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Abstract. FEM discretizations of arbitrary order r are considered for a singularly per-
turbed one-dimensional reaction-diffusion problem whose solution exhibits strong layers. A
posteriori error bounds of interpolation type are derived in the maximum norm. An adaptive
algorithm is devised to resolve the boundary layers. Numerical experiments complement
our theoretical results.
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1. Introduction

Consider the boundary value problem of finding u such that

(1.1) Lu := −ε2u′′ + cu = f in (0, 1), u(0) = u(1) = 0

with functions c, f : [0, 1] → R. The coefficient c is assumed to be piecewise contin-

uous with a finite number of discontinuities. Furthermore, let c be strictly positive,

i.e., c > γ2 on [0, 1] with some constant γ > 0.

Its solution exhibits two layers of width O(ε ln 1/ε) at the two endpoints of the

domain. If the right-hand side f or the reaction coefficient c possesses a discontinuity

at a point d ∈ (0, 1), then an interior layer of the same width will form at d. Because

of the presence of these layers, special measures are required to efficiently obtain

good numerical approximations. Modern literature [15] favours the use of meshes
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that are a priori adapted to the layer structure, for example Bakhvalov meshes [1]

or Shishkin meshes [16].

In many cases, convergence of the FEM for (1.1) is studied in the energy norm

naturally associated with its weak formulation: |||v||| := ε|v|1 + ‖v‖0. Melenk [12]

analyses high-order FEM. He establishes exponential convergence in the energy norm.

A posteriori error bounds for (1.1) in this norm have been derived by Kunert [9].

A drawback of the energy norm is its failure to capture the afore mentioned layers.

They are of O(ε1/2) in that norm. In the recent paper [14] an idea is presented for

studying convergence in a differently weighted H1-norm: |||v|||∗ := ε1/2|v|1 + ‖v‖0,

a norm that captures the layers in (1.1).

Here our focus is on a posteriori error bounds in the maximum norm. This norm

captures the layers and often is the norm of choice for singularly perturbed problems

like (1.1). For some classical problems, i.e. problems without layers, various a poste-

riori error estimators in the maximum are available. For example, in [13], Nochetto

et al. studied finite element methods of arbitrary order for the semilinear problem

−∆u + r(·, u) = 0 in more dimensions. The crucial point—and often also the main

difficulty—in singular perturbations is to carefully monitor the dependence of any

constants on the perturbation parameter(s).

We remark that a standard linearization technique allows to extend the results to

semilinear differential equations −ε2u′′+c(·, u) = 0 with cu > γ2; see for example [5].

The analysis is easily adapted for systems of reaction-diffusion equations using the

technique in [10, §6.2.3.4]. Furthermore, the results can be used as a building block

in the a posteriori error estimation for parabolic problems in the context of [4], [7],

[6]. This is one of the main motivations for the present study.

The outline of the paper is as follows. In Section 2 we introduce a finite element

discretization of (1.1) and summarize our theoretical results for this method. Sec-

tion 3 contains our a posteriori error analysis, while in the final Section 4 an adaptive

mesh-movement strategy is studied which is based on the a posteriori error estimator

of Section 3.

2. Summary

The variational formulation of (1.1) is: Find u ∈ H1
0 (0, 1) such that

(2.1) a(u, v) := ε2(u′, v′) + (cu, v) = (f, v) ∀v ∈ H1
0 (0, 1)

with the L2 scalar product (w, v) :=
∫ 1

0
w(x)v(x) dx.

Let the discretization mesh ω = {xi}
N
i=0 be given by the mesh nodes

0 = x0 < x1 < . . . < xN = 1.
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The mesh intervals and mesh sizes are denoted by Ji := [xi−1, xi] and hi := xi−xi−1,

i = 1, . . . , N .

We shall discretize (2.1) using piecewise polynomials of highest degree r ∈ N
+. To

this end let

C0[0, 1] := {v ∈ C[0, 1] : v(0) = v(1) = 0}

and

Vr := {v ∈ C0[0, 1] : v|Ji
∈ Πr, i = 1, . . . , N} ⊂ H1

0 (0, 1),

where Πr is the space of polynomials of degree r or less.

