
Kybernetika

Daniel Reidenbach; Markus L. Schmid
Automata with modulo counters and nondeterministic counter bounds

Kybernetika, Vol. 50 (2014), No. 1, 66–94

Persistent URL: http://dml.cz/dmlcz/143764

Terms of use:
© Institute of Information Theory and Automation AS CR, 2014

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://dml.cz

http://dml.cz/dmlcz/143764
http://dml.cz

KYB ERNET IK A — VO LUME 5 0 (2 0 1 4) , NUMBER 1 , PAGES 6 6 – 9 4

AUTOMATA WITH MODULO COUNTERS
AND NONDETERMINISTIC COUNTER BOUNDS

Daniel Reidenbach and Markus L. Schmid

We introduce and investigate Nondeterministically Bounded Modulo Counter Automata
(NBMCA), which are two-way multi-head automata that comprise a constant number of modulo
counters, where the counter bounds are nondeterministically guessed, and this is the only
element of nondeterminism. NBMCA are tailored to recognising those languages that are
characterised by the existence of a specific factorisation of their words, e. g., pattern languages.
In this work, we subject NBMCA to a theoretically sound analysis.

Keywords: multi-head automata, counter automata, modulo counters, stateless automata,
restricted nondeterminism

Classification: 68Q45, 68Q05, 68Q10

1. INTRODUCTION

In the present paper we introduce and study a novel automata model, the Nondeter-
ministically Bounded Modulo Counter Automata (NBMCA for short), which comprise
several two-way input heads and a number of counters. These NBMCA are algorithmic
tools suitable for recognising those languages that are characterised by the existence of a
specific factorisation of their words, e. g., pattern languages, and are a generalisation of
the Janus automata that have been introduced and applied in [15] in order to investigate
the membership problem for pattern languages. In [15], NBMCA with exactly two input
heads are used. In the present work we focus on NBMCA with only one head, since by
the use of additional counters, an NBMCA can easily simulate several input heads by
only one. Every counter of an NBMCA is provided with a counter bound, and can only
be incremented and counts modulo its counter bound. The current counter values and
counter bounds are hidden from the transition function, which can only check whether
a counter has reached its bound. By performing a reset on a counter, the automaton
nondeterministically guesses a new counter bound between 0 and |w|, where w is the
input word, and the actual value of the counter is set back to 0. This guessing of counter
bounds is the only possible nondeterministic step of NBMCA, and the transition func-
tion is defined completely deterministically. We can interpret the counter bounds as
positions of the input and, by means of the counter values, the input head can be moved
to these positions.

DOI: 10.14736/kyb-2014-1-0066

http://doi.org/10.14736/kyb-2014-1-0066

Automata with modulo counters and nondeterministic counter bounds 67

Two aspects of this approach seem to be particularly worth studying. Firstly, all
additional resources the automaton is equipped with, namely the counters, are tailored
to storing positions in the input word. We can observe that this aspect is not really new;
in fact, the idea of separating the mechanisms of storing positions from the functionality
of actually processing the input is formalised in the models of partially blind multi-head
automata (see, e. g., Ibarra and Ravikumar [10]), Pebble Automata (see, e. g., Chang
et al. [1]) and automata with sensing heads (see, e. g., Petersen [14]). In spite of this
similarity between NBMCA and established automata models regarding their emphasis
on storing positions in the input word, there is still one difference: the counters of
NBMCA are quite limited in their ability to change the positions they represent, since
their values cannot be decremented and their bounds cannot be set deterministically.
The question arises whether or not, for automata using counters as additional resources,
their ability to count in both directions is essential with respect to the expressive power.

The second aspect is that the nondeterminism of NBMCA, which merely allows po-
sitions in the input word to be guessed, differs quite substantially from the common
nondeterminism of automata, which provides explicit computational alternatives. Nev-
ertheless, automata often use their nondeterminism to actually guess a certain posi-
tion of the input. For example, a pushdown automaton with one head that recognises
{wwR | w ∈ Σ∗} needs to perform an unbounded number of guesses even though only
one specific position, namely the middle one, of the input needs to be found. Despite
this observation, the nondeterminism of NBMCA might be weaker, as it seems to solely
refer to positions in the input. Hence, we also investigate the question of whether or
not it is essential that the nondeterminism is explicitly provided by a nondeterministic
transition function in order to exploit it to the full extent, in terms of expressive power.

In order to understand the character of these novel, and seemingly limited, resources
NBMCA can use, the present paper compares the expressive power of these automata
to that of the well-established, and seemingly less restricted, models of multi-head and
counter automata. Furthermore, we study some basic decision problems for NBMCA as
well as stateless versions of NBMCA, with and without restricted nondeterminism.

A preliminary version [16] of this paper was presented at the conference CIAA 2012.
Due to space restrictions, some of the proofs are omitted and can be found in a

technical report [17].

2. DEFINITIONS AND PRELIMINARY OBSERVATIONS

Let N denote the set of all positive integers and let N0 := N ∪ {0}. The symbols ⊆ and
⊂ refer to subset and proper subset relation, respectively. For an arbitrary alphabet Σ,
a word (over Σ) is a finite sequence of symbols from Σ, and ε stands for the empty word.
The symbol Σ+ denotes the set of all nonempty words over Σ, and Σ∗ := Σ+ ∪ {ε}.
For the concatenation of two words u, v, we write u · v or simply uv, and uk denotes
the k-fold concatenation of u, i. e., uk := u1 · u2 · · ·uk, where ui = u, 1 ≤ i ≤ k. We
say that a word v ∈ Σ∗ is a factor of a word w ∈ Σ∗ if there are u1, u2 ∈ Σ∗ such that
w = u1 · v · u2. If u1 = ε (or u2 = ε), then v is a prefix of w (or a suffix, respectively).
The notation |K| stands for the size of a set K or the length of a word K; the term
|w|a refers to the number of occurrences of the symbol a in the word w. If we wish
to refer to the symbol at a certain position in a word w = a1 · a2 · · · · · an, ai ∈ Σ,

68 D. REIDENBACH AND M.L. SCHMID

1 ≤ i ≤ n, over some alphabet Σ, we use w[i] := ai, 1 ≤ i ≤ n. Furthermore, for all i, i′,
1 ≤ i < i′ ≤ |w|, let w[i, i′] := ai · ai+1 · · · · · ai′ and w[i,−] := w[i, |w|].

For arbitrary languages L1, L2 we define L+
1 := {u1 · u2 · · · · · un | ui ∈ L1, 1 ≤ i ≤

n, n ∈ N}, L∗1 := L+
1 ∪ {ε} and L1 · L2 := {u · v | u ∈ L1, v ∈ L2}.

2.1. Automata models

For proving our results about NBMCA, we shall apply several variants of multi-head
and counter automata.

For every k ∈ N let 1DFA(k), 2DFA(k), 1NFA(k) and 2NFA(k) denote the class of
deterministic one-way, deterministic two-way, nondeterministic one-way and nondeter-
ministic two-way automata with k input heads, respectively. A 1DFA(k), 2DFA(k),
1NFA(k) or 2NFA(k) is given as a tuple (k, Q, Σ, δ, q0, F) comprising the number of in-
put heads k, a set of states Q, the input alphabet Σ, the transition function δ, an initial
state q0 ∈ Q and a set of accepting states F ⊆ Q. The transition function is a mapping
δ : Q×Σk → Q×Dk for deterministic and δ : Q×Σk → P (Q×Dk) for nondeterministic
devices, where P (A) is the power set of a set A, and D, the set of input head move-
ments, is defined by D := {0, 1} in case of one-way automata and D := {−1, 0, 1} for
the two-way versions. Let C ∈ Q× Σk and S ∈ Q×Dk. Instead of writing transitions
in the form δ(C) = S or, in case of nondeterministic automata, S ∈ δ(C), we use the
notation C →δ S for both deterministic and nondeterministic automata. If δ is obvious
from the context, we simply write C → S. We assume in general that the input of
two-way models is bounded by endmarkers (¢, $) and the input head(s) can sense these
endmarkers and cannot be moved to the left of the left endmarker or to the right of
the right endmarker. For a comprehensive survey on multi-head automata the reader is
referred to Holzer et al. [5] and to the references therein.

For some of our proofs, it is also convenient to use so-called counter automata, thus,
we shall formally define them. For every l ∈ N let 1CDFA(l), 2CDFA(l), 1CNFA(l) and
2CNFA(l) denote the class of deterministic one-way, deterministic two-way, nondeter-
ministic one-way and nondeterministic two-way counter automata with one input head
and l counters. The counters can store only non-negative values. In each transition,
these counters can be incremented, decremented or left unchanged and, furthermore,
it can be checked on whether or not a certain counter stores value 0. A transition of
a counter automaton depends on the state, the currently scanned input symbol and
the set of counters currently storing 0. We shall also define more restricted versions of
counter automata. To this end, let k ∈ N and let f : N → N be a recursive function.
An f(n)-bounded nondeterministic or deterministic two-way counter automaton with
k counters (2CNFAf(n)(k) or 2CDFAf(n)(k) for short) is a 2CNFA(k) (or 2CDFA(k),
respectively), whose counters have an upper bound of f(n), where n is the current in-
put length. It can be checked whether a counter stores 0, f(n) or a value in between1.
For more details on counter automata see, e. g., Ibarra [7], Chiniforooshan et al. [2] or
Holzer et al. [5] and the references therein.

For an arbitrary class of automata, such as the set 1DFA(k) of deterministic one-way
automata with k input heads, the expression “a 1DFA(k)” refers to any automaton from

1In the following, we are mainly concerned with 2CDFAf(n)(k) and 2CNFAf(n)(k) where f(n) = n.

Automata with modulo counters and nondeterministic counter bounds 69

1DFA(k). For an arbitrary automaton M , L(M) denotes the set of all words accepted
by M and, for an arbitrary class A of automata, let L(A) := {L(M) | M ∈ A}.

The following obvious proposition shall be important for some of our proofs:

Proposition 2.1. For every k ∈ N, L(2CNFAn(k)) ⊆ L(2NFA(k + 1)).

P r o o f . The statement of the proposition can be easily comprehended by observing
that we can use k input heads of a 2NFA(k + 1) in such a way that they ignore the
input, thus, they behave exactly like counters that are bounded by the input length. �

2.2. Nondeterministically bounded modulo counter automata

A Nondeterministically Bounded Modulo Counter Automaton, NBMCA(k) for short, is
a two-way one-head automaton with k counters. More precisely, it is a tuple M :=
(k, Q, Σ, δ, q0, F), where k ∈ N is the number of counters, Q is a finite nonempty set of
states, Σ is a finite nonempty alphabet of input symbols, q0 ∈ Q is the initial state and
F ⊆ Q is the set of accepting states. The mapping δ : Q × (Σ ∪ {¢, $}) × {t0, t1}k →
Q×{−1, 0, 1}× {0, 1, r}k is called the transition function (the symbols ¢, $ (referred to
as left and right endmarker, respectively) are not in Σ). Instead of writing transitions
in the form δ(C) = S, we use the notation C →δ S. If δ is obvious from the context, we
simply write C → S. An input to M is any word of the form ¢w$, where w ∈ Σ∗. Let
(p, b, s1, . . . , sk) →δ (q, r, d1, . . . , dk). We call the element b the scanned input symbol and
r the input head movement. For each j ∈ {1, 2, . . . , k}, the element sj ∈ {t0, t1} is the
counter message of counter j, and dj is called the counter instruction for counter j. The
transition function δ of an NBMCA(k) determines whether the input heads are moved
to the left (ri = −1), to the right (ri = 1) or left unchanged (ri = 0), and whether
the counters are incremented (dj = 1), left unchanged (dj = 0) or reset (dj = r); a
decrement is not possible. In case of a reset, the counter value is set to 0 and a new
counter bound is nondeterministically guessed between 0 and the current input length.
Hence, every counter is bounded, but these bounds are chosen in a nondeterministic
way. In order to define the language accepted by an NBMCA, we need to define the
concept of an NBMCA computation.

