωk(xk

i )ẋk
i − ωk(xk

i−1)ẋ
k
i−1, i ∈ En. (5)
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Fig. 2. Flow diagram of discrete time sweep coverage algorithm.
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Fig. 3. Schematic illustration on the acquisition of extra time for

the discrete time coverage algorithm.

Rewrite the above set of equations in matrix form as follows.

ṁk =



σ1 0 . . 0 0
−σ1 σ2 . . 0 0
0 −σ2 . . 0 0
. . . . . .
. . . . . .
0 0 . . −σn−2 σn−1

0 0 . . 0 −σn−1


ẋk

where xk = (xk
1 , xk

2 , . . . , xk
n−1)

T , mk = (mk
1 ,mk

2 , . . . ,mk
n)T and σi = ωk(xk

i ) > 0.
According to (4), the dynamics (5) can be converted to the following “linear” system

with the state mk as follows.

ṁk
1 = −κs1σ1m

k
1 + κσ1

∑
j∈N1

mk
j

ṁk
2 = −κs2σ2m

k
2 + κs1σ1m

k
1 − κσ1

∑
j∈N1

mk
j + κσ2

∑
j∈N2

mk
j

...

ṁk
n−1 = −κsn−1σn−1m

k
n−1+κsn−2σn−2m

k
n−2−κσn−2

∑
j∈Nn−2

mk
j +κσn−1

∑
j∈Nn−1

mk
j

ṁk
n = κsn−1σn−1m

k
n−1 − κσn−1

∑
j∈Nn−1

mk
j

(6)

where si denotes the number of robots in the neighbor set of robot i. Similarly, we
rewrite the above equations in a compact form.

ṁk = −κPmk (7)

where P is time-varying matrix based on xk. Therefore, we will focus on the consensus
problem of the time-varying system (7).

Clearly, the dynamical equation (7) can be viewed as a linear time-varying system
since the elements of P depending on linear combination of σi that is related to xk

i are
time-varying. As for P , we have the following result.
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Lemma 3.1.
P1 = PT 1 = 0

where 1 = (1, 1, . . . , 1)T ∈ Rn and 0 denotes the zero vector with n elements.

P r o o f . Take mk = 1 and it follows from (6) and (7) that −κP1 = 0. Since κ > 0,
P1 = 0. Note that PT 1 = 0 means the sum of elements in each column of P is
0. Without loss of generality, we consider the sum of elements in the jth column of
P = [pij ]. Let N~j represent the set of robots, which have the common neighbor, robot
j. According to (6), we have

n∑
i=1

pij = −sjσj + sjσj +
∑
i∈N~j

(σi − σi) = 0

for 1 ≤ j < n, and
n∑

i=1

pij =
∑
i∈N~j

(σi − σi) = 0

for j = n. Thus, the proof is completed. �

Denote Pu = P+P T

2 , and 0 is the eigenvalue of the symmetric matrix Pu with the
associated eigenvector 1, since Pu1 = 1

2 (P1 + PT 1) = 0. Then we label n eigenvalues
of Pu according to increasing order:

0 = λ1(Pu) ≤ λ2(Pu) ≤ . . . ≤ λn−1(Pu) ≤ λn(Pu).

Here we propose another assumption:

Assumption 2. λ2(Pu) > 0.

Remark 3.2. The above assumption is not so restrictive, which is related to the con-
nectivity (depending on the workload). If we select ui = κ(mk

i+1 − mk
i ) as the control

input, the assumption holds immediately. Actually, The interconnection graph of robots
in [16] is a directed chain, and the corresponding matrix Pu can be expressed as

σ1 −σ1 . . 0 0
−σ1 σ1 + σ2 . . 0 0

. . . . . .

. . . . . .
0 0 . . σn−2 + σn−1 −σn−1

0 0 . . −σn−1 σn−1

 .