A first discretization of (2.1) would be: Find uω ∈ Vr such that

(2.2) a(uω, v) = (f, v) ∀v ∈ Vr.

However, in general, the integrals involved cannot be evaluated exactly. Therefore,

we shall consider a discretization which involves the use of quadrature.

Let tj = j/r, j = 0, 1, . . . , r. Then, for any function v ∈ C0[0, 1], an interpolant

ILr v ∈ Vr is uniquely defined by

ILr v(xi−tj ) = v(xi−tj ), i = 1, . . . , N, j = 0, . . . , r,

where for t ∈ [0, 1] we have set xi−t := xi − thi. For example, xi−1/2 is the midpoint

of the mesh interval Ji. For any function g ∈ C[0, 1], we shall also use the notation

gi−t := g(xi−t).

Replacing the L2 scalar product (w, v) in (2.2) by its discrete version (w, v)ω :=

(ILr w, v), we arrive at the FEM: Find uω ∈ Vr such that

(2.3) aω(uω, v) := ε2(u′ω, v
′) + (cuω, v)ω = (f, v)ω ∀v ∈ Vr.

R em a r k 1. If the data c or f are discontinuous at a point d ∈ (0, 1) then the

mesh points must be chosen to cover this discontinuity, i.e., d ∈ ω. Furthermore,

appropriate one sided limits have to be taken in the definition of the interpolation

operator ILr .

In Section 3 the following a posteriori error bound will be derived (Theorem 1):

‖u− uω‖∞ 6

∥∥∥
q − ILr q

c

∥∥∥
∞

(2.4)

+ max
i=1,...,N

hr+1
i

ε2

( αr

(2r)!
|Dr−1

+ qi +Dr−1
− qi|+

2βrhi
(2r + 1)!

|Dr
0qi|

)
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with certain constants αr and βr, and q := f − cuω. Here and throughout we denote

by ‖ · ‖∞,Ω the supremum/maximum norm in L∞(Ω). If Ω = (0, 1), then we drop Ω

from the notation.

The first term on the right-hand side of (2.4) captures the data oscillations and

inevitably requires sampling of c and f , i.e., the data has to be evaluated at a

(potentially large) number of points that do not coincide with mesh points or points

used in the definition of the discrete L2 scalar product (w, v)ω . For details how this

can be done, see Section 3.4.

The difference operators Dr−1
+ , Dr−1

− and Dr
0 represent approximations of deriva-

tives of order r − 1 and r, respectively. They will be defined in Section 3.3. In

particular, |Dr
0qi| 6 r(|Dr−1

+ qi|+ |Dr−1
− qi|)/hi. Thus,

(2.5) ‖u− uω‖∞ 6

∥∥∥
q − ILr q

c

∥∥∥
∞

+
κr
ε2

max
i=1,...,N

hr+1
i (|Dr−1

+ qi|+ |Dr−1
− qi|),

with another constant κr.

In view of the differential equation (1.1) we have q = f − cuω ≈ f − cu = −ε2u′′.

Therefore, the term ε−2(|Dr−1
+ qi|+ |Dr−1

− qi|) corresponds to an approximation of the

derivative of order r + 1 of uω. Estimates with a similar structure are well known

for the interpolation error:

‖w − ILr w‖∞ 6 C max
i=1,...,N

hr+1
i ‖w(r+1)‖∞,Ji

.

Therefore, we call (2.5) an a posteriori error bound of interpolation type.

3. A posteriori error bounds

Our error analysis is based on a representation of the error by means of Green’s

function G associated with the differential operator L and the point x ∈ (0, 1):

(u − uω)(x) = a(u− uω,G(x)) = (f,G(x)) − a(uω,G(x)),

by (2.1).

3.1. Properties of Green’s function. In the sequel we shall use Green’s func-

tion G : [0, 1]2 → R associated with a(·, ·)—or L—to represent the error of the FEM.

For arbitrary but fixed x ∈ (0, 1), Γ := G(x, ·) satisfies Γ ∈ H1
0 (0, 1) and

(3.1) a(w,Γ) = w(x) for all w ∈ H1
0 (0, 1).
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We have assumed that c is piecewise continuous with a finite number of points of

discontinuity. Hence, Γ ∈ C2(∆ \ {x}) ∩ C1((0, 1) \ {x}) ∩ C[0, 1], where ∆ ⊂ (0, 1)

is the set of points where c is continuous. Furthermore, Γ satisfies

(3.1′) LΓ = 0 in ∆ \ {x}, Γ(0) = Γ(1) = 0 and Γ′(x− 0)− Γ′(x + 0) = ε−2.