Let M be an NBMCA and ¢w$:= a0 ·a1 ·· · ··an+1, ai ∈ Σ, 1 ≤ i ≤ n. A configuration
of M (on input ¢w$) is an element of ĈM := {[q, h, (c1, C1), . . . , (ck, Ck)] | q ∈ Q, 0 ≤
h ≤ n + 1, 0 ≤ ci ≤ Ci ≤ n, 1 ≤ i ≤ k}. The pair (ci, Ci), 1 ≤ i ≤ k, describes the
current configuration of the ith counter, where ci is the counter value and Ci the counter
bound. The element h is called the input head position.

An atomic move of M is denoted by the relation `M,w over the set of configurations.
Let (p, b, s1, . . . , sk) →δ (q, r, d1, . . . , dk). Then, for all ci, Ci, 1 ≤ i ≤ k, where ci < Ci if
si = t0 and ci = Ci if si = t1, and for every h, 0 ≤ h ≤ n + 1, with ah = b, we define
[p, h, (c1, C1), . . . , (ck, Ck)] `M,w [q, h′, (c′1, C

′
1), . . . , (c

′
k, C ′

k)]. Here, the elements h′ and
c′j , C

′
j , 1 ≤ j ≤ k, are defined in the following way: h′ := h + r if 0 ≤ h + r ≤ n + 1

and h′ := h otherwise. For each j ∈ {1, . . . , k}, if dj = r, then c′j := 0 and, for some
m ∈ {0, 1, . . . , n}, C ′

j := m. If dj 6= r, on the other hand, then C ′
j := Cj and c′j := cj +dj

mod (Cj + 1).

70 D. REIDENBACH AND M.L. SCHMID

To describe a sequence of (atomic) moves of M (on input w) we use the reflexive and
transitive closure of the relation `M,w, denoted by `∗M,w. M accepts the word w if and
only if ĉ0 `∗M,w ĉf , where ĉ0 := [q0, 0, (0, C1), . . ., (0, Ck)] for some Ci ∈ {0, 1, . . . , |w|},
1 ≤ i ≤ k, is an initial configuration, and ĉf := [qf , h, (c1, C1), . . . (ck, Ck)] for some
qf ∈ F , 0 ≤ h ≤ n + 1 and 0 ≤ ci ≤ Ci ≤ n, 1 ≤ j ≤ k, is a final configuration. In every
computation of an NBMCA, the counter bounds are nondeterministically initialised, and
the only nondeterministic step an NBMCA is able to perform during the computation
consists in guessing a new counter bound for some counter.

Example 2.2. In order to illustrate the definition of Nondeterministically Bounded
Modulo Counter Automata, we sketch how an NBMCA with one counter can recognise
the language Lrev := {wwR | w ∈ Σ∗}, where wR denotes the reversal of a word w.

In a first step, by moving the input head from the left endmarker to the right end-
marker, it is checked whether or not the message of the counter changes from t0 to
t1 exactly when the input head reaches the right endmarker, i. e., whether or not the
counter bound equals the length of the input. Furthermore, at the same time it is
checked whether or not the input w has even length. This can be easily done with the
finite state control. In case that |w| is odd or the counter bound is not |w|, the input
is rejected by entering a non-accepting trap state. Now, the counter can be used to
execute the following three steps in a loop.

1. Move the input head one step to the right.

2. Move the input head for |w| + 1 steps by initially moving it to the right and
reversing its direction if the right endmarker is reached.

3. Move the input head for |w|+1 steps by initially moving it to the left and reversing
its direction if the left endmarker is reached.

This loop is executed until the right endmarker is reached in step 1. It can be easily
verified that this exactly happens in the (|w|+ 1)th iteration of the loop. Furthermore,
for every i, 1 ≤ i ≤ |w|, in the ith iteration of the loop, the position reached after step 1
is i and the position reached after step 2 is |w| − i + 1. So in order to check on whether
or not w = uuR, u ∈ Σ∗, it is sufficient to store the symbol at position i after step 1 in
the finite state control and compare it to the symbol at position |w| − i + 1 after step
2 in each iteration of the loop. If eventually the right endmarker is reached after step
1, then the automaton accepts its input and if, on the other hand, the symbol stored in
the finite state control does not equal the symbol scanned after step 2, then the input
is rejected.

3. EXPRESSIVE POWER, HIERARCHY AND DECIDABILITY

In this section, we investigate typical automata theoretical questions with respect to the
class of NBMCA. More precisely, we first investigate their expressive power by compar-
ing them to ordinary multi-head and counter automata. The results obtained in this
regard are then used in order to conclude a hierarchy result of the class of NBMCA-
languages with respect to the number of counters. We conclude this section by a thor-
ough investigation of the decidability of the emptiness, infiniteness, universe, equiva-
lence, inclusion and disjointness problem of the class of languages given by NBMCA.

Automata with modulo counters and nondeterministic counter bounds 71

3.1. Expressive power

An NBMCA can be regarded as a finite state control with additional resources. Thus,
it is quite similar to classical nondeterministic multi-head automata. The essential dif-
ferences between the models are those addressed in Section 1. Hence, in order to gain
insights with respect to the question of whether these differences affect the expressive
power, we study the problem of simulating classical nondeterministic multi-head au-
tomata by NBMCA and vice versa.

We first address the simulation of NBMCA by nondeterministic multi-head automata.
Intuitively, it seems obviously possible, since NBMCA can be interpreted as just a further
restricted version of nondeterministic multi-head automata. This intuition is formalised
by the following theorem:

Theorem 3.1. For every k ∈ N, L(NBMCA(k)) ⊆ L(2NFA(2k + 1)).

P r o o f . We prove that, for every k ∈ N and for every M ∈ NBMCA(k), there exists
an M ′ ∈ 2CNFAn(2k) with L(M) = L(M ′), which, by Proposition 2.1, implies the
statement of the theorem. To this end, let M ∈ NBMCA(k). The input head of M ′ is
used in exactly the same way M uses its input head. Hence, it is sufficient to illustrate
how M ′ simulates the modulo counters of M . The idea is that the modulo counter i,
1 ≤ i ≤ k, of M is simulated by the counters 2i − 1 and 2i of M ′, i. e., counter 2i − 1
represents the counter value and counter 2i represents the counter bound of the modulo
counter i of M . A reset of modulo counter i is simulated by M ′ in the following way.
First, both counters 2i − 1 and 2i of M ′ are decremented to 0. Then counter 2i − 1
is incremented and after every increment, M ′ nondeterministically guesses whether it
keeps on incrementing or it stops. If the counter reaches value n, it must stop. The
value counter 2i−1 stores after that procedure is interpreted as the new counter bound.
The actual counting of the modulo counter i of M is then simulated in the following
way. Whenever M increments counter i, then M ′ increments counter 2i and decrements
counter 2i− 1. When counter 2i− 1 reaches 0, then this is interpreted as reaching the
counter bound. In order to enable a new incrementing cycle of the modulo counter i of
M from 0 to its counter bound, the counters 2i− 1 and 2i simply change their roles and
can then be used again in the same way. �

The converse question, i. e., whether arbitrary multi-head automata, and particularly
their unrestricted nondeterminism, can be simulated by NBMCA, is more interesting.
One possible way to do this is to use each modulo counter of the NBMCA in order to
simulate an input head of the 2NFA(k). To this end, the modulo counter first guesses
|w| as counter bound, which is done by resetting it and checking, by means of the input
head, whether or not the guessed bound equals |w|, and then the counter value can be
used in order to store the position of the input head. Since the counter value cannot be
decremented, a decrement has to be performed by |w| − 1 increments.

However, for reasons that shall be explained later, we aim for a simulation that, with
respect to the usage of modulo counters, is more economic compared to the construction
sketched above. More presicely, we want to use a single modulo counter in order to
store the positions of two input heads of a 2NFA(k), i. e., the counter value and the

72 D. REIDENBACH AND M.L. SCHMID

counter bound each represents a distinct input head position. A step of the 2NFA(k)
is then simulated by first moving the input head of the NBMCA successively to all
these positions stored by the counters and record the scanned input symbols in the
finite state control. After that, all these positions stored by the counters must be
updated according to the transition function of the 2NFA(k). It turns out that this
is possible, but, since counter values cannot be decremented and counter bounds cannot
be changed directly, the constructions are rather involved and require some technical
finesse. Furthermore, we need an additional counter which is also used in order to
simulate the possible nondeterministic choices of the 2NFA(k).

Theorem 3.2. For every k ∈ N, L(2NFA(k)) ⊆ L(NBMCA(dk
2 e+ 1)).

P r o o f . Given a 2NFA(k) M , we show how an NBMCA(dk
2 e+ 1) M ′ can be designed

such that L(M) = L(M ′). It is a well-known fact that at the cost of an increase in the
number of states, we can modify an automaton such that each configuration has at most
two next configurations. Therefore, since the number of states does not play any role
in the statement of the lemma, we assume that M has this property. Below an input is
denoted by w := a1 ·a2 · · · an for some letters a1, . . . , an ∈ Σ. For the sake of convenience,
we assume that k is even; the case that k is odd can be handled analogously. The general
idea is that the first dk

2 e modulo counters of M ′ are used to store the positions of the
k input heads of M . Thus, one modulo counter of M ′ stores the positions of two input
heads of M , i. e., one position is represented by the counter value and the other one
by the counter bound of the modulo counter. In addition to that, M ′ has an auxiliary
counter that is used to store data temporarily. More precisely, if M is able to perform
the move [q, h1, . . . , hk] `M,w [p, h′1, . . . , h

′
k], then M ′ can perform a sequence of moves

[q, 0, (h1, h2), . . . , (hk−1, hk), (0, c)] `∗M ′,w [p, 0, (h′1, h
′
2), . . . , (h

′
k−1, h

′
k), (0, c′)], for some

c, c′, 1 ≤ c, c′ ≤ n. The role of the counter bounds c and c′ of the auxiliary counter are
not important right now and shall be explained later on.

We shall now informally explain the basic idea of how a step of M can be simulated
by a sequence of moves of M ′ and formally prove all the technical details afterwards. A
transition of M depends on k input symbols and a state. Therefore, M ′ records in its
finite state control all the symbols at the positions determined by the counter values and
counter bounds. More precisely, if h1 and h2 are the counter value and counter bound
of the first counter and M ′ is in state q right now, then M ′ moves its input head to
position h1, changes into state qah1

, moves the input head to position h2 and changes
into state qah1 ,ah2

. The same procedure is applied to all counters 2, 3, . . . , dk
2 e until M ′

finally reaches a state qah1 ,ah2 ,...,ahk
. We note that in order to prove that all these steps

can be carried out by M ′, it is sufficient to show that M ′ can perform the following
sequences of moves:

c̃ `∗M ′,w [qah2i−1
, 0, (h1, h2), . . . , (h2i−1, h2i), . . . , (hk−1, hk), (0, c′)] , (1)

c̃ `∗M ′,w [qah2i
, 0, (h1, h2), . . . , (h2i−1, h2i), . . . , (hk−1, hk), (0, c′)] , (2)

where c̃ := [q, 0, (h1, h2), . . . , (hk−1, hk), (0, c′′)] is an arbitrary configuration of M ′ and
0 ≤ c′, c′′ ≤ n (i. e., M ′ is able to store the symbol at a position indicated by a counter

Automata with modulo counters and nondeterministic counter bounds 73

value (sequence of moves (1)) as well as the symbol at a position indicated by a counter
bound (sequence of moves (2))).

