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ON CURVES AND JETS OF CURVES ON SUPERMANIFOLDS

Andrew James Bruce

Abstract. In this paper we examine a natural concept of a curve on a
supermanifold and the subsequent notion of the jet of a curve. We then tackle
the question of geometrically defining the higher order tangent bundles of
a supermanifold. Finally we make a quick comparison with the notion of a
curve presented here are other common notions found in the literature.

1. Introduction

Supermanifolds are a generalisation of the notion of a smooth manifold in which
the structure sheaf of the manifold gets replaced by a sheaf of supercommutative
algebras. Informally one can think of a supermanifold as a “manifold” with both
commuting and anticommuting coordinates. Initial interest in supermanifolds came
from developments in theoretical physics where anticommuting variables were
found to be essential in quasi-classical descriptions of fermions and Faddeev–Popov
ghosts. Today the theory of supergeometry had developed into a rich area of pure
mathematics in its own right. In this paper we look at a geometric or kinematic
definition of the higher order tangent bundle of a supermanifold.

Higher order tangent bundles, not to be confused with the related iterated
tangent bundles, are the natural geometric home of higher derivative Lagrangian
mechanics and thus a clear geometric understanding of the super-versions is impor-
tant for general supermechanics. The Ostrogradskĭı instability means that higher
derivative Lagrangians cannot be viewed as fundamental theories, however they
can serve as effective theories. As a side remark, there has been some renewed
interest in higher derivative supersymmetric field theories in relation to supergravity
effective actions from string theory [18]. Higher order tangent bundles are also
fundamental to the notion of graded bundles and homogeneity structures as studied
by Grabowski and Rotkiewicz [10].
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To the authors’ knowledge the k-th order tangent bundle T (k)M of a superma-
nifold M was first described by Cariñena & Figueroa [2] via a “diaginalisation”
of the k-th iterated tangent bundle. This line of reasoning parallels the classical
constructions, but the relation with curves and their jets is obscured. Another
approach to the k-th order tangent bundle is to consider them as Weil bundles,
the classical case can be found in the monograph of Kolář, Michor and Slovák
[12]. Essentially the k-th order tangent bundle can be viewed as the supermanifold
of all maps (both even and odd) from Spec(Dk) to the supermanifold M , where
Dk = R[δ]/〈δk+1〉 and δ is a single even indeterminant. Details of Weil bundles on
supermanifolds can be found in the work of Alldridge [1] and the unpublished notes
of Rotkiewicz. This approach is elegant and has been extremely powerful in classical
differential geometry. Note that odd maps are required in this algebraic approach
and that this already complicates the situation as compared to the classical case.

In this work we construct the k-th order tangent bundle of a supermanifold in
terms of superised versions of curves and their jets. To do this we employ Grothen-
dieck’s functor of points. Loosely, the S-points of the k-th order tangent bundle
are identified with the k-th jets of curves at the S-points of the supermanifold. We
show that the operational handling of jets of curves on supermanifolds in terms of
Taylor expansions in local coordinates can be put on solid footing using the functor
of points.

This paper is arranged as follows: We continue this section with some prelimi-
nary constructions and set some notation. In §2 we discuss “superfunctions” or
“superfields” in the physics language on R and define their jets. These objects will
play a fundamental role throughout the remained of the paper. The bulk of the
paper is contained in §3 we we define (parameterised) curves on supermanifolds and
use them to kinematically define the higher order tangent bundles. In §4 the graded
structure of higher order tangent bundles is described in the framework of presented
here. We conclude in §5 with a quick comparison of some of the common notions of a
curve on a supermanifold present in the literature and the notions put forward here.

Preliminary notation. For an overview of category theory we suggest Mac La-
ne’s book [13]. We will follow the “Russian school” and denote by SM the category
of real finite dimensional supermanifolds understood as locally superringed spaces,
see for example [3, 4, 14, 19]. We will simply denote a supermanifold by M , where
we understand it to be defined by its structure sheaf (|M |,OM ), where |M | is
the reduce manifold or body of M . By an open superdomain U ⊂ M , we mean
an open neighborhood of some point p ∈ |M | together with the corresponding
restriction of the structure sheaf. Sections of the structure sheaf will be called
functions on M and the set of all functions will be denoted by C∞(M). A mor-
phism between supermanifolds φ : M → N is a pair of morphisms (|φ|, φ∗) where
|φ| : |M | → |N | is a continuous map and φ∗ : ON → OM is a sheaf morphism above
|φ|. The set of morphisms between the pair of supermanifolds will be denoted by
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HomSM(M,N) := Hom(M,N). Note that these categorical morphisms necessarily
preserve the Z2-grading. We assume the reader has some familiarity with the theory
of supermanifolds, though we will quickly outline the functor of points and the
notion of a mapping supermanifold.