We quote bounds on Green’s function from [10, §3.3.1.1]. First, the comparison

principle gives 0 6 Γ(ξ) 6 (2ε)−1/2e−γ|ξ−x|/ε because L is inverse monotone. Next,

Γ > 0 on [0, 1] implies Γ′(1) 6 0 and Γ′(0) > 0. Integrating (3.1′) over (0, 1), we get

0 6

∫ 1

0

(cΓ)(ξ) dξ = 1 + ε2(Γ′(1)− Γ′(0)) 6 1.

Thus

(3.2a) ‖cΓ‖L1(0,1) 6 1.

The positivity of Γ′′ on ∆, which follows from the differential equation in (3.1′), and

the jump condition for Γ′ at x yield

(3.2b) ‖Γ′′‖L1 6 2ε−2.

3.2. Preliminaries. A special interpolation operator IMr : C0[0, 1] → Vr, which

will turn out to be particularly suitable for our analysis, is defined via moments. For

i = 1, . . . , N it satisfies

(3.3a) IMr v(xi−1) = v(xi−1), IMr v(xi) = v(xi),

and

(3.3b)

∫

Ji

π(ξ)IMr v(ξ) dξ =

∫

Ji

π(ξ)v(ξ) dξ, ∀π ∈ Πr−2.

The following polynomial pr,i will be central in our analysis:

pr,i(ξ) := ((ξ − xi)(ξ − xi−1))
r =

(
(ξ − xi−1/2)

2 −
(hi
2

)2)r

=

r∑

k=0

(−1)k
(
r

k

)
(ξ − xi−1/2)

2(r−k)
(hi
2

)2k
.

245



Proposition 1.

∫

Ji

dr−1

dξr−1
(pr,i(ξ)̺(ξ))π(ξ) dξ = 0 ∀π ∈ Πr−2, ̺ ∈ Π.

P r o o f. The polynomial pr,i̺ possesses zeros of multiplicity r at xi−1 and xi.

Thus, its derivatives up to and including order r − 1 also vanish at xi−1 and xi.

Therefore, integrating by parts r − 1 times, we obtain

∫

Ji

dr−1

dξr−1
(pr,i(ξ)̺(ξ))π(ξ) dξ = (−1)r−1

∫

Ji

(pr,i(ξ)̺(ξ))π
(r−1)(ξ) dξ.

The proposition follows because π(r−1) ≡ 0 for all π ∈ Πr−2. �

Proposition 2. There exist polynomials π1, π2 ∈ Πr−2 such that

(3.4a) p
(r+1)
r,i (ξ) = (−1)r

(2r)!

(r − 1)!
(ξ − xi−1/2)

r−1 + π1(ξ)

and

(3.4b)
dr+1

dξr+1
(pr,i(ξ)(ξ − xi−1/2)) = (−1)r

(2r + 1)!

r!
(ξ − xi−1/2)

r + π2(ξ).

P r o o f. These identities readily follow from the definition of pr,i. �

Lemma 1. Let Γ = G(x, ·) be Green’s function associated with the operator L

and the point x ∈ (0, 1). Then

∫

Ji

π′(ξ)(Γ − IMr Γ)′(ξ) dξ = 0 ∀π ∈ Πr,(3.5a)

∫

Ji

(ξ − xi−1/2)
k(Γ− IMr Γ)(ξ) dξ = 0 for k = 0, . . . , r − 2,(3.5b)

∫

Ji

(ξ − xi−1/2)
r−1(Γ− IMr Γ)(ξ) dξ = (−1)r+1 (r − 1)!

(2r)!

∫

Ji

p
(r−1)
r,i (ξ)Γ′′(ξ) dξ(3.5c)

and
∫

Ji

(ξ − xi−1/2)
r(Γ− IMr Γ)(ξ) dξ(3.5d)

= (−1)r+1 r!

(2r + 1)!

