Commentationes Mathematicae Universitatis Caroline

S. S. Gabriyelyan
On extensions of bounded subgroups in Abelian groups

Commentationes Mathematicae Universitatis Carolinae, Vol. 55 (2014), No. 2, 175--188
Persistent URL: http://dml.cz/dmlcz/143799

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2014

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

On extensions of bounded subgroups in Abelian groups

S.S. Gabriyelyan

Abstract

It is well-known that every bounded Abelian group is a direct sum of finite cyclic subgroups. We characterize those non-trivial bounded subgroups H of an infinite Abelian group G, for which there is an infinite subgroup G_{0} of G containing H such that G_{0} has a special decomposition into a direct sum which takes into account the properties of G, and which induces a natural decomposition of H into a direct sum of finite subgroups.

Keywords: Abelian group; bounded group; simple extension
Classification: Primary 20K21; Secondary 20K27

1. Introduction

Recall that an Abelian group G is of finite exponent or bounded if there exists a positive integer n such that $n g=0$ for every $g \in G$. The minimal integer n with this property is called the exponent of G and is denoted by $\exp (G)$. When G is not bounded, we write $\exp (G)=\infty$ and say that G is of infinite exponent or unbounded.

The structure theory of infinite Abelian groups is sufficiently difficult and complicated. Fortunately, for a bounded Abelian group G there is a complete and clear description of its structure: G is a direct sum of finite cyclic subgroups. If G is not of finite exponent, G can even not be decomposable into a direct sum of two non-trivial subgroups.

Let now H be a bounded subgroup of an infinite Abelian group G. As simple examples show, even in the case H is finite and cyclic, H may not be a direct summand of G. So it is important to find a subgroup G_{0} of G containing H such that G_{0} has a decomposition into a direct sum of subgroups having simple forms which takes into account the properties of G (as $\exp (G))$, and which induces a decomposition of H into a direct sum of finite subgroups. The existence of such extensions of H plays an essential role in particular for constructing of Hausdorff group topologies on G having specific properties with respect to H. We demonstrate this by the following examples.

Let $G=\mathbb{Z}(3) \oplus \mathbb{Z}(2)^{\omega}, G_{0}=\mathbb{Z}(2)^{\omega}, H_{1}$ is the first $\mathbb{Z}(2) \times \mathbb{Z}(2)$ in G and $H_{2}=\mathbb{Z}(3)$. It is easy to see that G does not admit a connected Hausdorff group topology (see $[4, \S 9]$). On the other hand, Markov showed in [5] that there is a
locally connected Hausdorff group topology τ on G such that G_{0} is the connected component of (G, τ). So, algebraically H_{1} can be extended to a subgroup G_{0} which is connected. However, there is no Hausdorff group topology τ^{\prime} on G in which H_{2} is contained in a connected subgroup of $\left(G, \tau^{\prime}\right)$ because G_{0} is clopen in any group topology on $G[4, \S 9]$. Further, it can be proved that there is a Hausdorff group topology ν on G such that H_{1} is the von Neumann radical of (G, ν), but for H_{2} such topologies do not exist (see [2]). Actually, these positive and negative results for H_{1} and H_{2} in G (and more generally, for subgroups of Abelian groups of finite exponent) depend on the possibility to extend them to an infinite subgroup G_{0} (maybe of a big cardinality) such that G_{0} is a direct sum of finite subgroups of the same exponent (see [3]). Between all infinite extensions of H_{1} in G, which can be represented as a direct sum of finite subgroups of the same exponent, there is the smallest one by cardinality, for example $G_{1}=\mathbb{Z}(2)^{(\omega)}$. So, the subgroup G_{1} has the following properties: (1) G_{1} is of finite exponent as G, (2) G_{1} / H_{1} is countable, (3) $G_{1}=\bigoplus_{i \in \omega} S_{i}$ with $\exp \left(G_{i}\right)=\exp \left(H_{1}\right)$ for all $i \in \omega$, and (4) this decomposition of G_{1} induces a natural decomposition of H (see the conditions (2b) and (3) in the definition below).