The functor of points. We will employ the Grothendieck’s functor of points
applied to supergeometry throughout this work, see for example [3, 4]. The S-points
of a supermanifold M are elements in the set Hom(S,M), where S is some arbitrary
supermanifold. That is, one can view a supermanifold as a functor

M : SMo → Set

S 7→ Hom(S,M) := M(S) ,
which is an example of the Yoneda embedding. Via Yoneda’s lemma, we can identify
a supermanifold with such a functor and morphisms between supermanifolds are
equivalent to natural transformations between the corresponding functors. Such
natural transformations amount to maps between the respective sets of S-points.
Informally one can think about the “points” of M as being parameterised by all
supermanifolds S.

Remark. Following the work of Schwarz and Voronov [17, 20] it is known that it
is actually sufficient to consider just Λ-points, that is supermanifolds of the form
R0|q (q ≥ 1) as paramaterisations.

One can think about the evaluation of a given function at an S-point, which
is the analogue of the evaluation of a function on a manifold at a point. First
note that we have the bijection between C∞(M) and Hom(M,R1|1) simply gi-
ven by f 7→ (t ◦ f, τ ◦ f), where we have local coordinates (t, τ) on R1|1. Then
we define the value of the function f at a specified S-point m ∈ M(S) as
fm := f ◦m ∈ Hom(S,R1|1) ' C∞(S).

As the functor of points involves maps between finite dimensional supermanifolds
one can consider S-points locally via coordinates. In particular, let us employ some
coordinate system (xA) = (xa, θi) on U ⊂M , then the S-points are then specified
by systems of functions (xaS , θiS) where xaS ∈ C∞(S)0 and θiS ∈ C∞(S)1. As
the supermanifold S is chosen arbitrarily dependence on the local coordinates of
S will not explicitly be presented. Given a morphism ψ ∈ Hom(P, S) between
supermanifolds P and S we have an induced map

ψ̄ : M(S) → M(P )
m 7→ m ◦ ψ ,

where m ∈M(S).

Generalised supermanifolds and the internal homs. A generalised super-
manifold is an object in the functor category ŜM := Fun(SMo, Set), whose objects
are functors from SMo to the category Set and whose morphisms are natural
transformations. Note that this functor category contains SM as a full subcategory
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via the Yoneda embedding. One passes from the category of finite dimensional
supermanifolds to the larger category of generalised supermanifolds in order to
understand the internal hom objects. In particular there always exists a generalised
supermanifold such that the so called adjunction formula holds

Hom(M,N)(•) := Hom(• ×M,N) ∈ ŜM .

By some abuse of language, the mapping supermanifold Hom(M,N) is referred
to as an internal hom object, remembering that it lives in the larger category
of generalised supermanifolds. Heuristically, one should think of enriching the
morphisms between supermanifolds to now have the structure of a supermanifold,
however to understand this one passes to a larger category. In essence we will use
the above to define what we mean by a mapping supermanifold and will probe it
using the functor of points. A generalised supermanifold is representable if it is
naturally isomorphic to a supermanifold in the image of the Yoneda embedding.
For example, it is easy to see that Hom({pt},M) = |M | while Hom({pt},M) = M .
Another well-know example of a representable generalised supermanifold is the
antitangent bundle Hom(R0|1,M) = ΠTM .

2. Superfunctions on R and their jets

Smooth functions R→ R play a fundamental role in the notion of classical jets
on manifolds. The smooth maps R → R1|1, where we allow both even and odd
maps, superfields in the physics language, play the analogue role in supergeometry.

The mapping supermanifold in question here is Hom(R,R1|1). As this is not a
set one has to take a little care with defining its “elements”. To do this we “probe”
the mapping supermanifold via the functor of points. That is it will be useful to
consider the set

(2.1) Hom(R,R1|1)(S) := Hom(S × R,R1|1) ,

for an arbitrary supermanifold S.

Definition 1. A superfunction on R paramaterised by S ∈ SM is a smooth map
ΥS ∈ Hom(R,R1|1)(S).

Remark. By convention a function on a supermanifold is a section of the structure
sheaf, that is a smooth parity preserving map from the supermanifold to R1|1. Thus
we can identify C∞(M) = Hom(M,R1|1). No confusion between this notion and a
superfunction on the real line should occur.