The next step of M is now determined by q, the symbols ah1 , ah2 , . . . , ahk
and δ,

the transition function of M , which is possibly nondeterministic and can choose among
two possible choices. In order to simulate this nondeterministic choice between two
options, M ′ resets counter dk

2 e+1 and checks whether or not the newly guessed counter
bound equals 0, which is only the case if the counter message is t1 right after resetting
it. The transition function of M ′ can then be defined such that the first option of
the two possible transitions of M is carried out if 0 is guessed as new counter bound
and the second option is chosen otherwise. We assume that the transition chosen by
M is (q, ah1 , . . . , ahk

) →δ (p, d1, . . . , dk), where p is the new state and (d1, . . . , dk) are
the input head movements, so next all counter values and counter bounds need to be
updated according to (d1, . . . , dk). To this end, M ′ changes into state pd1,...,dk

where
the counter value of counter 1 is changed to h1 +d1 and after that M changes into state
pd2,...,dk

. Next, the counter bound of counter 1 is changed to h2 + d2 while the state
changes into pd3,...,dk

and so on. Eventually, M ′ reaches state p and the configurations
of the counters are (h1 + d1, h2 + d2), . . . , (hk−1 + dk−1, hk + dk). Again, in order to
prove that this procedure can be carried out by M ′, it is sufficient to show that M ′ can
perform the following sequences of moves:

c̃ `∗M ′,w [q, 0, (h1, h2), . . . , (h2i−1 + d, h2i), . . . , (hk−1, hk), (0, c′)] , (3)

c̃ `∗M ′,w [q, 0, (h1, h2), . . . , (h2i−1, h2i + d′), . . . , (hk−1, hk), (0, c′)] , (4)

where c̃ := [q, 0, (h1, h2), . . . , (hk−1, hk), (0, c′′)] is an arbitrary configuration of M ′, 0 ≤
c′, c′′ ≤ n, d, d′ ∈ {1,−1}, h2i−1 + d ≤ h2i and h2i−1 ≤ h2i + d′.

In order to conclude the proof, it remains to show that the transition function δ′ of
M ′ can be defined in a way such that the sequences of moves (1) – (4) can be performed.
We begin with the sequences of moves (1) and (2). First, M ′ resets counter dk

2 e+1 and
then increments counter dk

2 e + 1 and counter i simultaneously. If these two counters
reach their counter bounds at exactly the same time, then we can conclude that the
newly guessed counter bound of counter dk

2 e+ 1 equals h2i − h2i−1 and we proceed. In
case that a different counter bound is guessed, M ′ changes into a non-accepting trap
state. This procedure is illustrated by the following diagram.

dummydummy

counter i

h2i

h2i−1

counter dk
2 e+ 1

h2i − h2i−1

Counters i and dk
2 e+1 are then set back to 0 by incrementing them once more. Then they

are incremented simultaneously until counter dk
2 e + 1 reaches its counter bound. After

this step, counter i stores value h2i − h2i−1 as pointed out by the following illustration.

74 D. REIDENBACH AND M.L. SCHMID

dummydummy

counter i

h2i

h2i − h2i−1

counter dk
2 e+ 1

h2i − h2i−1

Now it is possible to increment counter i and simultaneously move the input head to
the right until counter i reaches its bound of h2i. Clearly, this happens after h2i−1

increments, so the input head is then located at position h2i−1 of the input tape (see
the following picture).

dummydummy

counter i

h2i

h2i − h2i−1

tape

h2i−1

Now, in case of (1), M ′ changes into state qah2i−1
and sets the value of counter i back to

0. Finally, by moving the input head from position h2i−1 to the left until it reaches the
left endmarker and simultaneously incrementing counter i, we set the input head back
to position 0 and the counter value of counter i back to h2i−1. Furthermore, we set the
value of counter dk

2 e+ 1 back to 0.
In case of (2), a few more steps are required. We recall that the input head is located

at position h2i−1. M ′ resets counter dk
2 e+1 and checks whether or not the new counter

bound equals h2i−1. This is done by moving the input head to the left and simultaneously
incrementing counter dk

2 e+ 1.

dummydummy

counter dk
2 e+ 1

h2i−1

tape

h2i−1

Next, we set the value of counter i back to 0 and then increment it until the counter
bound of h2i is reached and simultaneously move the input head to the right. Obviously,
the input head is then located at position h2i. Thus, M ′ can change into state qah2i

.

Automata with modulo counters and nondeterministic counter bounds 75

dummydummy

counter i

h2i

tape

h2i

As counter dk
2 e+ 1 has a counter bound of h2i−1, we can easily set the value of counter

i back to h2i−1. Finally, the input head is moved back to position 0 and the value of
counter dk

2 e+ 1 is set back to 0.
Next, we consider case (3). If d = 1, then we can simply increment counter i. If, on

the other hand, d = −1, we first move the input head to position h2i−1 in the same way
we did in case (1), and then one step to the left, i. e., to position h2i−1 + d. Now we can
set counter i to 0, and then increment it and simultaneously move the input head to the
left until it reaches the left endmarker. After that step, counter i stores value h2i−1 + d.

In order to implement case (4), we first move the input head to position h2i in the
same way we did in case (2), i. e., we first move it to position h2i−1 as done for cases (1)
and (2) and then, by resetting counter dk

2 e+ 1, we store h2i−1 in the counter bound of
counter dk

2 e+1 and finally use counter i in order to move the input head to position h2i.
Next, we move the input head to position h2i + d′, reset counter i and, by moving the
input head back to position 0, check whether h2i + d′ is guessed as new counter bound.
Finally, we use counter dk

2 e+ 1, which has a counter bound of h2i−1, to set the counter
value of counter i back to h2i−1.

It remains to show how we can handle the cases where we have h2i−1 = h2i and either
h2i−1 should be incremented or h2i should be decremented. Clearly, this is not possible,
so in this case we simply change the roles of the counter bound and counter value to
avoid this problem. If we do this, we need to store in the finite state control that from
now on the counter value stores the position of input head 2i and the counter bound
stores the position of input head 2i− 1.

This shows that M ′ can perform the sequences of moves (1) – (4), which implies that
M ′ can simulate M in the way described at the beginning of this proof. �

We point out that, by Proposition 2.1, the above proof also implies that an arbitrary
M ∈ 2CNFAn(k), k ∈ N, can be simulated by some M ′ ∈ NBMCA(dk+1

2 e+ 1).
Before we proceed, we discuss the above result in a bit more detail. In the application

of NBMCA in [15] every counter bound is interpreted as an anchor on the input tape
and the functionality of the counters is merely a mechanism to move the input head to
these anchored positions. On the other hand, in the proof of Theorem 3.2 it is vital to
overcome the strong dependency between a counter value and its counter bound such
that both of them can be fully exploited as mere storages for input positions that can be
arbitrarily updated and, thus, the counter value as well as the counter bound are each as
powerful as an input head. Considering the substantial differences between NBMCA on
the one hand and 2NFA on the other, it seems surprising that this is possible. This means
that neither the restrictions on the counters of NBMCA nor the special nondeterminism

76 D. REIDENBACH AND M.L. SCHMID

constitutes a restriction on the expressive power. Thus, NBMCA can be used whenever
classical multi- head automata can be applied, but due to their specific counters and
nondeterminism they are particularly suitable algorithmic tools for recognising those
languages that are characterised by the existence of a certain factorisation for their
words, such as pattern languages (see [15]).

3.2. Hierarchy

The tight use of the modulo counters in the simulation used in the proof of Theorem 3.2
turns out to be worth the effort, as it allows us to prove a hierarchy result on the class
NBMCA. To this end, we first cite a classical result in automata theory, which states
that adding an input head to a 2NFA(k) strictly increases its expressive power (see
Holzer et al. [5] for a summary and references of the original papers):

Theorem 3.3. (Monien [13]) For every k ∈ N, L(2NFA(k)) ⊂ L(2NFA(k + 1)).

Theorem 3.3 together with Theorems 3.1 and 3.2, can be used to prove the following
hierarchy result:

Corollary 3.4. For every k ∈ N, L(NBMCA(k)) ⊂ L(NBMCA(k + 2)).

P r o o f . By Theorems 3.1, 3.2 and 3.3, we know that, for every k ∈ N,

• L(NBMCA(k)) ⊆ L(2NFA(2k + 1)),

• L(2NFA(2k + 1)) ⊂ L(2NFA(2k + 2)) and

• L(2NFA(2k + 2)) ⊆ L(NBMCA(k + 2)).

Consequently, NBMCA(k) ⊂ NBMCA(k + 2). �

3.3. Decidability

Next, we investigate the decidability of the emptiness, infiniteness, universe, equivalence,
inclusion and disjointness problem with respect to languages given by NBMCA. All these
problems are undecidable even for 1DFA(2) (cf., Holzer et al. [5]) and since NBMCA
can simulate 1DFA(2) (Theorem 3.2) these negative results carry over to the class of
NBMCA. However, it is a common approach to further restrict automata models with
undecidable problems in order to obtain subclasses with decidable problems (see, e. g.,
Ibarra [7]). One respective option is to require the automata to be reversal bounded.
The following definitions are according to [7].

In a computation of some two-way automaton model, an input head reversal describes
the situation that the input head is moved a step to the right (to the left, respectively)
and the last time it has been moved it was moved a step to the left (to the right,
respectively), so it reverses directions. A counter reversal is defined in a similar way just
with respect to the increments and decrements of a counter. We say that an automaton
is input head reversal bounded or counter reversal bounded if there exists a constant m
such that, for every accepting computation, the number of input head reversals (counter
reversals, respectively) is at most m. We now formally define classes of reversal bounded
automata.

Automata with modulo counters and nondeterministic counter bounds 77

Definition 3.5. For all m1,m2, k ∈ N, (m1,m2) -REV-CNFA(k) denotes the class of
2CNFA(k) and (m1,m2) -REV-CDFA(k) denotes the class of 2CDFA(k) that perform at
most m1 input head reversals and every counter performs at most m2 counter reversals
in every accepting computation.

For the reversal bounded automata defined as above, there is no need anymore to
distinguish between the one-way and the two-way case as this aspect is covered by
the number of input head reversals, i. e., one-way automata coincide with those that
are input head reversal bounded by 0. Next, we cite a classical result about reversal
bounded counter automata:

Theorem 3.6. (Ibarra [7]) The emptiness, infiniteness and disjointness problems for
the class (m1,m2) -REV-CNFA(k) are decidable. The emptiness, universe, infiniteness,
inclusion, equivalence and disjointness problem for the class (m1,m2) -REV-CDFA(k)
are decidable.

Our goal is to transfer these results to reversal bounded NBMCA. With respect to
NBMCA, a counter reversal is interpreted as an increment of the counter in case that it
has already reached its counter bound. Furthermore, we need to bound the number of
resets as well.