Clearly, Pu has only one zero eigenvalue with the eigenvector 1, since rank(Pu)= n− 1.
Furthermore, all other eigenvalues of Pu expect for λ1(Pu) = 0 are larger than zero
according to Geršgorin disk theorem [7]. The assumption on λ2(Pu) > 0 is thus satisfied.
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Define
λ2 = min

xk∈∆n−1
λ2(Pu), ∆ = [0, la].

Next, we give the result related to workload partition in the uncertain region. The
following lemma provides the convergence analysis of workload partition algorithm on
the stripe Ak.

Lemma 3.3. Under Assumptions 1 and 2, the plane {mk ∈ Rn |mk
1 = mk

2 = . . . = mk
n}

of the dynamics (1) with control input (2) is exponentially stable.

P r o o f . To show the stability, we consider the change of variables δi = mk
i −m̄k, i ∈ En

and the following lower bounded function

Hk =
1
2

n∑
i=1

(mk
i − m̄k)2, m̄k =

1
n

∫ la

0

ωk(τ) dτ.

Thus, we have

Hk =
1
2

n∑
i=1

δ2
i =

1
2
‖ δ ‖2

where δ = (δ1, δ2, . . . , δn)T and ‖ · ‖ denotes the Euclidean norm. Since δ = mk − m̄k1,
Pδ = Pmk − m̄kP1 = Pmk according to Lemma 3.1. Moreover, δ̇ = ṁk = −κPmk =
−κPδ. The time derivative of Hk along the trajectories of (7) is given by

Ḣk = δT δ̇ = −κδT Pδ.

Due to
δT Pδ = δT PT δ =

1
2
δT (P + PT )δ = δT Puδ,

we get
Ḣk = −κδT Puδ.

Further, δT Puδ has the following property [7]

min
δ⊥1,δ 6=0

δT Puδ

‖ δ ‖2
= λ2(Pu) ≥ λ2.

Hence,
Ḣk = −κδT Puδ ≤ −κλ2 ‖ δ ‖2≤ −2κλ2Hk.

Solving the above differential equation yields

Hk(t) ≤ Hk(t0)e−2κλ2(t−t0), (8)

which implies the conclusion. �

Hk defined in Lemma 3.3 is used to measure the uniformity of workload partition on
Ak. Obviously, the smaller Hk is, the more well-proportioned workload partition we will
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get. In addition, Ha
k and Hb

k denote the uniformity of workload partition at initial and
final partition positions on Ak, respectively.

Note that the boundaries between sub-stripes on Ak are exactly the final positions
of the partition marks on the stripe. Clearly, the initial positions of partition marks on
Ak+1 is the final partition position, that is, the boundaries between sub-stripes on Ak,
respectively. Recalling Lemma 3.3 in [16], we can easily get the following lemma, and
the proof is thus omitted here.

Lemma 3.4. Ha
k+1 and Hb

k satisfy the following inequality

Ha
k+1 ≤ α2Hb

k + β
d2l2a
n

, (9)

where α = ρ̄
ρ and β = ρ̄4

ρ2 − ρ2.

Let xk(tz) and xk(z) denote the position vector of partition marks on stripe k (1 ≤ k ≤
q) at time tz in the continuous time formulation and discrete computation, respectively.
Then we have the following result.

Lemma 3.5. The global truncation error ek
z = xk(tz)− xk(z) on stripe k satisfies

‖ek
z‖ ≤

(n + 2)κρ̄dla
8

(γ − 1)Ts + γ‖ek
0‖

where γ = e
4(n−1)κd2ρ̄2la

ν .

P r o o f . In numerical computation, we adopt Euler method to implement the continu-
ous time partition algorithm, which can be rewritten as follows

ẋk
i = κ

∑
j∈Ni

(mk
j −mk

i ) = κ
∑
j∈Ni

(∫ xk
j

xk
j−1

ωk(τ) dτ −
∫ xk

i

xk
i−1

ωk(τ) dτ

)
= fi(t, xk), i = 1, 2, . . . , n− 1

with xk = (xk
1 , xk

2 , . . . , xk
n)T . From the mean value theorem, we have

fi(t, xk)− fi(t, xk∗) =
n∑

j=1

∂fi

∂xk
j

(ξj)(xk
j − xk∗

j ).