Construction 1. Let ψ ∈ Hom(P, S) be a morphism of supermanifolds. Then
such a morphism induces a map

Ψ : Hom(R,R1|1)(S) → Hom(R,R1|1)(P )
ΥS 7→ ΥP := ΥS ◦ (ψ × 1R) .(2.2)
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Note that a superfunction on R parameterised by S is nothing but a function
on the supermanifold S × R. Thus we have a well defined notion of taking the
derivative with respect to “time" by picking a global coordinate on R. In particular
we can Taylor expand any superfunction with respect to any point t0 ∈ R.

Construction 2. Let ΥS ∈ Hom(R,R1|1)(S) be a superfunction on R parame-
terised by S. The k-th jet of ΥS at the point t = t0 ∈ R is the polynomial with
coefficients in C∞(S)(

Jkt0ΥS

)
z = ΥS |t0 + z

∂ΥS

∂t

∣∣∣∣
t0

+ z2 1
2!

∂2ΥS

∂t2

∣∣∣∣
t0

+ · · ·+ zk
1
k!

∂kΥS

∂tk

∣∣∣∣
t0

,

for any natural k. Here z is understood as an even indeterminant.

Definition 2. Let ΥS , ῩS ∈ Hom(R,R1|1)(S) be superfunctions on R parameteri-
sed by S. Then ΥS and ῩS are said to be equivalent to order r at the point t0 ∈ R
if and only if (

Jrt0ΥS

)
=
(
Jrt0ῩS

)
.

Clearly this is an equivalence relation on the set Hom(R,R1|1)(S).

Essentially the above definition says that two parameterised superfunctions are
equivalent to order r at t0 if they can be identified at this point and so can their
first r derivatives with respect to t.

Lemma 1. Let ΥS ∈ Hom(R,R1|1)(S) be a superfunction on R. Consider an
arbitrary homomorphism of supermanifolds ψ ∈ Hom(P, S). Then we have

Jkt0ΥP =
(
Jkt0ΥS

)
◦ ψ

Proof. We have
ΥP (t) := (ΥS ◦ (ψ × 1R)) (t) = ΥS(t) ◦ ψ,

for all t ∈ R. Then taking the derivative with respect to t an arbitrary number of
times yields

∂rΥP (t)
∂tr

= ∂r

∂tr
(ΥS(t) ◦ ψ) =

(∂rΥS(t)
∂tr

)
◦ ψ ,

as the morphism ψ is independent of t. Then one obtains
∂rΥP

∂tr

∣∣∣∣
t0

=
(∂rΥS

∂tr

∣∣∣
t0

)
◦ ψ.

Then as the morphism ψ is also independent of z we obtain the desired result. �

3. Curves on supermanifolds and higher order tangent bundles

We are now in a position to describe curves on supermanifolds and the notion of
their jets. We will attempt to follow classical reasoning, say c.f. Chapter IV of Kolář,
Michor and Slovák [12], as much as possible. There is a clear problem with the naïve
definition of a curve as a morphism of supermanifolds R→M and the subsequent
construction of their jets. Such a classical definition of a curve, as morphisms of
supermanifolds preserve Grassmann parity, totally misses the odd dimensions of
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the supermanifold. The only points that such classical curves can pass through are
the topological points of the underlaying reduced manifold. Thus if one attempts to
follow the classical constructions more or less identically, then the resulting struc-
tures are classical ones on the underlying reduced manifold. The resolution of these
issues is to employ the internal Homs and the functor of points in our constructions.

Informally a curve on a supermanifold M is a smooth map γ ∈ Hom(R,M). To
make proper sense of this we “probe” Hom(R,M) using the functor of points.

Definition 3. A curve on a supermanifold M parameterised by another super-
manifold S is a smooth morphism γS ∈ Hom(R,M)(S). We will refer to R as the
source, M as the target and S as the parameterisation of the curve. For brevity we
will refer to γS as an S-curve.

In practice S-curves may only be locally defined on M , but we will not make
an issue of this here. Note that we do not really ever deal with a single map, but
rather always a family. Note also that as Hom(R,M)(S) = Hom(S × R,M) the
image set of an S-curve γS(R) ⊂ M(S) is a collection of S-points of M . This is
close to classical thinking as an S-curve traces out S-points. A little more carefully,
we can view γ|t0 : Hom(R,M)→M as a natural transformation via restriction of
an S-curve to a specific point t0 ∈ R and realising that Hom({pt},M) = M .