∫

Ji

dr−1

dξr−1
(pr,i(ξ)(ξ − xi−1/2))Γ

′′(ξ) dξ

for i = 1, . . . , N .
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P r o o f. Fix any i ∈ {1, . . . , N}.

(i) First, we verify (3.5a). Integration by parts gives

∫

Ji

π′(ξ)(Γ− IMr Γ)′(ξ) dξ

= π′(ξ)(Γ− IMr Γ)(ξ)
∣∣xi

ξ=xi−1
−

∫

Ji

π′′(ξ)(Γ − IMr Γ)(ξ) dξ = 0,

by (3.3).

(ii) Equation (3.5b) immediately follows from (3.3b).

(iii) Next, (3.3b) and (3.4a) give

T :=

∫

Ji

(ξ − xi−1/2)
r−1(Γ− IMr Γ)(ξ) dξ

= (−1)r
(r − 1)!

(2r)!

∫

Ji

p
(r+1)
r,i (ξ)(Γ− IMr Γ)(ξ) dξ.

Integrate by parts and use (3.3a) to obtain

T = (−1)r+1 (r − 1)!

(2r)!

∫

Ji

p
(r)
r,i (ξ)(Γ− IMr Γ)′(ξ) dξ.

Once again, integrate by parts. We get

T = (−1)r
(r − 1)!

(2r)!

∫

Ji

p
(r−1)
r,i (ξ)(Γ− IMr Γ)′′(ξ) dξ,

because p
(r−1)
r,i vanishes at xi−1 and xi. Proposition 1 with π = (IMr Γ)′′ yields (3.5c).

The proof of (3.5d) is similar. �

3.3. Error analysis. Let x ∈ (0, 1) be arbitrary, but fixed. Set q := f − cuω.

With Green’s function Γ := G(x, ·) associated with L and x we have

(u− uω)(x) = a(u− uω,Γ) = (f,Γ)− a(uω,Γ)

= (f,Γ)− (f, IMr Γ)ω − a(uω,Γ) + aω(uω, I
M
r Γ)ω = (q,Γ)− (q, IMr Γ)ω

where we have used (2.1), (3.1), (2.3) and (3.5a). We get the error representation

(3.6) (u− uω)(x) = (q − ILr q,Γ)− (ILr q,Γ− IMr Γ).

The first term on the right-hand side can be bounded as follows using (3.2a):

(3.7) |(q − ILr q,Γ)| 6
∥∥∥
q − ILr q

c

∥∥∥
∞
.
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The second term on the right-hand side of (3.6) will be bounded using Lemma 1.

We have

(ILr q)(ξ) =
r∑

j=0

(ILr q)
(j)
i−1/2

j!
(ξ − xi−1/2)

j for ξ ∈ J i, i = 1, . . . , N.

For arbitrary i ∈ {1, . . . , N}, application of Lemma 1 yields
∫

Ji

(ILr q)(ξ)(Γ− IMr Γ)(ξ) dξ

= (−1)r+1

∫

Ji

[
(ILr q)

(r−1)
i−1/2

(2r)!
p
(r−1)
r,i (ξ)

+
(ILr q)

(r)
i−1/2

(2r + 1)!

dr−1

dξr−1
(pr,i(ξ)(ξ − xi−1/2))

]
Γ′′(ξ) dξ

= (−1)r+1

∫

Ji

[
p
(r−1)
r,i (ξ)

(2r)!
ψr,i(ξ) +

r − 1

(2r + 1)!
p(r−2)
r (ξ)(ILr q)

(r)
i−1/2

]
Γ′′(ξ) dξ

with

ψr,i(ξ) := (ILr q)
(r−1)
i−1/2 +

(ILr q)
(r)
i−1/2

2r + 1
(ξ − xi−1/2).

Note that ψ ∈ Π1. Hence it attains its maximum and minimum on J i at the end-

points of the interval. Consequently,

(3.8) ‖ψr,i‖∞,Ji
= max

{∣∣∣∣(I
L
r q)

(r−1)
i−1/2 ±

hi(I
L
r q)

(r)
i−1/2

2(2r + 1)

∣∣∣∣
}
.