Therefore,

∣∣∣fi(t, xk)− fi(t, xk∗)
∣∣∣ =

∣∣∣∣∣∣
n∑

j=1

∂fi

∂xk
j

(ξj)(xk
j − xk∗

j )

∣∣∣∣∣∣
≤

n∑
j=1

∣∣∣∣∣ ∂fi

∂xk
j

(ξj)

∣∣∣∣∣ · ∣∣∣xk
j − xk∗

j

∣∣∣
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Define F k = (F k
ij)(n−1)×n and F k

ij = ∂fi

∂xk
j

(ξj). Then we get

‖f(t, xk)− f(t, xk∗)‖∞ = ‖F k(ξ)(xk − xk∗)‖∞ ≤ ‖F k‖∞ · ‖xk − xk∗‖∞ ≤ L‖xk − xk∗‖∞

where
f(t, xk) = (f1(t, xk), f2(t, xk), . . . , fn−1(t, xk))T

and

L = max
ξ

‖F k(ξ)‖∞ = max
ξ

{
max

i

n∑
l=1

∣∣∣ ∂fi

∂xk
l

(ξl)
∣∣∣} = 4(n− 1)κ max

ξ
ωk(ξ̄) = 4(n− 1)κdρ̄.

Then the local truncation error of xk
i is expressed as

di
z(Ts) =

1
2
T 2

s

dfi(t, xk(t))
dt

+ o(T 3
s ) =

1
2
T 2

s

dfi(t, xk(t))
dt

|t=t∗

where

dfi(t, xk(t))
dt

= κ
∑
j∈Ni

(ṁk
j − ṁk

i )

= κ
∑
j∈Ni

(ωk(xk
j )ẋk

j − ωk(xk
j−1)ẋ

k
j−1 − ωk(xk

i )ẋk
i + ωk(xk

i−1)ẋ
k
i−1)

≤ (n− 1)(n + 2)κ2ρ̄2d2la.

Hence,

‖dz(Ts)‖∞ ≤ (n− 1)(n + 2)κ2ρ̄2d2la
2

T 2
s

where dz(Ts) = (d1
z(Ts), d2

z(Ts), . . . , dn−1
z (Ts))T . Let D = (n−1)(n+2)κ2ρ̄2d2la

2 . Then, from
Theorem 4.4 in [5], we can conclude that the global truncation error ek

z = xk(tz)−xk(z)
on stripe k satisfies

‖ek
z‖ ≤

(n + 2)κρ̄dla
8

(γ − 1)Ts + γ‖ek
0‖

where γ = e
4(n−1)κd2ρ̄2la

ν . �

Remark 3.6. In the above lemma, we consider general network topologies, and the
bound holds for any communication interconnection between robots. For the certain
interconnection network, we can get the tighter bound.

Then, we give the key theoretical result in this paper.

Theorem 3.7. Suppose the Assumptions 1 and 2 hold and the initial stripe is parti-
tioned with equal workload. With the discrete time sweep coverage algorithm, the extra
time to sweep D spent more than the optimal coverage time is bounded by

∆T ≤ dla
ν

√
β

n

q−1∑
j=1

jαq−1−je−λ2κ(q−j)t +
(n + 2)κd2ρ̄2la

4ν
(
1− γq

1− γ
− q)Ts (10)

with t =
dρla
nν .
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P r o o f . Since robots sweep their respective sub-stripes simultaneously, the time of
completing sweeping the stripe depends on the sub-stripe with the most workload. Ob-
viously, optimal partition of the stripe leads to sub-stripes with equal workload. We
first estimate the difference between the most workload and average workload on the
subregion of each stripe. Then the extra time to sweep each stripe compared to the
optimal partition is calculated. Moreover, the error caused by the discretization is also
considered. Finally, we obtain the upper bound of the extra time of sweeping D with
the proposed discrete time sweep coverage algorithm. From (8) in Lemma 3.3, we have

Hk(t) ≤ Ha
k e−2λ2κt.