Moreover, as we are dealing with morphisms between supermanifolds one can
describe everything locally in terms of coordinates. With that in mind, let us
consider some coordinate system (xA) = (xµ, θi) on U ⊂ M . We also employ a
(global) coordinate system (t) on R. We will not write out explicitly any coordinate
system on S, or in other words we just localise the S-curves on M . Then we can
describe any S-curve as

(xA ◦ γS)(t) =
(
xµS(t), θiS(t)

)
,

which is a system of even and odd functions in C∞(R)×C∞(S). The statement that
a S-curve γS passes through a point m ∈ M(S) means γS(0) = m which locally
on M is equivalent to the specification of the system of even and odd functions
(xµS(0), θiS(0)).

Remark. Supercurves are also found in the literature as morphisms Hom(R1|1,M).
These morphisms should not be confused with the notion of an S-curve as used
in this work. Importantly it is not sufficient to consider just supercurves in the
proceeding constructions. We will further comment on this in §5.

Definition 4. Two S-curves γS and δS ∈ Hom(R,M)(S) are said to be at contact
to order k at m ∈M(S) if and only if γS(0) = δS(0) = m and for every function
f ∈ C∞(M) we have

Jk0 (f ◦ γS) = Jk0 (f ◦ δS) .
In this case we will write jkmγS = jkmδS . An equivalence class of this relation is

a (k,S)-jet from R to M and we will denote these by [γ]kS .
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Remark. The compositions f ◦ γS and f ◦ δS make sense and are elements in
Hom(R,R1|1)(S), that is superfunctions on R (parameterised by S) in the language
introduced in the previous section. Thus for a specified S the composition describes
the evaluation of the function f over a family of S-points parameterised by t ∈ R.

Notation. The set of all (k,S)-jets from R to M with target m ∈ M(S) will be
denoted by Jk0 (R,M(S))m. The set of all (k, S)-jets from R to M will be denoted
as Jk0 (R,M(S)). We will denote the map between sets that assigns to an S-curve a
(k, S)-jet as

Hom(R,M)(S) jkS−→ Jk0
(
R,M(S)

)
(3.1)

γS 7→ [γ]kS .
Directly from Lemma 1 we are led to the following construction.

Construction 3. Given an arbitrary ψ ∈ Hom(P, S) we have the induced map of
sets

Ψ(k) : Jk0 (R,M(S)) → Jk0 (R,M(P ))
[γ]kS 7→ [γ]kP := [γ ◦ (ψ × 1R)]kS = [γ]kS ◦ ψ,

All these proceeding considerations leads the following definition.

Definition 5. The k-th order tangent bundle T (k)M of a supermanifold M is the
generalised supermanifold defined by (T (k)M)(•) := Jk0 (R,M(•)) ∈ ŜM.

Warning. The k-th order tangent bundle must be viewed as a generalised su-
permanifold at this stage. We need to address the naturality of this construction
and then the representability. Furthermore, the k-th order tangent bundle should
not be confused with the k-th order iterated tangent bundle T kM := TT · · ·TM
(k-times).

Given an arbitrary ψ ∈ Hom(P, S) we have the following diagram which must be
commutative if the construction of the k-th order tangent bundle is to be natural.

Hom(R,M)(S) Ψ - Hom(R,M)(P )

(T (k)M)(S)

jkS

?
Ψ(k)

- (T (k)M)(P )

jkP

?

In other words, one wants jk : Hom(R,M)→ T (k)M to be a natural transfor-
mation between the respective generalised supermanifolds. The map Ψ is given
by γS 7→ γP := γS ◦ (ψ × 1R). The map Ψ(k) is given by [γ]kS 7→ [γ]kP := [γ]kS ◦ ψ.
Thus we need to show that jkP ◦Ψ = Ψ(k) ◦ jkS in order to prove we have a natural
transformation.

Proposition 1. The construction of the k-th order tangent bundle T (k)M is
natural.



122 A. J. BRUCE

Proof. Let f ∈ C∞(M) be an arbitrary function on M and consider f ◦ γS ∈
Hom(R,R1|1)(S). Then from Construction 1 we have f ◦ γS 7→ f ◦ γP := f ◦
(γS ◦ (ψ × 1R)), where ψ ∈ Hom(P, S). Then one can apply Lemma 1 to obtain
that jkm◦ψγP = (jkmγS) ◦ ψ. Then passing to the equivalence classes establishes the
proposition. �

Lemma 2. Let (xA) = (xµ, θi) be a coordinate system on U ⊂ M . Then two
S-curves γS , δS ∈ Hom(R,M)(S) are at contact to order r at m ∈ M(S) if and
only if

(3.2) ∂k

∂tk
(xA ◦ γS)(0) = ∂k

∂tk
(xA ◦ δS)(0) ,

where k = 0, 1, 2, . . . , r and for all coordinate functions xA.