Assume now that H is a finite non-trivial subgroup of an Abelian group G of infinite exponent. It is well-known that G contains a subgroup S which has one of the form $\mathbb{Z}, \mathbb{Z}\left(p^{\infty}\right)$ or $\bigoplus_{i \in \omega} S_{i}$ with $\exp (H) \leq \exp \left(S_{0}\right)<\exp \left(S_{1}\right)<\ldots$ So it is quite natural to consider the subgroup $G_{0}:=S+H$. Then G_{0} takes into account the properties of G and has infinite exponent as G, and G_{0} / H is countable.

For infinite bounded subgroups H of G the situation is more delicate, but these examples explain our definition of simple extension given below. We note that the main result of the article plays a crucial role for a description of bounded subgroups H of an Abelian non-torsion-free group G for which there exists a Hausdorff group topology τ such that H is the von Neumann radical of (G, τ) (see [3]).

Denote by $o(g)$ the order of an element g of an Abelian group G. The subgroup of G generated by a subset A is denoted by $\langle A\rangle$. We shall say that an Abelian group X satisfies condition (Λ) if X is a finite direct sum of groups of the form $\mathbb{Z}\left(p^{a}\right)^{(\kappa)}$, where p is prime, a is a natural number and the cardinal κ is infinite.

Definition 1. Let G be an infinite Abelian non-torsion-free group and H its non-zero bounded subgroup. We say that H has a simple extension in G if there is a subgroup G_{0} of G which has a decomposition of the form

$$
G_{0}=X \oplus \bigoplus_{i \in \omega} S_{i}
$$

where:
(1) if $X \neq\{0\}$, then X is a subgroup of H satisfying condition (Λ);
(2) one of the following conditions holds:
(a) $S_{i}=\{0\}$ for every $i \in \mathbb{N}$, and S_{0} has one of the form $\mathbb{Z} \oplus H_{0}$ or $\mathbb{Z}\left(p^{\infty}\right)+H_{0}$, where H_{0} is a finite (maybe trivial) subgroup of H;
(b) for every $i \in \omega, S_{i}$ is a finite non-trivial subgroup of G such that either

$$
\begin{aligned}
& \exp (H) \leq \exp \left(S_{0}\right)<\exp \left(S_{1}\right)<\ldots, \quad \text { or } \\
& \exp (H)=\exp \left(S_{0}\right)=\exp \left(S_{1}\right)=\ldots
\end{aligned}
$$

$$
\begin{equation*}
H=X \oplus \bigoplus_{i \in \omega}\left(S_{i} \cap H\right) \tag{3}
\end{equation*}
$$

Returning to the first above-mentioned example we see that H_{1} has a simple extension (for instance, G_{1}), but H_{2} does not have simple extensions in G.

The main goal of the article is to characterize all bounded subgroups of an infinite Abelian non-torsion-free group G which have a simple extension in G.

Theorem 2. Let H be a non-zero bounded subgroup of an infinite Abelian group G. Then:
(i) if $\exp (G)=\infty$, then H has a simple extension in G;
(ii) if $\exp (G)<\infty$, then H has a simple extension in G if and only if G contains a subgroup of the form $\mathbb{Z}(\exp (H))^{(\omega)}$.

In Theorems 9 and 10 below we prove more precise results.

2. The proof of Theorem 2

We shall use the following easy corollary of Prüfer-Baer's theorem [1, 11.2].
Lemma 3. Let G be an infinite Abelian group of finite exponent. Then G is the direct sum $G=G_{0} \oplus G_{1}$ of a finite (maybe trivial) subgroup G_{0} and a subgroup G_{1} satisfying condition (Λ).