Definition 3.7. For all m1,m2, l, k ∈ N, let (m1,m2, l) -REV-NBMCA(k) denote the
class of NBMCA(k) that perform at most m1 input head reversals, at most m2 counter
reversals and resets every counter at most l times in every accepting computation.

We can show that any M ∈ (m1,m2, l) -REV-NBMCA(k) can be simulated by some
M ′ ∈ (m′

1,m
′
2) -REV-CNFA(k′), which implies that the results of Theorem 3.6 carry

over to (m1,m2, l) -REV-NBMCA(k).

Lemma 3.8. For every automaton M ∈ (m1,m2, l) -REV-NBMCA(k), there exists an
automaton M ′ ∈ (m1 + 2,m2 + l + 1) -REV-CNFA(4k) such that L(M) = L(M ′).

P r o o f . Let M ∈ (m1,m2, l) -REV-NBMCA(k). First, we recall that, by Theorem 3.1,
an NBMCA(k) can be simulated by a CNFAn(2k). Furthermore, in this simulation, the
input head of the CNFAn(2k) is used in the same way as the input head of NBMCA(k),
and every counter reversal and reset of a modulo counter of the NBMCA(k) causes
each of the two corresponding counters of the CNFAn(2k) to perform a reversal. Conse-
quently, in the simulation of an NBMCA(k) by a CNFAn(2k), the input head reversals of
the NBMCA(k) are preserved and the counter reversals of the CNFAn(2k) are bounded
by m2 + l. We conclude that there exists an (m1,m2 + l) -REV-CNFAn(2k) M ′, i. e.,
an (m1,m2 + l) -REV-CNFA(2k) whose counters are bounded by the input length, with
L(M) = L(M ′). This M ′ can be simulated by an (m1 + 2,m2 + l + 1) -REV-CNFA(4k)
M ′′ in the following way. At the beginning of the computation M ′′ increments the first
2k counters to the input length by moving the input head over the input. After that
step, for every i, 1 ≤ i ≤ 2k, counter i stores the input length n and counter i + 2k
stores 0. Counters i and i + 2k of M ′′ can simulate counter i of M ′ by decrementing
(or incrementing) counter i and incrementing (or decrementing, respectively) counter

78 D. REIDENBACH AND M.L. SCHMID

i + 2k for every increment (or decrement, respectively) of counter i of M ′. Hence, when
counter i of M ′′ reaches 0, then counter i of M ′ reaches n and when counter i + 2k of
M ′′ reaches 0, then counter i of M ′ reaches 0 as well. This requires two additional input
head reversals and an additional counter reversal for the first k counters. �

With Theorem 3.6, we can conclude the following:

Theorem 3.9. For the class (m1,m2, l) -REV-NBMCA, the emptiness, infiniteness and
disjointness problems are decidable.

In the following, we study the question of whether it is possible to ease the strong
restriction of (m1,m2, l) -REV-NBMCA a little without losing the decidability results.
More precisely, we investigate the decidability of the emptiness, infiniteness, universe,
equivalence, inclusion and disjointness problems for the class (m,∞, l) -REV-NBMCA,
i. e., the number of counter reversals is not bounded anymore. We shall explain our
motivation for this in a bit more detail. To this end we cite the following result.

Theorem 3.10. (Ibarra [7]) The emptiness, infiniteness, universe, equivalence, inclu-
sion and disjointness problems are undecidable for (1,∞) -REV-CDFA(1).

Consequently, with respect to CDFA (and, thus, CNFA) the typical decision problems
remain undecidable when the restriction on the counter reversals is abandoned. However,
regarding (m,∞, l) -REV-NBMCA we observe a slightly different situation. While a
counter reversal of a counter automaton can happen anytime in the computation and
for any possible counter value, a counter reversal of an NBMCA strongly depends on the
current counter bound, i. e., as long as a counter is not reset, all the counter reversals of
that counter happen at exactly the same counter value. So while for (1,∞) -REV-CDFA
the counters are not restricted at all, the modulo counters of (m,∞, l) -REV-NBMCA
can still be considered as restricted, since the number of resets is bounded. Intuitively,
this suggests that the restrictions of (m,∞, l) -REV-NBMCA are still stronger than the
restrictions of (1,∞) -REV-CDFA.

In the following, we give a negative answer to the question of whether or not the
class (m,∞, l) -REV-NBMCA has the same positive decidability results as the class
(m1,m2, l) -REV-NBMCA. To this end, we first need another way to simulate counter
automata by NBMCA. The simulation used to prove Theorem 3.2 has the advantage of
requiring a relatively small number of modulo counters, but pays the price of a large num-
ber of input head reversals and counter resets. In fact, in the simulation of Theorem 3.2
even if the 2CNFA(k) is input head reversal bounded and counter reversal bounded, the
number of counter resets as well as the input head reversals of the NBMCA(dk+1

2 e+ 1)
are not necessarily bounded anymore. Hence, it is our next goal to find a simulation
of counter automata by NBMCA that preserves the number of input head reversals
and requires only a constant number of resets. Before we give such a simulation, we
need the following technical lemma, which shows that we can transform an arbitrary
2CNFAf(n)(k) or 2CDFAf(n)(k) into an equivalent 2CNFAf(n)(k) (or 2CDFAf(n)(k),
respectively) that only reverses counters at value 0 or f(n).

Automata with modulo counters and nondeterministic counter bounds 79

Lemma 3.11. For every M ∈ 2CNFAf(n)(k) (or M ∈ 2CDFAf(n)(k)) there exists an
M ′ ∈ 2CNFAf(n)(k + 2) (or M ′ ∈ 2CDFAf(n)(k + 2), respectively) such that L(M) =
L(M ′) and every counter of M ′ reverses only at value 0 or f(n). Furthermore, for every
w ∈ Σ∗, if M reverses the input head m times and reverses every counter at most q
times on input w, then M ′ reverses the input head m times and reverses every counter
at most 2kq times on w.

P r o o f . We shall show how M can be changed such that all counters only reverse at
value 0 or f(n). All the following constructions are deterministic, so determinism of M
is preserved. We can assume that, for every counter, M stores in its finite state control
whether this counter is in incrementing or decrementing mode. Thus, for any counter, M
can identify a change from incrementing to decrementing and vice versa. Furthermore,
by using additional states, every 2CNFAf(n)(k) (or 2CDFAf(n)(k), respectively) can
be transformed into one that increments or decrements at most one counter in any
transition. Hence, we can assume M to have this property.

We define how an M ′ ∈ 2CNFAf(n)(k+2) (or M ′ ∈ 2CDFAf(n)(k+2), respectively),
whose counters reverse only at values 0 or f(n), can simulate M . In this simulation, the
counters 1 to k of M ′ exactly correspond to the counters 1 to k of M , and the counters
k+1 and k+2 of M ′ are auxiliary counters. We now consider a situation where counter
i of M is decremented from value p to p − 1 and this decrement constitutes a reversal.
We show how M ′ simulates this step such that its counter i reverses at f(n). The main
idea is to use the auxiliary counters k + 1 and k + 2 to temporarily store values, but,
since these counters are required to reverse at values 0 or f(n) as well, the construction
is not straightforward.

M ′ simulates the above described step in the following way. Instead of decrementing
counter i from p to p − 1, M ′ performs further dummy increments until value f(n) is
reached and simultaneously increments counter k+1. Hence, counter k+1 stores exactly
f(n)− p when counter i reaches f(n). This situation is illustrated below.

dummydummy

counter i

f(n)

p

counter k + 1

f(n)

f(n)− p

Next, we increment counters k + 1 and k + 2 simultaneously until counter k + 1 reaches
f(n). This implies that counter k + 2 stores now p.

dummydummy

counter k + 1

f(n)

f(n)− p

counter k + 2

f(n)

p

80 D. REIDENBACH AND M.L. SCHMID

We can now decrement counter i, thus performing the reversal at value f(n), and si-
multaneously increment counter k + 2 until it reaches f(n). After these steps, counter i
stores value p again, but is now in decrementing mode. M finally decrements counter i
to value p− 1.

dummydummy

counter i

f(n)

p
p− 1

counter k + 2

f(n)

p

Both counters k+1 and k+2 store now value f(n) and therefore are simply decremented
until value 0 is reached. We note that in the above described procedure, counter i is
incremented from p to f(n) and then decremented from f(n) to p − 1. Furthermore,
both auxiliary counters k + 1 and k + 2 are incremented from 0 to f(n) and then again
decremented from f(n) to 0, so they reverse only at 0 or f(n). We conclude that M
satisfies the required conditions.

A reversal from decrementing to incrementing can be handled in an analogous way.
The only difference is that counter i keeps on decrementing until 0 is reached and is then
incremented again. The two auxiliary counters k + 1 and k + 2 can be used in exactly
the same way.

We assume that M reverses the input head m times and every counter reverses at
most q times on some input w. Obviously, M ′ also reverses the input head m times on
input w. Furthermore, for every reversal of a counter of M that is not done at either
value 0 or value f(n), M ′ reverses counters k + 1 and k + 2 twice. Hence, the two
auxiliary counters reverse at most 2kq times on input w. �

We are now ready to show how CDFAn(k) can be simulated by NBMCA such that
the number of input head reversals is preserved and no counter is reset.

Lemma 3.12. For every M ∈ 2CDFAn(k) there exists an M ′ ∈ NBMCA(k + 2) with
L(M) = L(M ′). Furthermore, M ′ resets none of its counters and if M reverses the input
head m times on some input w, then M ′ reverses the input head m + 2 times on w.

P r o o f . We show how to define M ′ so that it simulates M . First, we transform M into
an equivalent 2CDFAn(k + 2) M̂ that reverses counters only at value 0 or value n. By
Lemma 3.11 we know that such an automaton exists and, furthermore, on any input w,
M̂ reverses the input head as many times as M does on input w. We shall now show how
this automaton M̂ is simulated by M ′. At the beginning of a computation, M ′ checks
whether or not all modulo counters are initialised with a counter bound of n, where n
is the current input length. This can be done by moving the input head from the left
endmarker to the right endmarker and simultaneously incrementing all k + 2 modulo
counters. After that, the input head needs to be moved back to the left end of the input,

Automata with modulo counters and nondeterministic counter bounds 81

so M ′ makes two additional input head reversals. Next, we show how M ′ simulates a
step of M̂ . The input head of M ′ is used in exactly the same way M̂ uses its input
head, and every counter of M ′ simulates one counter of M̂ . Since the modulo counters
of M ′ have bound n, we can simulate both, an incrementing sequence from 0 to n and
a decrementing sequence from n to 0 of a counter of M̂ by an incrementing cycle from
0 to n of a modulo counter of M ′. However, we need to keep track in the finite state
control on whether the counters of M ′ simulate an incrementing or a decrementing cycle
of a counter of M̂ at the moment, i. e., M ′ keeps track on whether reaching the counter
bound with some modulo counter is interpreted as the situation that the corresponding
counter of M̂ reaches 0 or it reaches n.