Proof. If jrmγS = jrmδS then it is clear that 3.2 holds as each coordinate xA is
a function on M . In the other direction, assume that 3.2 holds. Let f ∈ C∞(M)
be an arbitrary function. Any function f on M has a coordinate expression f(x).
Then using Faà di Bruno’s formula [6] (repeated application of the chain rule) it is
easy to see that all derivatives up to order r of f ◦ δS at t = 0 depend only on the
partial derivatives of f at γS(0) up to order r and on 3.2. Thus jrmγS = jrmδS . �

Construction 4. Consider ϕ ∈ Hom(M,N). Then there is an induced map of
S-points

Φ : M(S) → N(S)
m 7→ ϕ ◦m,

which in turn induces a map
T (k)Φ: (T (k)M)(S) → (T (k)N)(S)

[γ]kS 7→ [ϕ ◦ γ]kS .

Theorem 1. The k-th order tangent bundle T (k)M of a supermanifold M is
representable. Moreover as supermanifolds we have a series of affine fibrations
T (k)M → T (k−1)M → · · · → TM → M , where we have T (1)M = TM and
T (0)M = M .

Proof. Lemma 2 allows us to describe the elements of
(
T (k)M

)
(S) locally on M

via coordinate systems using the Taylor expansion of the coordinate expression for
the generating S-curves about the point t = 0. Thus, with respect to any coordinate
system (xA) on U ⊂M an element of the set

(
T (k)U

)
(S) is a tuple of the form

(3.3) (xAS , ẋAS , ẍAS , . . . ,
k

xAS ) ,
which is an array of collections of functions on S defined as

r

xAS := 1
r!

∂r

∂tr
(xA ◦ γS)

∣∣∣∣
t=0

.

Simple counting of the number of coordinates shows that if the supermanifold
M is of dimension (n|m) (both are finite) then the array of functions given by
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3.3 is of dimension ((k + 1)n|(k + 1)m). Now, let ϕ ∈ Hom(U, V ) be a morphism
between two superdomains in the neighborhood of some point on |M |. Let us
equip the superdomain V ⊂M with local coordinates (ya). Then as usual we have
(ya ◦ϕ) = ϕ∗ya = ya(x). Then at the level of coordinates the S-points transform as

ϕ∗yaS(x) = (ya ◦ ϕ) ◦m = ya(x) ◦m.

One can deduce the transformation rules for the coordinate expressions of the
S-points on the k-th order tangent bundle using Construction 4;

yaS ◦ Φ = (ya ◦ ϕ ◦ γS)(0), r

yaS ◦ T (r)Φ = 1
r!
∂r

∂tr
(ya ◦ ϕ ◦ γS)(t)

∣∣∣∣
t=0

,

where 0 < r ≤ k. By appealing to Faà di Bruno’s formula we note that r

yaS ◦ T (r)Φ
depends only on l

xAS where l ≤ r and polynomially. Furthermore, each term is such
that r =

∑
li. Importantly it is easy to see that transformation rules preserve the

Grassmann parity. This establishes that T (k)U , for any superdomain U ⊂ M is
representable as each S-point is described by a finite array of functions on S and
that changes of coordinates on U induce well-defined transformation rules for the
corresponding coordinate expressions of S-points. Thus we conclude that the k-th
order tangent bundle of a supermanifold is representable. Furthermore we have a
series natural of affine fibrations T (k)M → T (k−1)M → · · · → TM →M between
supermanifolds induced by the transformation rules for the coordinate expression
of the S-points. �

Remark. The series of projections πl : T (l)M → T (l−1)M can be directly unders-
tood via the map [γ]kS → [γ]k−1

S on the equivalence classes of the S-curves.

Corollary 1. From Construction 4 and Theorem 1 we have the functor T (k) : SM→
SM. Moreover, as any morphism of supermanifolds S × R → M1 ×M2 coincides
with a pair of morphisms S×R→M1 and S×R→M2 the functor T (k) preserves
products, just as in the classical case1.