Let us recall that a subset X of an Abelian group G is called independent if for every finite sequence x_{1}, \ldots, x_{n} of pairwise distinct elements of X and each sequence m_{1}, \ldots, m_{n} of integers $m_{1} x_{1}+\cdots+m_{n} x_{m}=0$ implies $m_{i} x_{i}=0$ for all $i=1, \ldots, n$.
Proposition 4. Let $G=\mathbb{Z}\left(p^{\infty}\right)+H$, where H is an infinite Abelian group of finite exponent. Then there is a finite (maybe trivial) subgroup H_{0} of H and an infinite subgroup H_{1} of H such that
(1) $H=H_{0} \oplus H_{1}$;
(2) $G=\left(\mathbb{Z}\left(p^{\infty}\right)+H_{0}\right) \oplus H_{1}$;
(3) H_{1} satisfies condition (Λ).

Proof: By Prüfer-Baer's theorem [1, 11.2], H has a decomposition $H=\oplus_{i \in I} C_{i}$, where C_{i} are cyclic finite groups. As H is bounded, $\mathbb{Z}\left(p^{\infty}\right) \cap H$ is finite, so there exists a finite subset $J \subseteq I$ such that $\mathbb{Z}\left(p^{\infty}\right) \cap H \subseteq \oplus_{i \in J} C_{i}$.

We claim that the sum

$$
G=\left(\mathbb{Z}\left(p^{\infty}\right)+\bigoplus_{i \in J} C_{i}\right)+\left(\bigoplus_{i \in I \backslash J} C_{i}\right)
$$

is direct. Indeed, let $t=f+g \in\left(\mathbb{Z}\left(p^{\infty}\right)+\oplus_{i \in J} C_{i}\right) \cap\left(\oplus_{i \in I \backslash J} C_{i}\right)$, where $f \in \mathbb{Z}\left(p^{\infty}\right)$ and $g \in \oplus_{i \in J} C_{i}$. Then $f=t-g \in \oplus_{i \in J} C_{i}$ by the definition of J. Thus $t \in \oplus_{i \in J} C_{i}$. Since also $t \in \oplus_{i \in I \backslash J} C_{i}$, we obtain $t=0$ and the sum is direct.

Using Lemma 3, decompose $\oplus_{i \in I \backslash J} C_{i}=H_{0}^{\prime} \oplus H_{1}$, where H_{0}^{\prime} is finite and H_{1} satisfies condition (Λ). Put $H_{0}=H_{0}^{\prime} \oplus\left(\oplus_{i \in J} C_{i}\right)$. Then H_{0} is a finite (maybe trivial) subgroup of H and H_{1} is infinite. By construction and the claim, H_{0} and H_{1} satisfy conditions (1)-(3) of the proposition.

The next proposition is not trivial only for uncountable subgroups and its proof essentially repeats the proof of Proposition 4.

Proposition 5. Let an Abelian p-group G have the form $G=\langle A\rangle+H$, where H is an uncountable subgroup of G of finite exponent and $A=\left\{g_{i}\right\}_{i=1}^{\infty}$ is an independent sequence in G. Then there is a countable (maybe trivial) subgroup H_{0} of H and an uncountable subgroup H_{1} of H such that
(1) $H=H_{0} \oplus H_{1}$;
(2) $G=\left(\langle A\rangle+H_{0}\right) \oplus H_{1}$;
(3) H_{1} satisfies condition (Λ).

Proof: By [1, 11.2], H has a decomposition $H=\oplus_{i \in I} C_{i}$, where C_{i} are cyclic finite groups. As $\langle A\rangle$ is countable, there exists a countable subset $J \subseteq I$ such that $\langle A\rangle \cap H \subseteq \oplus_{i \in J} C_{i}$. We claim that the sum

$$
G=\left(\langle A\rangle+\bigoplus_{i \in J} C_{i}\right)+\left(\bigoplus_{i \in I \backslash J} C_{i}\right)
$$

is direct. Indeed, let $t=f+g \in\left(\langle A\rangle+\oplus_{i \in J} C_{i}\right) \cap\left(\oplus_{i \in I \backslash J} C_{i}\right)$, where $f \in\langle A\rangle$ and $g \in \oplus_{i \in J} C_{i}$. Then $f=t-g \in \oplus_{i \in J} C_{i}$ by the definition of J. Thus $t \in \oplus_{i \in J} C_{i}$. Since also $t \in \oplus_{i \in I \backslash J} C_{i}$, we obtain $t=0$ and the sum is direct.