From our considerations above, we can conclude that, on any input, M ′ reverses the
input head exactly two times more often than M . Furthermore, none of the modulo
counters is reset. �

So far, we have demonstrated that NBMCA can simulate 2CDFAn(k) in such a way
that the number of input head reversals is preserved and the counters are not reset.
However, in order to transfer the undecidability results stated by Theorem 3.10 from
(1,∞) -REV-CDFA(1) to (m,∞, l) -REV-NBMCA, we need to find a way to simulate
deterministic two-way counter automata with only one counter and without a bound
on the counter values by NBMCA. Furthermore, this simulation should preserve the
number of input head reversals and none of the counters of the NBMCA should be
reset. We shall implicitly show that such a simulation is possible, by showing how
2CDFA(1) can be simulated by 2CDFAn(1). To this end, we first need the following
technical lemma, which, informally speaking, states that in accepting computations, a
2CDFA(1) cannot reach arbitrarily large values with its counter.2

Lemma 3.13. Let M be an arbitrary 2CDFA(1) with n states. During the computation
of M on an arbitrary w ∈ L(M), the counter never reaches a value m ≥ 2 n (|w|+ 2).

P r o o f . Without loss of generality, we may assume that M stops as soon as an accepting
state is reached. Let Q be the set of states of M , let F be the set of accepting states and
let CM,w := {[q, h, d] | q ∈ Q, 0 ≤ h ≤ |w|+1, d ∈ N} be the set of possible configurations
of M on input w ∈ L(M). Furthermore, for every [q, h, d] ∈ CM,w let the mapping g be
defined by

g([q, h, d]) :=

{
[q, h, 0] if d = 0,

[q, h, 1] else.

In order to prove the statement of the lemma, we assume to the contrary that the counter
of M reaches a value m ≥ 2|Q|(|w|+2) in the computation of M on w. This implies that
in the computation of M on w there must be a sequence of at least m+1 configurations
such that the first of these configurations has a counter value of 0, the last configuration
has a counter value of m and all the configurations in between have a counter value
strictly between 0 and m. More precisely, there exists a sequence of configurations

2We wish to point out that [2] contains an analogous result with respect to deterministic 1-reversal
one-way counter automata.

82 D. REIDENBACH AND M.L. SCHMID

c1, c2, . . . , cm′ , m′ > m, where ci := [qi, hi, di], 1 ≤ i ≤ m′, d1 = 0, dm′ = m and
1 ≤ di ≤ m − 1, 2 ≤ i ≤ m′ − 1. Furthermore, qi /∈ F , 1 ≤ i < m′, as otherwise the
automaton stops in a configuration ci, 1 ≤ i < m′. As |{g(c) | c ∈ CM,w}| = 2|Q|(|w|+2)
and m′ > 2|Q|(|w| + 2), we can conclude that there exist j, j′, 1 ≤ j < j′ ≤ m′, with
g(cj) = g(cj′). Since M is deterministic, this implies that in the computation for cj and
cj′ the transition function applies the same transition; thus, the computation may enter
a loop. We consider two possible cases depending on the counter values dj and dj′ of
the configuration cj and cj′ :

• dj ≤ dj′ : This implies that M has entered an infinite loop and all states in this
loop are non-accepting. Thus, w /∈ L(M), which is a contradiction.

• dj > dj′ : This implies that M decrements the counter to value 0 before reaching
value m, which contradicts the fact that 1 ≤ di ≤ m − 1, 2 ≤ i ≤ m′ − 1, and
dm′ = m.

Consequently, the assumption that the counter reaches a value m ≥ 2|Q|(|w|+2) implies
w /∈ L(M), which clearly contradicts w ∈ L(M). �

This result can now be used to simulate 2CDFA(1) by 2CDFAn(1). Intuitively, this
is done by counting the constant part of 2|Q|(|w|+ 2) with the finite state control and
only the part that depends on the current input by the actual counter, which can then
be bounded by the current input length.

Lemma 3.14. For every M ∈ 2CDFA(1), there exists an M ′ ∈ 2CDFAn(1), such that
L(M) = L(M ′) and if M reverses the input head m times on some input w, then M ′

reverses the input head m times on w.

P r o o f . Let QM be the set of states of M . By Lemma 3.13, we can assume that, in
every accepting computation of M on any input w, the counter value does not reach
the value 2 |QM | (|w| + 2). This implies that there exists a constant cM depending on
QM such that in every accepting computation of M on any w the counter value does
not reach the value cM |w|. Hence, we can construct an M ′ ∈ 2CDFA(1) with a set
of states QM ′ := {qi | q ∈ QM , 1 ≤ i ≤ cM} and L(M) = L(M ′). More precisely,
whenever the counter of M is in state q and has a counter value of k cM + k′, k, k′ ∈ N,
then M ′ is in state qk′ and has a counter value of k. In other words, M ′ uses the
subscript in the states as a counter bounded by cM and increments the actual counter
only every cM increments. This implies that in every accepting computation of M ′ on
some w the counter value does not reach the value |w|. Hence, its counter is bounded
by |w|. Consequently, we can simulate M ′ by an M ′′ ∈ 2CDFAn(1): On any input w,
we simulate M ′ by M ′′ and abort the current computation in a non-accepting state in
the case that the counter reaches a value of |w|. �

Finally, we can state that all the problems considered in Theorem 3.10 are also
undecidable even for NBMCA with only 3 counters that do not reset any of the counters
and perform at most 3 input head reversals in every accepting computation:

Automata with modulo counters and nondeterministic counter bounds 83

Theorem 3.15. The emptiness, infiniteness, universe, equivalence, inclusion and dis-
jointness problems are undecidable for (3,∞, 0) -REV-NBMCA(3).

P r o o f . Let M ∈ (1,∞) -REV-CDFA(1). By Lemma 3.14, we can conclude that
there exists an M ′ ∈ (1,∞) -REV-CDFAn(1) with L(M) = L(M ′). Furthermore, by
Lemma 3.12, there exists an M ′′ ∈ (3,∞, 0) -REV-NBMCA(3) with L(M ′) = L(M ′′).
Hence, L((1,∞) -REV-CDFA(1)) ⊆ L((3,∞, 0) -REV-NBMCA(3)), which, with Theo-
rem 3.10, implies the statement of the theorem. �

4. NBMCA WITHOUT STATES

In this section, we consider NBMCA without states. Stateless versions of automata have
first been considered by Yang et al. [18], where they are compared to P Systems. This
comparison is appropriate, as it is a feature of P Systems that they are not controlled
by a finite state control. Ibarra et al. [9] and Frisco and Ibarra [3] mainly investi-
gate stateless multi-head automata, whereas Ibarra and Eğecioğlu [8] consider stateless
counter machines. In Kutrib et al. [12] stateless restarting automata are studied and
stateless versions of multi-head automata with pebbles have been recently investigated
by Kutrib et al. in [11]. Intuitively, the lack of states results in a substantial loss of
possible control mechanisms for the automaton. For instance, the task to recognise ex-
actly the singleton language {ak} for some fixed constant k, which is easily done by any
automaton with states, suddenly seems difficult, as we somehow need to count k symbols
without using any states. In [9] an example of a stateless multi-head automaton that
recognises {ak} can be found.

We now define stateless NBMCA and we shall illustrate this model with an example.
Then we investigate the question of whether or not stateless NBMCA can simulate
NBMCA with a finite state control. In the following Section 4.1, we further restrict the
model of stateless NBMCA in order to investigate a more general question in automata
theory regarding limited nondeterminism.

A stateless NBMCA (SL-NBMCA for short) can be regarded as an NBMCA with only
one internal state that is never changed. Hence, the component referring to the state
is removed from the transition function and transitions do not depend anymore on the
state. As a result, the acceptance of inputs by accepting state is not possible anymore.
So for stateless NBMCA we define the input to be accepted by a special accepting
transition, i. e., the transition that does not change the configuration of the automaton
anymore. On the other hand, if the automaton enters a configuration for which no
transition is defined, then the input is rejected and the same happens if an infinite loop
is entered. For example, (b, s1, . . . , sk) → (r, d1, . . . , dk) is a possible transition for an
SL-NBMCA(k) and (b, s1, . . . , sk) → (0, 0, 0, . . . , 0) is an accepting transition. For the
sake of convenience we shall denote an accepting transition by (b, s1, . . . , sk) → 0. An
SL-NBMCA(k) can be given as a tuple (k, Σ, δ) comprising the number of counters, the
input alphabet and the transition function.

As already mentioned, in Ibarra et al. [9] an example of a stateless multi-head au-
tomaton that recognises {ak} can be found. We shall now consider a similar example
with respect to SL-NBMCA, i. e., we show how the following languages can be recognised
by SL-NBMCA.

84 D. REIDENBACH AND M.L. SCHMID

Definition 4.1. For every k ∈ N, let Sk := {ak, ε}.

We introduce an SL-NBMCA(5) that recognises S3.

Definition 4.2. Let MS3 := (5, {a}, δ) ∈ SL-NBMCA(5), where δ is defined by

1. (¢, t0, t0, t0, t0, t0) →δ (1, 1, 1, 1, 1, r),

2. (a, t1, t1, t1, t1, t0) →δ (−1, 1, 1, 1, 1, 1),

3. (¢, t0, t0, t0, t0, t1) →δ (1, 1, 0, 0, 0, 0),

4. (a, t1, t0, t0, t0, t1) →δ (1, 0, 1, 0, 0, 0),

5. (a, t1, t1, t0, t0, t1) →δ (1, 0, 0, 1, 0, 0),

6. (a, t1, t1, t1, t0, t1) →δ (1, 0, 0, 0, 1, 1),

7. ($, t1, t1, t1, t1, t0) →δ 0.

Proposition 4.3. L(MS3) = S3.

We shall only give an intuitive explanation of how MS3 recognises S3 and the details
are left to the reader. The first 4 counters are used to count the 4 steps that are
necessary to move the input head from the left to the right endmarker in case that aaa
is the input. However, this is possible only if all counter bounds of these counters are 1.
So initially MS3 checks whether or not all the first 4 counters are initialised with counter
bounds of 1. To this end, the input head is moved one step to the right while the first
4 counters are incremented. After that it is checked whether all these counters have
reached their bounds after this increment and then the input head is moved back to
the left endmarker. Then, MS3 uses the counters in order to count the occurrences of
symbols a on the input tape. Hence, the computations of MS3 comprise two parts: a
first part of checking whether or not the right counter bounds are guessed and a second
part where the symbols on the tape are counted. However, since there are no states,
the automaton is not able to distinguish between these two parts. This is mainly due
to the fact that in the first part we move the input head and, thus, necessarily scan an
input symbol. So it is possible that the counter bounds are initialised in a way such that
in the first part of the computation MS3 accidentally enters a configuration that is also
reached in the second part. In order to separate these two parts of the computation, we
need an additional counter.

By generalising Definition 4.2 and Proposition 4.3 it can be shown that for every
k ∈ N, there exists an MSk

∈ SL-NBMCA(k + 2) with L(MSk
) = Sk:

Proposition 4.4. For every k ∈ N, Sk ∈ L(SL-NBMCA(k + 2)).

The question of whether or not states are indispensable for a model, i. e., whether it
is possible to simulate automata by their stateless counterparts, is probably the most
fundamental question about stateless automata. Obviously, the models of DFA and NFA
degenerate if the number of states is restricted to at most one. On the other hand, we

Automata with modulo counters and nondeterministic counter bounds 85

know that the power of nondeterministic PDA is not dependent on the number of states
and, thus, every PDA can be turned into a PDA with only a single state (see, e. g.,
Hopcroft and Ullman [6]). Intuitively, the pushdown store compensates for the loss of
states. Regarding deterministic pushdown automata, we find a different situation; here,
the expressive power strictly increases with the number of states (see, e. g., Harrison [4]).

Our first main result shows that every NBMCA with states can be turned into an
equivalent one without states. Hence, the loss of the finite state control does not lead
to a reduced expressive power of the model.