Example. To illustrate the above theorem let us concentrate on T (2)M . Let us
equip M with local coordinates (xA). Then the S-points of T (2)M can locally
on M be described by (xAS , ẋAS , ẍAS ). Now, let us consider a local diffeomorphism
ϕ : M →M , which in local coordinates is represented by xA′ ◦ ϕ = xA

′(x). Then

1See for example 35.11. of [12]
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we can calculate the effects of this change of local coordinates on the S-points

xA
′

S = (xA
′
◦ ϕ) ◦ γS(0) ,

ẋA
′

S = ∂(xB ◦ γS)(t)
∂t

∣∣∣∣
t=0
· ∂(xA′ ◦ ϕ)

∂xB
◦ γS(0) = ẋBS ·

(∂xA′(x)
∂xB

◦ γS(0)
)
,

ẍA
′

S = 1
2
∂2(xB ◦ γS)(t)

∂t2

∣∣∣∣
t=0
· ∂(xA′ ◦ ϕ)

∂xB
◦ γS(0)

+ 1
2
∂(xB ◦ γS)(t)

∂t

∂(xC ◦ γS)(t)
∂t

∣∣∣∣
t=0
· ∂

2(xA′ ◦ ϕ)
∂xC∂xB

◦ γS(0)

= ẍBS

(∂xA′(x)
∂xB

◦ γS
)

+ 1
2 ẋ

B
S ẋ

C
S ·
(∂2xA

′(x)
∂xC∂xB

◦ γS(0)
)
.

We see that we can then deduce that changes of coordinates on T (2)M are (using
standard abuses of notation)

xA
′

= xA
′
(x) , ẋA

′
= ẋB

∂xA
′

∂xB
, ẍA

′
= ẍB

∂xA
′

∂xB
+ 1

2 ẋ
BẋC

∂2xA
′

∂xC∂xB
,

which are of course of the same form as the classical case.

Remark. The standard algebraic approach to defining the tangent bundle of a
supermanifold is to define it in terms of the derivations on the algebra of functions
on the supermanifold. The derivations of the functions form a sheaf of locally free
modules on the supermanifold and so define algebraically a vector bundle structure.
In this paper we have a kinematic definition of the total space of the tangent bundle
in terms of equivalence classes of S-curves. This construction is presumably already
known to experts, however the explicit construction of the higher order tangent
bundles in this way appeared to be missing from the literature.

Statement. At the operational level of local coordinates the k-th order tangent
bundle of a supermanifold can be defined via Taylor expansions of the coordinate
expression for the generating curves. Moreover, the k-th order tangent bundle of a
supermanifold can be understood in terms of (adapted) local coordinates and their
transformation laws in exactly the same way as the classical case.

4. The graded structure of the k-th order tangent bundle

The homotheties on T (k)M , that is particular smooth actions of the multiplicative
semigroup (R, ·), can also be understood geometrically. Specifically, we have the
canonical action of R on R as

g : R× R→ R
(λ, t) 7→ g(λ, t) = λt .

We will write g(λ, t) = gλ(t).
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Construction 5. The above canonical action of (R, ·) extends to an action on the
S-curves viz

ĥS : R×Hom(R,M)(S)→ Hom(R,M)(S)
(λ, γS) 7→ γS ◦ (1S × gλ) .

Proposition 2. The action of the multiplicative semigroup (R, ·) on the set of
S-curves Hom(R,M)(S) is natural.

Proof. Given Ψ: Hom(R,M)(S)→ Hom(R,M)(P ) defined as γS 7→ γS ◦ (ψ×1R)
for arbitrary ψ ∈ Hom(P, S), one can directly show that

ĥP ◦ (1R ×Ψ) = Ψ ◦ ĥS .

We leave details to the reader as this is a matter of routine. �

Construction 6. The action of the multiplicative semigroup (R, ·) on S-curves
extends to a canonical action on (T (k)M)(S) viz

hS : R× (T (k)M)(S) −→ (T (k)M)(S)
(λ, [γ]kS) 7→ [γ̂(λ)]kS ,

where γ̂S(λ) := ĥS(λ, γS) = γS ◦ (1S × gλ). It is easy to verify that hS(λµ) =
hS(λ) ◦ hS(µ), where we define hS(ν) : (T (k)M)(S)→ (T (k)M)(S) by restriction
of the action hS : {ν} × (T (k)M)(S) −→ (T (k)M)(S).

Theorem 2. The action of the multiplicative semigroup (R, ·) on T (k)M is natural.

Proof. The requirement to be natural is that the following diagram is commutative:

R× (T (k)M)(S) (1R×Ψ(k))- R× (T (k)M)(P )

(T (k)M)(S)

hS

?
Ψ(k)

- (T (k)M)(P )

hP

?