Using Lemma 3 , decompose $\oplus_{i \in I \backslash J} C_{i}=H_{0}^{\prime} \oplus H_{1}$, where H_{0}^{\prime} is finite and H_{1} satisfies condition (Λ). Put $H_{0}=H_{0}^{\prime} \oplus\left(\oplus_{i \in J} C_{i}\right)$. Then H_{0} is a countable (maybe trivial) subgroup of H and H_{1} is infinite. By construction and the claim, H_{0} and H_{1} satisfy conditions (1)-(3) of the proposition.

We omit the proof of the following simple lemma.
Lemma 6. Let a sequence $\left\{b_{n}\right\}$ in an Abelian group G be independent and H be a finite subgroup of G. Then there is n_{0} such that $H \cap\left\langle b_{n_{0}}, b_{n_{0}+1}, \ldots\right\rangle=\{0\}$.

We denote division by ":". In the next proposition we set $\infty-1=\infty$.
Proposition 7. Let G be an Abelian p-group of the form $G=\langle A\rangle+H$, where H is a nonzero countable group of finite exponent and $A=\left\{g_{i}\right\}_{i=0}^{\infty}$ is an independent sequence such that either
(a) $\exp (H) \leq N \leq o\left(g_{0}\right)<o\left(g_{1}\right)<\ldots$ for some natural number N, or
(b) $\exp (H)=o\left(g_{i}\right)$ for every $i \geq 0$.

Then G has a subgroup G_{0} of the form

$$
G_{0}=\bigoplus_{i=0}^{\infty}\left(H_{i}+\left\langle e_{i}\right\rangle\right),
$$

where
(1) the independent sequence $\left\{e_{i}\right\}$ satisfies the same condition (a) or (b) as the sequence $\left\{g_{i}\right\}$;
(2) there is $0<M \leq \infty$ such that H_{j} is a finite nonzero subgroup of G for every $0 \leq j<M$, and, if $M<\infty, H_{j}=\{0\}$ for each $j \geq M$;
(3) $H=\bigoplus_{i=0}^{\infty} H_{i}$.

Proof: We distinguish between two cases.
Case 1. $\langle A\rangle \cap H$ is finite (maybe trivial). By Lemma 6 we can choose $k \geq 0$ such that $(\langle A\rangle \cap H) \cap\left\langle g_{k}, g_{k+1}, \ldots\right\rangle=\{0\}$. Then also $H \cap\left\langle g_{k}, g_{k+1}, \ldots\right\rangle=\{0\}$. Set $e_{i}=g_{k+i}$, for every $i \geq 0$. Let $H=\bigoplus_{i=0}^{M-1}\left\langle h_{i}\right\rangle$, where $M \leq \infty$ and $i \in \mathbb{N}[1$, 11.2]. Set $G_{0}=\left\langle e_{0}, e_{1}, \ldots\right\rangle+H$. Then we have

$$
G_{0}=\bigoplus_{i=0}^{\infty}\left(H_{i} \oplus\left\langle e_{i}\right\rangle\right),
$$

where $H_{i}=\left\langle h_{i}\right\rangle$ if $i<M$, and $H_{i}=0$ for $i \geq M$. Then G_{0} is as desired.
Case 2. $\langle A\rangle \cap H$ is infinite. Then H is countably infinite. Let $H=\bigoplus_{i=0}^{\infty}\left\langle h_{i}\right\rangle$ [1, 11.2]. We shall construct the sequences $\left\{H_{n}\right\}$ and $\left\{e_{n}\right\}$ by induction. Set

$$
G^{0}=G, \quad H^{0}=H, \quad \text { and } \quad g_{j}^{0}=g_{j}, \forall j \geq 0 .
$$