The time used to partition the stripe Ak+1 is exactly the time to sweep the stripe Ak,
which has the lower bound t =

dρla
nν . Therefore, we have

Hb
k+1 ≤ Hk+1(t) ≤ Ha

k+1e
−2λ2κt.

Substituting (9) in Lemma 3.4 into the above inequality, we get

Hb
k+1 ≤ (α2Hb

k + β
d2l2a
n

)e−2λ2κt. (11)

Thus, √
Hb

k+1 ≤ (α
√

Hb
k + dla

√
β

n
)e−λ2κt.

In addition, since there is no partition operation for the first stripe, ‖e1
z‖ = 0. Moreover,

we have ek+1
0 = ek

z from xk+1(t0) = xk(tz) and xk+1(0) = xk(z). Therefore, by Lemma
3.5 we get

‖e2
z‖ ≤

(n + 2)κρ̄dla
8

(γ − 1)Ts,

‖e3
z‖ ≤

(n + 2)κρ̄dla
8

(γ − 1)Ts + γ‖e3
0‖ ≤

(n + 2)κρ̄dla
8

(γ2 − 1)Ts.

Similarly, we obtain the partition error caused by discretization on strip k as follows

‖ek
z‖ ≤

(n + 2)κρ̄dla
8

(γk−1 − 1)Ts, k = 1, 2, . . . , q.

Since the first stripe is partitioned with equal workload, Hb
1 = 0 and the extra time to

sweep A1 is 0. Hence, the extra time of sweeping the whole region D is bounded by

∆T ≤ 1
ν

q∑
k=1

(
√

Hb
k + 2‖ei

z‖dρ̄)

≤ dla
ν

√
β

n

q−1∑
j=1

jαq−1−je−λ2κ(q−j)t +
(n + 2)κd2ρ̄2la

4ν
(
1− γq

1− γ
− q)Ts

which completes the proof of the theorem. �
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Remark 3.8. The above sweep coverage algorithm is also applied to the general region
in the absence of parallel boundaries. Nevertheless, we need to ensure that partition
marks do not intersect the bilateral boundaries of the stripe when the algorithm is
implemented. Moreover, for the complex coverage region, we can divide it into several
subregions with relatively simple profiles and then complete sweeping each subregion
one by one.

Remark 3.9. For the directed chain Gm, the tuning parameter κ should be chosen with
the constraint κ < 1

2dρ̄Ts
to avoid collision between partition marks.

4. SIMULATIONS

In this section, a numerical example has been conducted to verify the above algorithm
using Matlab. For simplicity, we consider 4 robots with the interconnection graph Gm in
the rectangular region D. Parameters of D are selected as follows: la = 4, lb = 6, d = 1
(that is q = 6), κ = 5, ρ = 1, ρ̄ = 2 and ρ(x, y) = 0.5 sin(x + y) + 1.5. In addition, 4
robots with ν = 60 are used to sweep the region, and sampling period Ts is sufficiently
small. Initially, the first stripe has been divided into 4 sub-stripes with equal workload.
Then sweeping and partition operations are carried out simultaneously. Colored parts
denote the region that has been swept, and sub-stripes of the same color are covered by
the same robot. Finally, the complete coverage of D is finished with the time 0.15, and
the optimal coverage time is 0.14. Hence, the extra time to sweep D by multiple robots
with interconnection graph Gm is 0.01, which is less than the upper bound 0.09, given
in the theoretical results (10).

0 1 2 3 4
0

1

2

3

4

5

6

Fig. 4. Sweep process of 4 robots in the region D.

5. CONCLUSIONS

In this paper, a discrete time formulation was proposed to deal with the sweep cover-
age problem of multiple robots with general communication topologies in an uncertain
region. The theoretical analysis was given to estimate the upper bound of the coverage
time spent more than the optimal time. Moreover, the numerical result demonstrated
the effectiveness of the discrete time sweep coverage algorithm. However, many prob-
lems remain to be solved, including the extension of the sweep coverage algorithm to
nonholonomic dynamics and tighter estimation of coverage time.
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