That is we require hP ◦ (1R × Ψ(k)) = Ψ(k) ◦ hS . Starting with the RHS we
obtain Ψ(k) (hS(λ, [γ]kS)

)
= Ψ(k) ([γ̂(λ)]kS)

)
= [γ̂(λ)]kS ◦ ψ. On the LHS we have

hP
(
(1R ×Ψ(k))(λ, [γ]kS)

)
= hP (λ, [γ]kP ) = [γ̂(λ)]kP = [γ̂(λ)]kS ◦ ψ, which follows

from Proposition 1. �

The above theorem states that we have a natural transformation h(λ) : T (k)M →
T (k)M when we fix a point λ ∈ R and consider the k-th order tangent bundle
of a supermanifold as a functor via the Yoneda embedding. Thus via Yoneda’s
lemma, we actually have a well-defined action of (R, ·) on the supermanifold T (k)M .

This action is best understood via local coordinates. It is only a matter of
applying the chain rule carefully to show that on the level of local coordinates the
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action on the S-points is given by
(hλS)∗xAS = xAS ,

(hλS)∗ rxAS = (λ)r rxAS .

One can then pass to the supermanifold T (k)M itself using Yoneda’s lemma. Typo-
graphically one only has to drop the subscript S. Note that h(0) corresponds to
the projection π : T (k)M →M as genuine supermanifolds.

The corresponding weight vector field ∆ ∈ Vect(T (k)M) is given by the value of
its action on any function F ∈ C∞(T (k)M) at an S-point;

(4.1) (∆F ) ◦ [γ]kS := d

dt

∣∣∣∣
λ=1

F ◦ [γ̂(λ)]kS =
( k∑
r=1

r
r

xA
∂F

∂
r

xA

)
◦ [γ]kS .

Statement. At the level of local coordinates the action of the multiplicative se-
migroup (R, ·) on the k-th order tangent bundle of a supermanifold is identical to
the classical case. Moreover, we have the structure of a graded super bundle in the
language of [10].

5. Comparison with other notions of curves

In this section we quickly examine some of the other common notions of a curve
on a supermanifold in light of the constructions presented here.

Supercurves
Supercurves are understood as morphisms belonging to Hom(R1|1,M) appear in
the literature as the simplest generalisation of classical curves that can “feel” the
odd dimensions of a supermanifold, see for example [8, 9] where they have been
put to good use on Riemannian supermanifolds. However, supercurves are not
sufficient to recover the notion of the k-th order tangent bundle, unless M has
at most one odd dimension. In fact, one cannot define the tangent bundle in this way.

Explicitly in any local coordinate system on M supercurves c ∈ Hom(R1|1,M)
are of the form c∗(xµ, θi) =

(
xµ(t), τ ui(t)

)
, where we have picked global coordinates

(t, τ) on R1|1. Then Taylor expanding about t = 0 to order one gives the collection
of functions
(5.1) (xµR0|1 , θ

i
R0|1 := τ uiR0|1 , ẋ

µ
R0|1 , θ̇

i
R0|1 := τ u̇iR0|1) ,

on R0|1 which we interpret as the R0|1-points of the tangent bundle TM . Now
consider a change of coordinates on M . As changes of coordinates respect the
Grassmann parity we have the following expressions

xµ
′
(x, θ) = xµ

′
(x) +

∑
Even

1
l!θ

i1 . . . θilxµ
′

il···i1(x)(5.2)

θj
′
(x, θ) =

∑
Odd

1
l!θ

i1 . . . θilwj
′

il···i1(x) .
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It is not hard to see that the induced transformation laws of the R0|1-points of
TM are

xµ
′

R0|1 = (xµ′(x)) ◦ c(0, τ), θj
′

R0|1 = (θjwi′j (x)) ◦ c(0, τ),
ẋµ
′

R0|1 = ẋνR0|1 ·
(
∂xµ

′
(x)

∂xν

)
◦ c(0, τ), θ̇j

′

R0|1 = θ̇iR0|1 ·
(
wi
′

j (x)
)
◦ c(0, τ),

taking into account the fact that τ2 = 0. Thus we see that R0|1-points only really
capture the vector bundle structure of M and really misses the full structure of
TM as a natural bundle. This is of course better than the case of considering
classical curves only, but is clearly not sufficient.

Remark. Taylor expanding the local expressions of supercurves about t = τ = 0
is even worse than the situation above as this totally misses the odd directions on
M and hence we only construct the higher tangent bundles of the reduced manifold
underlying M .
Higher dimensional supercurves
Via the work of Schwarz and Voronov [17, 20] we know that it is sufficient to
consider Λ-points, that is one can probe Hom(R,M) with supermanifolds of the
form R0|l for l ≥ 1. One could then try to think about “curves” as being in
Hom(R1|l,M) for some l. There are essentially two generic options for specifying l;

i) One could think of l being “large enough” (or even infinite!) so that all the
computations are consistent. This is related to the DeWitt–Rogers approach
to supermanifolds [5, 15], where a supermanifold is a manifold modeled on a
Grassmann algebra equipped with some suitable (non-Hausdorff) topology.
One has to further make restrictions on the classes of functions one consi-
ders in order to properly construct supermanifolds in the DeWitt–Rogers
approach2.

ii) One can keep l arbitrary by considering families of morphisms and rephrasing
the constructions in the language of category theory, as we have done here.