Put $e_{0}=g_{0}^{0}$. Choose the minimal index $\kappa_{1} \geq 0$ such that

$$
H^{0} \cap\left\langle e_{0}\right\rangle=\left(\bigoplus_{i=0}^{\kappa_{1}}\left\langle h_{i}\right\rangle\right) \cap\left\langle e_{0}\right\rangle .
$$

Set

$$
Y_{k}^{1}=\left\langle\left\{g_{k+i}^{0}\right\}_{i=1}^{\infty}\right\rangle, k \geq 0, \quad H_{0}=\bigoplus_{i=0}^{\kappa_{1}}\left\langle h_{i}\right\rangle, \quad \text { and } X_{1}=\bigoplus_{i=\kappa_{1}+1}^{\infty}\left\langle h_{i}\right\rangle .
$$

Then $H_{0} \neq 0$ and $H^{0}=H_{0} \oplus X_{1}$. We will need that

$$
\begin{equation*}
\left(H_{0}+\left\langle e_{0}\right\rangle\right) \cap X_{1}=\{0\} . \tag{1}
\end{equation*}
$$

Indeed, let $a e_{0}+h_{0}=x$, where a is integer, $h_{0} \in H_{0}$ and $x \in X_{1}$. Then $a e_{0}=x-h_{0} \in H^{0}$ and hence $a e_{0} \in H_{0}$. Thus $x=a e_{0}+h_{0} \in H_{0} \cap X_{1}=\{0\}$, and hence $x=0$.

We distinguish between two subcases.

Subcase 2.1. There is $k \geq 0$ such that

$$
\left(Y_{k}^{1}+X_{1}\right) \cap\left(H_{0}+\left\langle e_{0}\right\rangle\right)=\{0\}
$$

Then we set

$$
H^{1}=X_{1}=\bigoplus_{i=\kappa_{1}+1}^{\infty}\left\langle h_{i}\right\rangle, \quad g_{j}^{1}=g_{k+1+j}^{0}, \forall j \geq 0, \quad \text { and } G^{1}=\left\langle\left\{g_{j}^{1}\right\}_{j=0}^{\infty}\right\rangle+H^{1}
$$

So $H=H^{0}=H_{0} \oplus H^{1}$ and $\left(H_{0}+\left\langle e_{0}\right\rangle\right) \cap G^{1}=\{0\}$, and we can proceed to the second step for G^{1}, H^{1} and the independent sequence $\left\{g_{j}^{1}\right\}_{j=0}^{\infty}$ satisfying the same condition (a) or (b) as the sequence $\left\{g_{j}^{0}\right\}$.

Subcase 2.2. For every $k \geq 0$,

$$
\left(Y_{k}^{1}+X_{1}\right) \cap\left(H_{0}+\left\langle e_{0}\right\rangle\right) \neq\{0\}
$$

In this case, because of finiteness of $H_{0}+\left\langle e_{0}\right\rangle$ and since $\exp \left(X_{1}\right)<\infty$, we can choose the maximal natural number m satisfying the following condition:
$(*)$ there is a nonzero element $h \neq 0$ of $H_{0}+\left\langle e_{0}\right\rangle$ such that for infinitely many indices k, there are $y_{k} \in Y_{k}^{1}$ and $z_{k} \in X_{1}$ for which

$$
y_{k}+z_{k}=h \quad \text { and } \quad o\left(y_{k}\right)=p^{m} .
$$

Fix h satisfying $(*)$ and choose the following:
(i) a sequence of indices of the form

$$
\begin{equation*}
0<i_{1}^{0}<\cdots<i_{s_{0}}^{0}<i_{1}^{1}<\cdots<i_{s_{1}}^{1}<i_{1}^{2}<\cdots \tag{2}
\end{equation*}
$$