Theorem 4.5. For every M ∈ NBMCA(k), k ∈ N, with a set of states Q, there exists
an M ′ ∈ SL-NBMCA(k + dlog(|Q|+ 1)e+ 2) with L(M) = L(M ′).

A formal proof of Theorem 4.5 can be found in [17]. Here, we shall only outline its
main ideas. It has been shown in [9] that two-way stateless multi-head automata can
easily simulate a finite state control by using log(n) additional input heads, where n
is the number of states, and interpreting these input heads as a binary number, which
represents the index of a state. Regarding SL-NBMCA it is not completely obvious how
this idea of simulating states can be applied. This is mainly due to the fact that the
counters of an SL-NBMCA can have any counter bound, and it is not possible to control
these bounds. So it seems more difficult to use a counter as some sort of a bit that can
be flipped between 0 and 1. However, it is possible to define an SL-NBMCA such that
in an accepting computation certain counters must be initialised with a counter bound
of 1. Informally speaking, this is done by simply using the input head to check whether
or not certain counters have counter bounds of 1. In order to do this, the input head
has to be moved in the input; hence, as we cannot use any states, the problem is how
to separate this initial phase from the main part of the computation.

4.1. SL-NBMCA with a bounded number of resets

In this section, we use the model of stateless NBMCA in order to investigate a more
general question in automata theory regarding limited nondeterminism. Usually, the
nondeterminism is mainly controlled by the finite state control, i. e., certain states allow
nondeterministic steps whereas others enforce a deterministic transition. Hence, non-
determinism can be switched on and off and, thus, it is a resource the automaton may
use, but it is not forced to. These considerations suggest that the finite state control
plays an important role regarding restricted nondeterminism and it is not obvious what
consequences, in this regard, an abolishment of the finite state control may have. In the
following we try to answer this question by employing SL-NBMCA. As shown in the
previous section, if we allow an unbounded number of modulo counters, a finite state
control can be simulated and, thus, nondeterminism can be controlled in the usual way.
Therefore we consider SL-NBMCA with only one counter and, furthermore, we assume
the input head to operate in a one-way manner, i. e., for every transition (b, x) →δ (y, z),
we have y ∈ {0, 1}. In order to restrict the nondeterminism of the model, we simply limit
the number of possible resets for the modulo counter. More precisely, in any computa-
tion the first k applications of a transition of form (b, x) → (y, r), b ∈ Σ, x ∈ {t0, t1},
y ∈ {0, 1}, reset the counter in accordance with the definition of NBMCA. Every further

86 D. REIDENBACH AND M.L. SCHMID

application of a transition of that form simply ignores the counter, i. e., if in a compu-
tation a transition (a, x) → (y, r) is applied after the counter has already been reset for
at least k times, then this transition is interpreted as (a, x) → (y, 0). We shall refer to
this model by 1SL-NBMCAk(1), where k stands for the number of possible resets.

This way of restricting automata is unusual compared to the common restrictions
that are found in the literature. This can be illustrated by recalling input head reversal
bounded automata as an example (see, e. g., Ibarra [7] and Section 3.3): an input head
reversal bounded automaton is an automaton that recognises each word of a language
in such a way that the number of input head reversals is bounded. There is no need
to require the input head reversals to be bounded in the non-accepting computations
as well, as this does not constitute a further restriction. This is due to the fact that
we can always use the finite state control to count the number of input head reversals
in order to interrupt a computation in a non-accepting state as soon as the bound of
input head reversals is exceeded. However, regarding stateless automata this is not
possible anymore, and there seems to be a difference whether a restriction is defined for
all possible computations or only for the accepting ones. Our definition of bounds on
the number of resets introduced above avoids these problems by slightly changing the
model itself, i. e., in every computation it loses the ability to reset the counter after k
resets.

We recall that in a computation of an NBMCA, the counter bounds are already
nondeterministically initialised. Hence, in a computation of a 1SL-NBMCAk(1) the
counter can have k+1 distinct counter bounds. Since the input head of 1SL-NBMCAk(1)
is a one-way input head, we require all accepting transitions to be of form ($, x) → 0,
x ∈ {t0, t1}.

The main question is whether or not the classes L(1SL-NBMCAk(1)), k ∈ N, de-
scribe a hierarchy with respect to k. First, for every k ∈ N, we separate the classes
L(1SL-NBMCAk(1)) and L(1SL-NBMCAk+1(1)) by identifying a language L that can
be recognised by an 1SL-NBMCAk+1(1), but by no M ∈ 1SL-NBMCAk(1). The words
of such L are basically concatenations of k + 2 words ui, 1 ≤ i ≤ k + 2, where each ui

comprises unary factors of the same length ni, 1 ≤ i ≤ k +2. A 1SL-NBMCAk+1(1) can
recognise this language by using the initial counter bound and the k +1 counter bounds
guessed in the computation in order to check the unary factors for equality. Intuitively,
a 1SL-NBMCAk(1), which can only use at most k + 1 different counter bounds in any
computation, is not able to recognise this language, since it is possible that ni 6= ni+1;
thus, at least k + 2 distinct counter bounds are required. Next, we shall formally de-
fine these languages and use them in the above illustrated way in order to separate the
classes 1SL-NBMCAk(1), k ∈ N.

In the remainder of this paper we exclusively consider languages and automata
defined over the alphabet Σ := {a,#1,#2}. Next, for every k ∈ N, we define a
language over Σ that shall then be shown to be in L(1SL-NBMCAk(1)) but not in
L(1SL-NBMCAk−1(1)).

Definition 4.6. For every n ∈ N0 let L̃n := {an} · {#1 · an}∗, and let L̃ :=
⋃

n∈N0
L̃n.

Automata with modulo counters and nondeterministic counter bounds 87

Furthermore, for every k ∈ N, let

Lk,1 := {u1#2u2#2 · · ·#2uk′ | ui ∈ L̃, 1 ≤ i ≤ k′ ≤ k} ,

Lk,2 := {u1#2u2#2 · · ·#2uk−1 | ui ∈ L̃, 1 ≤ i ≤ k − 1}

(#2L̃0)+ ∪
⋃
n≥1

(#2#1L̃n)+

and let Lk := Lk,1 ∪Lk,2.

Thus, the words of language L̃ consist of concatenations of factors over {a} of the
same length that are separated by occurrences of #1. The words of the language Lk are
basically concatenations of words in L̃ separated by occurrences of #2. However, in a
word from Lk, only the first k of these elements from L̃ can be arbitrarily chosen, for all
the others the length of the factors over {a} must be the same as for the kth word, with
the only difference that they start with an additional occurrence of #1. For example,

aa ·#1 · aa ·#2 ·#2 · aaa ·#1 · aaa ·#1 · aaa ·#2 ·#1 · aaa ·#1 · aaa ∈ L3 ,

aaaaaa ·#2 · a ·#1 · a ·#1 · a ·#2 · aaa ·#1 · aaa ·#2 ·#2 ·#1 ·#1 ·#1 ∈ L4 ,

aaaaaaaa ·#1 · aaaaaaaa ·#1 · aaaaaaaa ∈ L6 .

For every k ∈ N, we now define a 1SL-NBMCAk−1(1) that recognises exactly the
language Lk.

Definition 4.7. Let ML := (1, {a,#1,#2}, δ) ∈ SL-NBMCA(1), where

δ := {(¢, t0) →δ (1, 0), (¢, t1) →δ (1, 0), (a, t0) →δ (1, 1),
(#1, t1) →δ (1, 1), (#2, t1) →δ (1, r), ($, t1) →δ 0} .

For every k ∈ N, let MLk
be ML interpreted as a 1SL-NBMCAk−1(1).

The following considerations explain why MLk
recognises Lk: MLk

uses its counter to
count the occurrences of a on the input tape. Whenever an occurrence of #1 is scanned,
the counter must have reached its counter bound, which then implies that the length
of the factor over {a} corresponds to the counter bound. When an occurrence of #2 is
scanned, the counter message must be t1 as well. Furthermore, in case that the input
is a word from Lk, a new sequence of possibly different factors over {a} follows. Thus,
the counter is reset in order to guess a new counter bound. When all k − 1 resets have
been used, the counter bound does not change anymore; hence, the remaining factors
over {a} must all have the same length. We note that k − 1 resets are sufficient as the
counter is already nondeterministically initialised.

Theorem 4.8. For every k ∈ N, Lk ∈ L(1SL-NBMCAk−1(1)).

A formal proof of Theorem 4.8 is omitted and can be found in [17].
As described above, our next goal is to state that Lk cannot be accepted by any

1SL-NBMCAk−2(1). To this end we first observe that for every M ∈ 1SL-NBMCAk(1),
k ∈ N, that accepts a language Lk′ , a certain property related to the fact that, by
definition, a word w ∈ Lk′ can have k′ − 1 factors of form c · an ·#2 · an′ · c′, n, n′ ∈ N,
c 6= a 6= c′, must be satisfied. The next lemma states that M must reset its counter at
least once in the process of moving the input head over any such factor.

88 D. REIDENBACH AND M.L. SCHMID

Lemma 4.9. Let k, k′ ∈ N, k′ ≥ 2 and M ∈ 1SL-NBMCAk(1) with L(M) = Lk′ . Let
furthermore w := u1 ·#2 · u2 ·#2 · · · · ·#2 · uk′ with |ui|#1 ≥ 1, 1 ≤ i ≤ k′, such that
ui ∈ L̃ni

and ni ≥ 2k + 1, 1 ≤ i ≤ k′, and ni 6= ni+1, 1 ≤ i ≤ k′ − 1. In an accepting
computation of M on w, for every j, 1 ≤ j < k′, M resets its counter while scanning
#1a

nj #2a
nj+1#1.

P r o o f . Let δ be the transition function of M and let C := (c1, c2, . . . , cm) be an
arbitrary accepting computation of M on w. We shall prove the statement of the lemma
by first proving two claims establishing certain properties of M , a 1SL-NBMCAk(1) that
recognises Lk′ . The first claim concerns the way how M scans occurrences of a.

Claim (1): In C, the transitions

T1 (a, t1) →δ (0, 1),

T2 (a, t1) →δ (1, 0),

T3 (a, t1) →δ (1, 1),

T4 (a, t0) →δ (0, 1),

T5 (a, t0) →δ (1, 0)

are not applied and the transition (a, t0) →δ (1, 1) is applied.

P r o o f . (Claim (1)) We shall first show that none of the transitions T1 to T5 is applied
in C. To this end, we observe that since ni ≥ 2k +1, 1 ≤ i ≤ k′, and there are at most k
resets possible in C, we can conclude that there are at least two consecutive occurrences
of a in w such that only non-resetting transitions are performed while these occurrences
are scanned by the input head. Let us denote these positions by p̂ and p̂ + 1. Next,
we show that it is not possible that any of the transitions T1 to T5 apply when the
input head scans position p̂. To this end, we assume to the contrary that one of these
transitions is applied in configuration [p̂, (p, q)], p, q ∈ N, p ≤ q, and then show that a
word is accepted by M that is not an element of Lk′ , which is a contradiction.

If transitions T2 or T5 apply in configuration [p̂, (p, q)], then the input head is moved
over the occurrence of a at position p̂ without changing the counter value. Thus, the
counter message does not change. This directly implies that the word w[1, p̂] · a · w[p̂ +
1,−] /∈ Lk′ is accepted by M as well, which is a contradiction.