The problem with the first approach is the freedom in choosing an appropriate
l, though of course it maybe a useful thing to do for calculational purposes. Once
one has found a minimal l suitable for the problem at hand, one can always
find a larger number that will also be suitable. Moreover, no construction using
curves should depend in any critical way on this number provided it is large
enough. The dependance of the number of odd dimensions to a curve should be
functorial and so we are lead back to the philosophy of second approach listed above.

Superpaths
There is also the notion of a superpath as maps living in Hom(R1|1,M). Super-
paths were used to relate parallel transport and Quillen superconnections by
Dumitrescu [7]. Note that we have Hom(S ×R1|1,M) ' Hom(S ×R,ΠTM). Here

2The interested reader should consult Rogers [16] for a clear comparison of the various
approaches to supermanifolds. A brief account can be found in [11].
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ΠTM = Hom(R0|1,M) is the antitangent bundle, and can be constructed from
(the total space of) the tangent bundle by shifting the parity of the fibre coordi-
nates. In short (parameterised) superpaths on a supermanifold are S-curves on its
antitangent bundle.

We then define the following supermanifold using the constructions in this paper;

T(k)M := T (k)(ΠTM) .

Then one can check via local coordinates that we have the diffeomorphism
T (k)(ΠTM) ' ΠT (T (k)M). Thus we see that functions on the supermanifold of
k-th jets of superpaths (at t = 0) are (pseudo)differential forms on the k-th order
tangent bundle. There is also a double homogeneity structure [10] here described
by the two commuting weight vector fields

∆1 = dxA ∂

∂dxA +
k∑
r=1

drx
A ∂

∂drx
A

∆2 =
k∑
r=1

r
(
r
x
A ∂

∂drx
A

+ drx
A ∂

∂drx
A

)
T(k)M

$$HHH
HHH

zzuuu
uuu

T (k)M

%%JJJJJJ ΠTM

zzuuuuuu

M

where we have picked natural local coordinates (xA,dxA, rxA,d r

xA) for 1 ≤ r ≤ k.
Together with the de Rham differential

d = dxA ∂

∂xA
+

k∑
r=1

d r

xA
∂

∂
r

xA
,

we have the following (super) Lie algebra

(5.3) [d,d] = 0 , [∆1,∆2] = 0 , [∆1,d] = d , [∆2,d] = 0 .

We see that this lie algebra is given by the central extension of the Lie algebra
of Diff(R0|1), whose infinitesimal action on ΠT (T (k)M) defines ∆1 and d, by the
abelian Lie algebra generated by ∆2 that originates from the action of (R, ·) on
T (k)(ΠTM).

One can also understand the canonical (integrable) higher almost tangent
structure here in a similar way. Specifically the transformation t′ 7→ t and τ ′ 7→ τ+εt,
where ε in an odd parameter and (t, τ) are global coordinates on R1|1 gives rise to
the homological vector field

J =
k−1∑
r=0

d r

xA
∂

∂
r+1
x A

,

which we recognise to be the required higher almost tangent structure. It is then
easy to verify that

(5.4) [J, J] = 0 , [∆1, J] = J , [∆2, J] = −J , [d, J] = 0 .
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By passing to total weight, which is essential described by the sum of the two
weight vector fields ∆ = ∆1 + ∆2 we arrive at the following Lie algebra
(5.5) [d,d] = 0 , [∆,d] = d , [∆, J] = 0 , [d, J] = 0 , [J, J] = 0 ,
and thus we see that this Lie algebra is again a central extension of the Lie algebra
of Diff(R0|1) but this time by the abelian Lie algebra generated by a single odd
element. Note that in general the vanishing of the self-commutator of an odd vector
field is a non-trivial condition.

Remark. To the author’s knowledge, interpreting the canonical higher almost
tangent structure on a higher order tangent bundle in this way is new and the
consequences await (if any) to be properly explored.

Statement. Putting the above observations together, if we restrict attention to
finite dimensional supermanifolds and their morphisms, then there is no single
privileged supermanifold that plays the role of the source of curves in a completely
satisfactory way: one seems rather forced to employ the internal Homs.
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