Introducing constants

αr := 2 max
ξ∈[0,1]

∣∣∣
dr−1

dξr−1
(ξr(ξ − 1)r)

∣∣∣

and

βr :=
2(r − 1)

2r + 1
max
ξ∈[0,1]

∣∣∣
dr−1

dξr−1
(ξr(ξ − 1)r(ξ − 1/2))

∣∣∣,

we estimate as follows:
∣∣∣∣
∫

Ji

(ILr q)(ξ)(Γ− IMr Γ)(ξ) dξ

∣∣∣∣(3.9)

6
1

2(2r)!
{αrh

r+1
i ‖ψr,i(ξ)‖∞,Ji

+ βrh
r+2
i |(ILr q)

(r)
i−1/2|}

∫

Ji

|Γ′′(ξ)| dξ.

R em a r k 2. For small values of r, the constants αr and βr can be computed

exactly. Otherwise, the constants can be approximated numerically with arbitrary

accuracy.
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Next, we derive alternative expressions for (ILr q)
(r−1)
i−1/2 and (I

L
r q)

(r)
i−1/2. To this end,

let i = 1, . . . , N be arbitrary. Recall that tj = j/r, j = 0, 1, . . . , r, and

xi−t := xi − thi and qi−t := q(xi−t), t ∈ [0, 1].

Then, using the Lagrangian basis to represent ILr , we obtain

(ILr q)
(r−1)(x) =

r∑

l=0

qi−(r−l)/r

r∏

j=0
j 6=l

(r − 1)!

(tl − tj)hi

r∑

j=0
j 6=l

(x− tjhi − xi−1), x ∈ Ji,

and

(ILr q)
(r)(x) =

r∑

l=0

qi−(r−l)/r

r∏

j=0
j 6=l

r!

(tl − tj)hi
, x ∈ Ji.

Set

Dr−1
− qi :=

( r

hi

)r−1 r−1∑

j=0

(
r − 1

j

)
(−1)jqi−(r−j)/r, i = 1, . . . , N

and

Dr−1
+ qi :=

( r

hi

)r−1 r−1∑

j=0

(
r − 1

j

)
(−1)jqi−j/r , i = 1, . . . , N.

These are standard difference quotients of order r − 1 with evenly distributed knots

with distance hi/r. A straightforward calculation yields

(ILr q)
(r−1)
i−1/2 =

Dr−1
+ qi +Dr−1

− qi

2
and (ILr q)

(r)
i−1/2 = Dr

0qi :=
r(Dr−1

+ qi −Dr−1
− qi)

hi
.

Substituting these two expressions into (3.8), we obtain

‖ψr,i‖∞,Ji
= max{|Dr−1

+ |, |Dr−1
− |}, i = 1, . . . , N.

These representations are inserted into (3.9). Then summation for i = 1, . . . , N ,

(3.6), the Hölder inequality and (3.2b) yield our a posteriori error bound which we

summarize as follows.
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Theorem 1. Let u be the solution of the boundary-value problem (1.1) and uω

its numerical approximation from Vr , r ∈ N
+ obtained by (2.3). Then,

(3.10) ‖u− uω‖∞ 6 ηI + ηD

with

ηI :=
∥∥∥
q − ILr q

c

∥∥∥
∞

and

ηD := max
i=1,...,N

[ hr+1
i

(2r)!ε2
(αr max{|Dr−1

+ qi|, |D
r−1
− qi|}+ rβr |D

r−1
+ qi −Dr−1

− qi|)
]
.

R em a r k 3. For r = 1, we recover the result from [11], [10]:

‖u− uω‖∞ 6

∥∥∥
q − IL1 q

c

∥∥∥
∞

+ max
i=1,...,N

[ h2i
4ε2

max{|qi−1|, |qi|}
]
.

R em a r k 4. In hp- and hpr-FEM, polynomials of different degrees may be used

on each subinterval. Our analysis easily extends to these methods.

Let r ∈ (N+)N and Vr := {v ∈ C0[0, 1] : v|Ji
∈ Πri , i = 1, . . . , N}. For v ∈

C0[0, 1], the interpolant I
L
r
v ∈ Vr is uniquely defined by

IL
r
v(xi − jhi/ri) = v(xi − jhi/ri), j = 0, . . . , ri, i = 1, . . . , N.