If transition T4 applies in configuration [p̂, (p, q)], then the transition [p̂, (p + 1, q)]
is reached and, thus, T4 is repeated until the counter reaches its bound, i. e., M enters
configuration [p̂, (q, q)]. Since the computation is accepting, a next transition must be
defined and this transition must move the head as otherwise no transition is defined
that moves the head while an occurrence of a is scanned. Furthermore, by assumption,
this transition is non-resetting. Since we have already ruled out transition T2, the only
possible next transition is T3. This implies that configuration [p̂ + 1, (0, q)] is reached.
Consequently, the word w[1, p̂] · a · w[p̂ + 1,−] /∈ Lk′ is accepted as well and, again, a
contradiction is obtained.

Automata with modulo counters and nondeterministic counter bounds 89

Next we assume that transition T1 applies in configuration [p̂, (p, q)]. If q, the current
counter bound, equals 0, then the counter message cannot change and the automaton is
in an infinite loop, which contradicts the fact that the computation C is accepting. So
we assume that q ≥ 1 which implies that configuration [p̂, (0, q)] is reached by applying
T1. Since C is accepting a next transition must be applicable that is non-resetting
and moves the input head. We have already ruled out transition T5. Thus, the only
possible next transition is (a, t0) →δ (1, 1) and therefore the configuration [p̂ + 1, (1, q)]
is reached. We observe that this implies that w[1, p̂] · aq · w[p̂ + 1,−] /∈ Lk′ is accepted
by M as well, which is a contradiction.

It remains to consider the case that T3 is applied in configuration [p̂, (p, q)]. If q = 0,
then the counter message does not change by applying transition T3. This implies that
the effect of transition T3 is the same as of transition T2. Hence, we can show in a
similar way as before that w[1, p̂] · a · w[p̂ + 1,−] /∈ Lk′ is accepted by M . Since this is
a contradiction, we conclude that q ≥ 1 and observe that configuration [p̂ + 1, (0, q)] is
reached by applying T3. Again, as C is accepting, a next configuration must be defined.
We recall that we assume that no resetting transition is applied while the input head
scans positions p̂ and p̂ + 1. Therefore, the next transition is non-resetting, but does
not necessarily move the input head. The only possible transitions of that kind are T4,
T5 and (a, t0) →δ (1, 1). Since w[p̂ + 1] = a, we can conclude that T4 and T5 cannot
be applied in configuration [p̂ + 1, (0, q)] in exactly the same way as we have already
shown above that T4 and T5 cannot be applied in configuration [p̂, (p, q)]. Therefore
the only possible transition left is transition (a, t0) →δ (1, 1). Similarly as before, we
can conclude that in this case M accepts w[1, p̂] · aq+1 · w[p̂ + 1,−] /∈ Lk′ and, thus, we
obtain a contradiction.

We conclude that the transition (a, t0) →δ (1, 1) is the only possible transition that
can be applied when configuration [p̂, (p, q)] is reached. This proves Claim (1). �

The next claim states that M cannot move the input head over an occurrence of #1

or #2 by a non-resetting transition if the counter message is t0.

Claim (2): For every b ∈ {#1,#2}, the transitions

T6 (b, t0) →δ (1, 0),

T7 (b, t0) →δ (1, 1)

are not defined.

P r o o f . (Claim (2)) We assume to the contrary that, for some b ∈ {#1,#2}, transi-
tion T6 or T7 is defined and use our accepting computation C of M on w to obtain a
contradiction, i. e., we show that M accepts a word that is not an element of Lk′ .

As we have already shown in Claim (1), there must be a position p̂, 1 ≤ p̂ ≤ |w|, such
that ci := [p̂, (p, q)] is converted into ci+1 := [p̂ + 1, (p + 1, q)] by transition (a, t0) →δ

(1, 1). Furthermore, we can conclude that p < q.
We now assume that transition T6 is defined and consider the input w′ := w[1, p̂−1] ·

b ·w[p̂,−], i. e., we insert an occurrence of b to the left of the occurrence of a at position
p̂. It is not possible that in configuration ci−1 the input head is located at position p̂ as

90 D. REIDENBACH AND M.L. SCHMID

well, as this implies the application of a transition other than (a, t0) →δ (1, 1) which,
by Claim (1), must be resetting. Hence, there is a computation of M on w′ that is
identical to C up to the first i elements. So configuration [p̂, (p, q)] is reached and, as
w′[p̂] = b and p < q, T6 applies and changes M into configuration [p̂ + 1, (p, q)]. Now,
as w′[p̂ + 1,−] = w[p̂,−], it is possible that the computation terminates with the last
m − i elements of C, where the first component of each configuration has increased by
1. Hence, w′ is accepted by M .

Next, we assume that transition T7 is defined and consider the input w′′ := w[1, p̂−
1] ·b ·w[p̂+1,−], i. e., we substitute the occurrence of a at position p̂ by an occurrence of
b. There is a computation of M on w′′ that is identical to C up to the first i elements.
So configuration [p̂, (p, q)] is reached and, as w′′[p̂] = b and p < q, T7 applies and changes
M into configuration [p̂ + 1, (p + 1, q)]. Now, as w′′[p̂ + 1,−] = w[p̂ + 1,−], it is possible
that the computation terminates with the last m− (i + 1) elements of C. Hence, w′′ is
accepted by M .

In order to conclude the proof, it remains to show that w′ /∈ Lk′ and w′′ /∈ Lk′ for
every b ∈ {#1,#2}. We recall that w′ is obtained from w by inserting an occurrence of b
to the left of an occurrence of a and w′′ is obtained from w by substituting an occurrence
of a by an occurrence of b. If b = #1, then there exists a factor c ·an ·#1 ·an′ ·c′ in w′ (or
w′′), where n 6= n′ and c 6= a 6= c′; hence w′ /∈ Lk′ (or w′′ /∈ Lk′ , respectively). If b = #2

and p̂ is such that w[p̂− 1] /∈ {¢,#2}, then there also exists a factor c · an ·#1 · an′ · c′
in w′ (or w′′, respectively), where n 6= n′ and c 6= a 6= c′. Thus, w′ /∈ Lk′ (or w′′ /∈ Lk′ ,
respectively).

It remains to consider the case where w[p̂−1] ∈ {¢,#2} and b = #2. First, we observe
that in this case w′′ must have a factor c ·#2 · an−1 ·#1 · an · c′, where c ∈ {¢,#2} and
c 6= a. Consequently, w′′ /∈ Lk′ . Regarding w′, we do not substitute an occurrence of
a by an occurrence of #2, but we insert it to the left of the occurrence of a at position
p̂. So if w[p̂ − 1] ∈ {¢,#2}, then it is possible that w′ ∈ Lk′ . However, we can show
that there must exist a position p̂′, 1 ≤ p̂′ ≤ |w|, such that w[p̂′ − 1] /∈ {¢,#2} and
in the computation C a configuration [p̂′, (p, q)] is changed into [p̂′ + 1, (p + 1, q)] by
transition (a, t0) →δ (1, 1). To this end, we assume that there exists no p̂′, 1 ≤ p̂′ ≤ |w|,
such that w[p̂′ − 1] 6= {¢,#2} and in the computation C a configuration [p̂′, (p, q)] is
changed into [p̂′ + 1, (p + 1, q)] by transition (a, t0) →δ (1, 1). This implies that the
input head is moved over all the occurrences of a at a position p̂′′ with w[p̂′′− 1] = a by
a transition of form (a, t1) →δ (1, x), and by Claim (1) of this lemma we can conclude
that x = r. Since there are n1 − 1 such occurrences of a that require an application
of the transition (a, t1) →δ (1, r) in the prefix an1 of w and since n1 ≥ 2k + 1, we can
conclude that all possible k resets are performed in the process of moving the input head
over the prefix an1 of w. Furthermore, after these k applications of (a, t1) →δ (1, r),
the transition (a, t1) →δ (1, r) will be interpreted as (a, t1) →δ (1, 0) for all further
occurrences of a in the prefix an1 . This implies that in the computation C the transition
(a, t1) →δ (1, 0) is applied which is a contradiction according to Claim (1). This shows
that there must exist a position p̂′, 1 ≤ p̂′ ≤ |w|, such that w[p̂′−1] /∈ {¢,#2} and in the
computation C a configuration [p̂′, (p, q)] is changed into [p̂′ + 1, (p + 1, q)] by transition
(a, t0) →δ (1, 1). Consequently, we can construct a w′ with respect to that position p̂′

in the way described above and there exists an accepting computation of M on w′, but

Automata with modulo counters and nondeterministic counter bounds 91

w′ /∈ Lk′ . This concludes the proof of Claim (2). �

We can now prove the statement of the lemma. To this end, let j, j′, 1 ≤ j < j′ ≤ |w|,
be such that w[j, j′] = #1 · ani ·#2 · ani+1 ·#1 with 1 ≤ i ≤ k′ − 1 and, for some l, l′,
1 ≤ l < l′ ≤ m, and some pi, qi ∈ N0, 1 ≤ i ≤ 4, let

cl, . . . , cl′ = [j, (p1, q1)], [j + 1, (p2, q2)], . . . , [j′ − 1, (p3, q3)], [j′, (p4, q4)] ,

such that, for every i, l + 1 ≤ i ≤ l′ − 1, ci is converted into ci+1 by a transition of
form (b, x) →δ (y, z), b ∈ Σ, x ∈ {t0, t1}, y, z ∈ {0, 1}. Since the input head is moved
from position j to position j + 1, we know that the transition that converts [j, (p1, q1)]
into [j + 1, (p2, q2)] is of form (#1, x) →δ (1, y). If y 6= r, then, by Claim (2), x = t1 is
implied and if furthermore y = 0, then the occurrence of a at position j + 1 is reached
with counter message t1. Now, using Claim (1), we can conclude that the only possible
next transition must reset the counter, which contradicts our assumption. Consequently,
the transition that converts [j, (p1, q1)] into [j + 1, (p2, q2)] is either (#1, t1) →δ (1, 1)
or a transition of form (#1, x) →δ (1, r). We note that regardless of which of the
possible transitions apply, the input head is moved one step to the right and the counter
configuration changes to (0, q2). We define v := w[j + 1, j′ − 1] = ani · #2 · ani+1 . By
Claims (1) and (2) and the assumption that the input head is moved over v without
counter resets, we conclude that the input head is moved over all the occurrences of
a in v by applying transition (a, t0) →δ (1, 1). So this transition applies until either
the input head scans #2 or the counter message changes to t1. If the counter message
changes to t1 while still an occurrence of a is scanned by the input head, then, by
Claim (1), the next transition would reset the counter, which is not possible; so we can
conclude that q2 ≥ ni. If the input head reaches the occurrence of #2 with a counter
message of t0, then the transition (#2, t0) →δ (0, 1) applies, since we assume that the
counter is not reset and a non-resetting transition that moves the input head while #2 is
scanned and the counter message is t0 is not possible, according to Claim (2). However,
this implies that the counter is incremented without moving the input head until the
counter message changes to t1. We conclude that the occurrence of a to the left of the
occurrence #2 could be deleted and the computation would still be accepting. This
is clearly a contradiction. Therefore the input head reaches #2 exactly with counter
message t1 and, thus, q2 = ni. We have now reached the configuration where the input
head scans #2 and the counter message is t1. If the next transition does not move
the input head, then it must increment the counter, as otherwise the transition would
be accepting which, by definition, is not possible. This results in the configuration
where still #2 is scanned but with a counter message of t0. In the same way as before,
by applying Claim (2), we can conclude that for such a configuration no non-resetting
transition that moves the input head is defined. Hence, the automaton stops, which is
a contradiction. Consequently the next transition that applies when #2 is scanned is
transition (#2, t1) →δ (1, z). Furthermore, z = 1, as otherwise the first occurrence of a
to the right of #2 is reached with counter message t1, which, as already shown above,
is not possible. So transition (#2, t1) →δ (1, 1) applies and then again several times
transition (a, t0) →δ (1, 1). For the same reasons as before we can conclude that the
counter message must not change to t1 as long as occurrences of a are scanned and;

92 D. REIDENBACH AND M.L. SCHMID

thus, q2 ≥ ni+1. If we reach the occurrence of #1 at position j′ with a counter message
of t0, we have several possibilities. If a transition applies that does not reset the counter,
then, by Claim (2), it must be (#1, t0) →δ (0, 1). On the other hand, since M is now in
configuration cl′ , it is also possible that a transition of form (#1, t0) →δ (x, r) applies.
However, for all these cases we observe that if we would delete the occurrence of a to
the left of the occurrence of #1 at position j′, then the changed input would still be
accepted, which is a contradiction. So we conclude that the input head reaches the
occurrence of #1 exactly with counter message t1. This implies q2 = ni+1 and, hence,
ni = ni+1, which is a contradiction. This concludes the proof Lemma 4.9. �

Now we are able to show that Lk can be recognised by a 1SL-NBMCAk−1(1) (Theo-
rem 4.8), but cannot be recognised by any 1SL-NBMCAk−2(1).