(ii) a sequence of integers $a_{1}^{k}, \ldots, a_{s_{k}}^{k}$, where $\left(a_{i}^{j}, p\right)=1$ for all i and j;
(iii) a sequence of natural numbers $r_{1}^{k}, \ldots, r_{s_{k}}^{k}, \forall k \geq 0$; and
(iv) a sequence z_{0}, z_{1}, \ldots in X_{1},
such that, for every $k \geq 0$,

$$
\begin{equation*}
0 \neq h=a_{1}^{k} p^{r_{1}^{k}} g_{i_{1}^{k}}^{0}+\cdots+a_{s_{k}}^{k} p^{r_{s_{k}}^{k}} g_{i_{s_{k}}^{k}}^{0}+z_{k} \quad \text { and } \quad o\left(h-z_{k}\right)=p^{m} \tag{3}
\end{equation*}
$$

Set $t_{k}=\min \left\{r_{1}^{k}, \ldots, r_{s_{k}}^{k}\right\}$ and

$$
y_{k}^{\prime}=a_{1}^{k} p^{r_{1}^{k}-t_{k}} g_{i_{1}^{k}}^{0}+\cdots+a_{s_{k}}^{k} p^{r_{s_{k}}^{k}-t_{k}} g_{i_{s_{k}}^{k}}^{0}, \forall k \geq 0
$$

So $o\left(p^{t_{k}} y_{k}^{\prime}\right)=p^{m}$ and $o\left(y_{k}^{\prime}\right)=p^{t_{k}+m}$ for all $k \geq 0$. By (2), the sequence $\left\{y_{k}^{\prime}\right\}_{k=0}^{\infty}$ is independent and $p^{t_{k}} y_{k}^{\prime}+z_{k}=h \in H_{0}+\left\langle e_{0}\right\rangle$ for every $k \geq 0$.

Subcase 2.2(a). Assume that $\exp (H) \leq N \leq o\left(g_{0}\right)<o\left(g_{1}\right)<\ldots$ Then, by $(2), \exp (H) \leq N \leq o\left(y_{0}^{\prime}\right)<o\left(y_{1}^{\prime}\right)<\ldots$, and hence $t_{0}<t_{1}<\ldots$. Set

$$
g_{k}^{\prime}=p^{t_{2 k+1}-t_{2 k}} y_{2 k+1}^{\prime}-y_{2 k}^{\prime}, \quad \forall k \geq 0
$$

Subcase 2.2(b). Assume that $\exp (H)=o\left(g_{k}\right), \forall k \geq 0$. Then $t_{k}=t_{k+1}$ and $p^{t_{k}+m}=\exp (H)$ for every $k \geq 0$. Put

$$
g_{k}^{\prime}=y_{2 k+1}^{\prime}-y_{2 k}^{\prime}, \quad \forall k \geq 0
$$

In both subcases $2.2(\mathrm{a})$ and $2.2(\mathrm{~b})$ we have the following:
$\left(\alpha_{1}\right)$ the sequence $\left\{g_{j}^{\prime}\right\}_{j=0}^{\infty}$ is independent by (2),
(α_{2}) the sequence $\left\{g_{j}^{\prime}\right\}_{j=0}^{\infty}$ satisfies the same condition (a) or (b) as $\left\{g_{j}^{0}\right\}$,
$\left(\alpha_{3}\right) o\left(g_{k}^{\prime}\right)=o\left(y_{2 k}^{\prime}\right)=p^{t_{2 k}+m}$, for every $k \geq 0$,
$\left(\alpha_{4}\right) p^{t_{2 k}} g_{k}^{\prime}=p^{t_{2 k+1}} y_{2 k+1}^{\prime}-p^{t_{2 k}} y_{2 k}^{\prime}=z_{2 k}-z_{2 k+1} \in X_{1}$ by (3).
Set $Y_{k}^{\prime}=\left\langle\left\{g_{j}^{\prime}\right\}_{j=k}^{\infty}\right\rangle, k \geq 0$. Let us prove the following:
Claim. There is $k \geq 0$ such that

$$
\left(Y_{k}^{\prime}+X_{1}\right) \cap\left(H_{0}+\left\langle e_{0}\right\rangle\right)=\{0\}
$$