Then, our hpr-FEM is: Find uω ∈ Vr such that

a∗(uω, v) := ε2(u′h, v
′) + (cuω, v)∗ = (f, v)∗ ∀v ∈ Vr,

with (w, v)∗ := (IL
r
w, v).

Imitating the above argument, we obtain (3.10) with

ηI := max
i=1,...,N

∥∥∥
q − ILriq

c

∥∥∥
∞,Ji

and

ηD := max
i=1,...,N

[ hri+1
i

(2ri)!ε2
(αri max {|Dri−1

+ qi|, |D
ri−1
− qi|}

+ riβri |D
ri−1
+ qi −Dri−1

− qi|)
]
.
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3.4. Numerical results. Consider the test problem

(3.11) −ε2u′′(x) + (1 + x2 + cosx)u(x) = e−x, x ∈ (0, 1), u(0) = u(1) = 0.

Its exact solution is unknown. Therefore, we approximate the errors in uω by compar-

ison with the numerical solution uω∗ on a mesh ω∗ obtained by uniformly bisecting

the original mesh twice, i.e., a mesh that is four times as fine:

‖u− uω‖∞ ≈ ‖uω∗ − uω‖∞.

We are left with determining the maximum difference of two polynomials of poten-

tially high degree, which again can be done approximately only. We use the following

approximation:

‖u− uω‖∞ ≈ ‖uω∗ − uω‖∞ ≈ χω := max
i=1,...,N

‖uω∗ − uω‖∞̂,Ji

with

‖ϕ‖∞̂,Ji
:= max

k=0,...,4r
|ϕ(xi−k/(4r))|, i = 1, . . . , N.

Thus, on each mesh interval J i, i = 1, . . . , N , we use 4r+1 evenly distributed points

to approximate the maximum errors. Note that for computing the the discrete L2

scalar product (w, v)ω , only r + 1 points are used.

Similarly, the term ηI appearing in the error estimator cannot be computed exactly

because it involve the data c and f of the problem which can be computed in a finite

number of points only. Therefore, we approximate ηI :

∥∥∥
q − ILr q

c

∥∥∥
∞,Ji

≈
∥∥∥
q − ILr q

c

∥∥∥
∞̂,Ji

,

i.e., on each mesh interval Ji we compute the difference (q− ILr q)/c in 4r+1 points.

Then we take the maximum.

We use a Bakhvalov mesh [1] with N mesh intervals. This mesh is designed

to resolve the layers in the solution. Its mesh nodes are given by xi = µ(i/N),

i = 0, . . . , N , with the mesh generating function

µ(ζ) =






ϑ(ζ) :=
σε

γ
ln

α

α− ζ
, ζ ∈ [0, ζ∗],

ϑ(ζ∗) + ϑ′(ζ∗)(ζ − ζ∗), ζ ∈ [ζ∗, 1/2],

1− µ(1− ζ), ζ ∈ [1/2, 1].

The transition point ζ∗ satisfies (1 − 2ζ∗)ϑ′(ζ∗) = 1 − 2ϑ(ζ∗), which implies µ ∈

C1[0, 1]. The mesh parameters are chosen as σ = r+1 and α = 1/4. It is well known
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that the parameter σ should be chosen to be equal to or greater than the formal order

of the method [10]. Other layer-adapted meshes, for example Shishkin’s piecewise

uniform mesh [16], have been tested too. The results are comparable.

In our experiments, we fix the perturbation parameter as ε = 10−8. This is a

sufficiently small value to bring out the singular-perturbation nature of the prob-

lem. Almost identical results are obtained for other values of ε, thus illustrating the

robustness of the method with respect to the perturbation parameter.

Tables 1 and 2 display the results of our tests for elements of order r = 5 and

r = 10. The first column contains the number of mesh intervals N followed by the

maximum-norm error (estimated as above by χω), by the rate of convergence and by

the two components ηI and ηD of the error estimator. The last two columns contain

the full error estimator η and the effectivity index η/χω. Clearly, η/χω > 1, and the

smaller this ratio the less the overestimation of the error.