Theorem 4.10. For every k ∈ N with k ≥ 2, Lk /∈ L(1SL-NBMCAk−2(1)).

P r o o f . We assume to the contrary that there exists an M ∈ 1SL-NBMCAk−2(1) with
L(M) = Lk. Let w := an1 ·#1 · an1 ·#2 · an2 ·#1 · an2 ·#2 · · · · ·#2 · ank ·#1 · ank , with
n1, n2, . . . , nk ≥ 2k +1 such that ni 6= ni+1 for all 1 ≤ i ≤ k− 1. Obviously, w ∈ Lk and
w satisfies the conditions of Lemma 4.9. We observe that in w, there are k−1 factors of
form #1 · ani ·#2 · ani+1 ·#1, but in an accepting computation of M on w, there are at
most k− 2 resets possible. Hence, there must be an i, 1 ≤ i ≤ k− 1, such that the input
head is moved over the factor ani ·#2 · ani+1 without performing a reset. According to
Lemma 4.9, however, this is not possible, so we obtain a contradiction. �

This proves that for every k ∈ N there exists a language that can be recognised by a
1SL-NBMCAk(1), but cannot be recognised by a 1SL-NBMCAk−1(1). Next, we consider
the converse question, i. e., whether or not there are languages that can be recognised
by a 1SL-NBMCAk(1), but cannot be recognised by any 1SL-NBMCAk+1(1). It turns
out that the existence of such languages can be shown in a non-constructive way by
applying Theorems 4.8 and 4.10 and a simple reasoning about the following subsets of
the classes 1SL-NBMCAk(1), k ∈ N:

Definition 4.11. For every k ∈ N, let 1SL-NBMCAΣ
k (1) be the class of all automata

in 1SL-NBMCAk(1) that are defined over Σ.

By definition, all M ∈ 1SL-NBMCAΣ
k (1) have just one counter and are defined over

the same alphabet Σ. Hence, for all k ∈ N, the sets 1SL-NBMCAΣ
k (1) have the same

constant cardinality:

Proposition 4.12. There exists a constant m̂ ∈ N such that | 1SL-NBMCAΣ
k (1)| = m̂,

for every k ∈ N.

It is not always the case that | L(1SL-NBMCAΣ
k (1))| = | 1SL-NBMCAΣ

k (1)|, thus,
| L(1SL-NBMCAΣ

k (1))| ≤ m̂, k ∈ N. However, it can be shown with little effort that there
are infinitely many k ∈ N, such that | L(1SL-NBMCAΣ

k (1))| = | L(1SL-NBMCAΣ
k+1(1))|

and then Theorems 4.8 and 4.10 imply that these classes are incomparable. This result
can be easily extended to the classes L(1SL-NBMCAk(1)), k ∈ N.

Automata with modulo counters and nondeterministic counter bounds 93

Theorem 4.13. There exist infinitely many k ∈ N such that L(1SL-NBMCAk(1)) and
L(1SL-NBMCAk+1(1)) are incomparable.

P r o o f . We first observe that if, for some k ∈ N, the classes L(1SL-NBMCAΣ
k (1)) and

L(1SL-NBMCAΣ
k+1(1)) are incomparable, then also the classes L(1SL-NBMCAk(1)) and

L(1SL-NBMCAk+1(1)) are incomparable. This is due to the fact that, for all k ∈ N, all
the languages over Σ in L(1SL-NBMCAk(1)) are also contained in L(1SL-NBMCAΣ

k (1)).
Hence, we shall prove the theorem by showing that there exist infinitely many k ∈ N such
that the classes L(1SL-NBMCAΣ

k (1)) and L(1SL-NBMCAΣ
k+1(1)) are incomparable. For

the sake of convenience, for every k ∈ N, we define Γk := L(1SL-NBMCAΣ
k (1)). We

note that it is sufficient to show |Γk| ≥ |Γk+1| in order to conclude that Γk and Γk+1 are
incomparable. This is due to the fact that by Theorems 4.8 and 4.10 there is a language
L with L ∈ Γk+1 and L /∈ Γk. Hence, |Γk| ≥ |Γk+1| implies the existence of a language
L′ with L′ ∈ Γk and L′ /∈ Γk+1.

Now let k ∈ N be arbitrarily chosen. We assume that for each k′, k ≤ k′ ≤ k′+m̂−1,
we have |Γk′ | < |Γk′+1|. Since, for every k′ with k ≤ k′ ≤ k + m̂, |Γk′ | ≤ m̂, this is
not possible. Hence, we conclude that there exists a k′, k ≤ k′ ≤ k + m̂ − 1, such that
|Γk′ | ≥ |Γk′+1|, which implies that Γk′ and Γk′+1 are incomparable. This concludes the
proof. �

The above results yield the following conclusions: For every k ∈ N, there is a language
that can be recognised by a 1SL-NBMCA(1) with k, but not with k−1 resets. This meets
our expectation of nondeterminism being a useful resource enhancing the expressive
power of automata. Theorem 4.13, on the other hand, does not fit with the usual results
on restricted nondeterminism, as it shows that expressive power is lost by increasing
the nondeterminism, i. e., for infinitely many k ∈ N, there is a language that can be
recognised by a 1SL-NBMCA(1) with k, but not with k + 1 resets. Considering the
strong restrictions of 1SL-NBMCAk(1), it is maybe not surprising that without any
states the nondeterminism cannot be controlled anymore and, thus, a result of the sort
mentioned above can be obtained. However, proving this behaviour is quite involved
and, to the knowledge of the authors, it is the first result in the literature that formally
establishes such a connection between finite state control and nondeterminism.

ACKNOWLEDGEMENTS

The authors wish to thank the anonymous referees for their thorough work and their valuable
comments, which improved the readability of this paper significantly.

(Received June 27, 2013)

R E FER E NCE S

[1] J. H. Chang, O. H. Ibarra, M. A. Palis, and B. Ravikumar: On pebble automata. Theoret.
Comput. Sci. 44 (1986), 111–121.

[2] E. Chiniforooshan, M. Daley, O.H. Ibarra, L. Kari, and S. Seki: One-reversal counter
machines and multihead automata: Revisited. In: Proc. 37th Conference on Current
Trends in Theory and Practice of Computer Science, SOFSEM 2011, Lecture Notes in
Comput. Sci. 6543 (2011), pp. 166–177.

94 D. REIDENBACH AND M.L. SCHMID

[3] P. Frisco and O. H. Ibarra: On stateless multihead finite automata and multihead push-
down automata. In: Proc. Developments in Language Theory 2009, Lecture Notes in
Comput. Sci. 5583 (2009), pp. 240–251.

[4] M. Harrison: Introduction to Formal Language Theory. Addison-Wesley, Reading 1978.

[5] M. Holzer, M. Kutrib, and A. Malcher: Complexity of multi-head finite automata: Origins
and directions. Theoret. Comput. Sci. 412 (2011), 83–96.

[6] J. E. Hopcroft and J. D. Ullman: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading 1979.

[7] O. H. Ibarra: Reversal-bounded multicounter machines and their decision problems. J.
Assoc. Comput. Mach. 25 (1978), 116–133.

[8] O. H. Ibarra and Ö. Eğecioğlu: Hierarchies and characterizations of stateless multicounter
machines. In: Computing and Combinatorics, Lecture Notes in Comput. Sci. 5609 (2009),
pp. 408–417.

[9] O. H. Ibarra, J. Karhumäki, and A. Okhotin: On stateless multihead automata: Hierar-
chies and the emptiness problem. Theoret. Comput. Sci. 411 (2010), 581–593.

[10] O. H. Ibarra and B. Ravikumar: On partially blind multihead finite automata. Theoret.
Comput. Sci. 356 (2006), 190–199.

[11] M. Kutrib, A. Malcher, and M. Wendlandt: One-way multi-head finite automata with peb-
bles but no states. In: Proc. 17th International Conference on Developments in Language
Theory, DLT 2013, Lecture Notes in Comput. Sci. 7907 (2013), pp. 313–324.

[12] M. Kutrib, H. Messerschmidt, and F. Otto: On stateless two-pushdown automata and
restarting automata. Internat. J. Found. Comput. Sci. 21 (2010), 781–798.

[13] B. Monien: Two-way multihead automata over a one-letter alphabet. RAIRO Inform.
Théor. 14 (1980), 67–82.

[14] H. Petersen: Automata with sensing heads. In: Proc. 3rd Israel Symposium on Theory of
Computing and Systems 1995, p. 150–157.

[15] D. Reidenbach and M. L. Schmid: A polynomial time match test for large classes of
extended regular expressions. In: Proc. 15th International Conference on Implementation
and Application of Automata, CIAA 2010, Lecture Notes in Comput. Sci. 6482 (2011),
pp. 241–250.

[16] D. Reidenbach and M. L. Schmid: Automata with modulo counters and nondeterministic
counter bounds. In: Proc. 17th International Conference on Implementation and Applica-
tion of Automata, CIAA 2012, Lecture Notes in Comput. Sci. 7381 (2012), pp. 361–368.

[17] D. Reidenbach and M. L. Schmid: Automata with Modulo Counters and Nondeterministic
Counter Bounds. Internal Report 1110, Department of Computer Science, Loughborough
University 2013. https://dspace.lboro.ac.uk/2134/13438.

[18] L. Yang, Z. Dang, and O. H. Ibarra: On stateless automata and P systems. Internat. J.
Found. Comput. Sci. 19 (2008), 1259–1276.

Daniel Reidenbach, Department of Computer Science, Loughborough University, Loughborough,

Leicestershire, LE11 3TU. United Kingdom.

e-mail: D.Reidenbach@lboro.ac.uk

Markus L. Schmid, (Corresponding author) Fachbereich IV – Abteilung Informatikwissenschaften,

Universität Trier, D-54296 Trier. Germany.

e-mail: MSchmid@uni-trier.de

https://dspace.lboro.ac.uk/2134/13438.

		webmaster@dml.cz
	2016-01-03T22:10:55+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document