N χω rate ηI ηD η η/χω

28 2.753e-12 5.99 8.512e-19 1.104e-11 1.104e-11 4.012

29 4.344e-14 5.99 1.331e-20 8.824e-14 8.824e-14 2.031

210 6.820e-16 6.00 2.081e-22 1.375e-15 1.375e-15 2.015

211 1.068e-17 6.00 3.252e-24 2.144e-17 2.144e-17 2.007

212 1.671e-19 6.00 5.082e-26 3.348e-19 3.348e-19 2.003

213 2.613e-21 6.00 7.941e-28 5.229e-21 5.229e-21 2.001

214 4.084e-23 6.00 1.241e-29 8.169e-23 8.169e-23 2.001

215 6.382e-25 6.00 1.939e-31 1.276e-24 1.276e-24 2.000

216 9.972e-27 — 3.029e-33 1.994e-26 1.994e-26 2.000

Table 1. The FEM on a Bakhvalov mesh for (3.11), r = 5.

N χω rate ηI ηD η η/χω

28 1.566e-21 10.96 2.918e-28 1.493e-20 1.493e-20 9.538

29 7.840e-25 10.98 1.462e-31 7.469e-24 7.469e-24 9.527

210 3.877e-28 10.99 7.228e-35 3.691e-27 3.691e-27 9.522

211 1.905e-31 11.00 3.552e-38 1.813e-30 1.813e-30 9.520

212 9.330e-35 11.00 1.740e-41 8.881e-34 8.881e-34 9.518

213 4.563e-38 11.00 8.509e-45 4.343e-37 4.343e-37 9.518

214 2.230e-41 11.00 4.158e-48 2.122e-40 2.122e-40 9.517

215 1.089e-44 11.00 2.031e-51 1.037e-43 1.037e-43 9.517

216 5.319e-48 — 9.920e-55 5.062e-47 5.062e-47 9.517

Table 2. The FEM on a Bakhvalov mesh for (3.11), r = 10.

In both tables the errors reduce as expected with order r + 1. The convergence

is uniform in the perturbation parameter. Furthermore, we observe a strong linear

252



correlation of actual errors and of the error estimator η. The error overestimation is

moderate: close to 2 for r = 5, and less than 10 for r = 10.

The dominant component of the error estimator is ηD. In both tables it is

significantly larger than ηI . This is more pronounced on a Shishkin mesh where

ηI ∼ N−(r+1), while both the actual error and ηD behave like (N
−1 lnN)r+1, i.e.,

ηI converges faster to zero than ηD.

4. An adaptive algorithm

Using the a posteriori estimates of the preceding section an adaptive algorithm

can be devised. It is based on an idea by de Boor [3] and uses an equidistribution

principle. Its convergence in connection with an error estimator for the second order

central difference scheme was recently studied by Kopteva and Chadha [2].

The idea is to adaptively design a mesh for which the local contributions to the a

posteriori error estimator (incorporating sampling of the data as in Section 3.4)

νi(uω, ω) :=
∥∥∥
q − ILr q

c

∥∥∥
∞̂,Ji

+
hr+1
i

(2r)!ε2
(αr max{|Dr−1

+ |, |Dr−1
− |}+ rβr|D

r−1
+ qi −Dr−1

− qi|)

are the same on each mesh interval, i.e., νi−1(uω, ω) = νi(uω, ω) for i = 1, . . . , N .

This is equivalent to

(4.1) Qi(uω, ω) =
1

N

N∑

j=1

Qj(uω, ω), Qi(uω, ω) := νi(uω, ω)
1/(r+1).

However, de Boor’s algorithm, which we are going to describe now, becomes nu-

merically unstable when the equidistribution principle (4.1) is enforced strongly.

Instead, the algorithm is stopped as proposed in [2], [8] when

Q̃i(uω, ω) 6
γ

N

N∑

j=1

Q̃j(uω, ω)

for some user chosen constant γ > 1. Here we have also modified Qi by choosing

Q̃i(uω, ω) := hi + νi(uω, ω)
1/(r+1).

Adding this positive constant to νi avoids mesh starvation and smoothes the conver-

gence of the adaptive mesh algorithm.
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4.1. Adaptive mesh-movement algorithm.

(1) Fix N , r and a constant γ > 1. The initial mesh ω[0] is uniform with mesh size

1/N .

(2) For k = 0, 1, . . ., given the mesh ω[k], compute the FEM solution u
[k]

ω[k] on this

mesh. Set h
[k]
i = x

[k]
i −x

[k]
i−1 for each i. Compute the piecewise-constant function

M [k] defined by

M [k](x) := Q̃
[k]
i := Q̃i(u

[k]

ω[k] , ω
[k]) for x ∈ (xki−1, x

k
i ).

The total integral of the monitor function is

I [k] :=

∫ 1

0

M [k](t) dt =
N∑

j=1

h
[k]
j Q̃

[k]
j .

(3) Test mesh: If h
[k]
j Q̃

[k]
j 6 γI [k]N−1 for j = 1, . . . , N , then go to Step 5. Other-

wise, continue to Step 4.

(4) Generate a new mesh by equidistributingM [k], i.e., choose the new mesh ω[k+1]

such that ∫ x
[k+1]
i

x
[k+1]
i−1

M [k](t) dt =
I [k]

N
, i = 1, . . . , N.

Return to Step 2.

(5) Set ω = ω[k] and uω = u
[k]

ω[k] then stop.

4.2. Numerical results. We consider a modification of (3.11):

(4.2) −ε2u′′(x) + (1 + x2 + cosx)u(x) = x3/2 + e−x, x ∈ (0, 1), u(0) = u(1) = 0.

Because of the term x3/2 on the right-hand side, the second derivative of the reduced

solution u0 = f/c has a singularity at x = 0.

Consequently, a mesh that resolves the layers only, but not the singularity, will give

unsatisfactory approximations. This is confirmed by Table 3. The error estimator

correctly reflects this behaviour. Note that for this example the actual errors and

the values of ηI are (almost) identical. This indicates that the data is not sufficiently

well approximated.

In contrast, the FEM with adaptive mesh movement according to the algorithm

of Section 4.1 preserves the high order of the method; see Table 4. Both the errors

and their a posteriori bounds are converging with order close to r + 1, although the

errors converge a bit faster. This implies that the effectivity index worsens with N .

The results of the experiments are promising. However, more systematic numerical

investigations are required, as is a rigorous theoretical justification for the adaptive

algorithm.
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N χω rate ηI ηD η η/χω

28 2.943e-07 1.52 2.943e-07 6.343e-06 6.637e-06 22.548

29 1.028e-07 1.53 1.028e-07 2.115e-06 2.218e-06 21.569

210 3.555e-08 1.56 3.555e-08 6.881e-07 7.236e-07 20.357

211 1.205e-08 1.61 1.205e-08 2.160e-07 2.280e-07 18.920

212 3.949e-09 1.69 3.949e-09 6.438e-08 6.833e-08 17.304

213 1.220e-09 1.84 1.220e-09 1.780e-08 1.902e-08 15.594

214 3.418e-10 2.06 3.418e-10 4.411e-09 4.752e-09 13.903

215 8.203e-11 2.40 8.203e-11 9.300e-10 1.012e-09 12.338

216 1.555e-11 — 1.555e-11 1.549e-10 1.704e-10 10.959

Table 3. The FEM on a Bakhvalov mesh for (4.2), r = 7.

N χω rate ηI ηD η η/χω K
28 9.130e-16 5.91 1.467e-16 4.606e-15 4.753e-15 5.205 16

29 1.522e-17 11.41 4.000e-18 1.076e-16 1.116e-16 7.333 7

210 5.587e-21 8.77 1.031e-19 2.827e-20 1.314e-19 23.511 8

211 1.279e-23 8.05 2.273e-21 5.604e-23 2.329e-21 182.163 8

212 4.816e-26 4.98 1.769e-23 6.188e-25 1.831e-23 380.143 9

213 1.528e-27 10.60 8.918e-27 9.763e-27 1.868e-26 12.224 12

214 9.817e-31 7.03 1.398e-28 9.326e-30 1.491e-28 151.906 11

215 7.537e-33 9.43 1.230e-30 1.178e-31 1.347e-30 178.792 11

216 1.094e-35 — 3.463e-33 7.680e-35 3.540e-33 323.458 12
ave. rate 8.27 7.32 8.21 7.53

Table 4. The FEM for (4.2) using adaptive mesh movement, r = 7, γ = 2.
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