Proof of Claim: Assuming the converse we can find (as in (i)-(iv)) a nonzero element h^{\prime} of $H_{0}+\left\langle e_{0}\right\rangle$, a sequence of indices of the form

$$
1<l_{1}^{0}<\cdots<l_{q_{0}}^{0}<l_{1}^{1}<\cdots<l_{q_{1}}^{1}<l_{1}^{2}<\cdots
$$

a sequence of integers $b_{1}^{k}, \ldots, b_{q_{k}}^{k},\left(b_{i}^{j}, p\right)=1$, for all i and j, a sequence of natural numbers $w_{1}^{k}, \ldots, w_{q_{k}}^{k}, \forall k \geq 0$, and a sequence x_{0}, x_{1}, \ldots in X_{1}, such that

$$
0 \neq h^{\prime}=b_{1}^{k} p^{w_{1}^{k}} g_{l_{1}^{k}}^{\prime}+\cdots+b_{q_{k}}^{k} p^{w_{q_{k}}^{k}} g_{l_{q_{k}}^{k}}^{\prime}+x_{k}, \quad \forall k \geq 0
$$

Suppose there exists $k_{0} \geq 0$ such that $w_{i}^{k} \geq t_{2 l_{i}^{k}}$ for all $1 \leq i \leq l_{q_{k}}^{k}$ and for each $k \geq k_{0}$. Then, by (α_{4}),

$$
0 \neq h^{\prime}=b_{1}^{k} p^{w_{1}^{k}-t_{2 l_{1}^{k}}}\left(p^{t_{2 l_{1}^{k}}} g_{l_{1}^{k}}^{\prime}\right)+\cdots+b_{q_{k}}^{k} p^{w_{q_{k}}^{k}-t_{2 l_{q_{k}}}}\left(p^{t_{2 l q_{q_{k}}}} g_{l_{q_{k}}^{k}}^{\prime}\right)+x_{k} \in X_{1},
$$

for every $k \geq k_{0}$. This contradicts (1) since $h^{\prime} \in H_{0}+\left\langle e_{0}\right\rangle$.
So we can suppose that there is an infinite set I of indices such that for every $k \in I$ there exists an index $1 \leq \xi_{k} \leq q_{k}$ for which $w_{\xi_{k}}^{k}<t_{2 \mu_{k}}$, where $\mu_{k}=l_{\xi_{k}}^{k}$. For every $k \in I$ set $\lambda_{k}=\min \left\{w_{1}^{k}, \ldots, w_{q_{k}}^{k}\right\}$ and

$$
y_{k}^{\prime \prime}=b_{1}^{k} p^{w_{1}^{k}-\lambda_{k}} g_{l_{1}^{k}}^{\prime}+\cdots+b_{q_{k}}^{k} p^{w_{q_{k}}^{k}-\lambda_{k}} g_{l_{q_{k}}^{\prime}}^{\prime} .
$$

Since $l_{1}^{k}>k$ it follows that $y_{k}^{\prime \prime} \in Y_{k}^{1}$ for every $k \geq 0$. Thus, for all $k \in I$, we obtain the following:

- $y_{k}^{\prime \prime} \in Y_{k}^{1}$,
- $0 \neq p^{\lambda_{k}} y_{k}^{\prime \prime}+x_{k}=h^{\prime} \in H_{0}+\left\langle e_{0}\right\rangle$,
- and, by $\left(\alpha_{1}\right)$ and $\left(\alpha_{3}\right)$,

$$
\begin{aligned}
o\left(p^{\lambda_{k}} y_{k}^{\prime \prime}\right) & =\max \left\{o\left(y_{2 l_{1}^{k}}^{\prime}\right): p^{w_{1}^{k}}, \ldots, o\left(y_{2 l_{q_{k}}^{k}}^{\prime}\right): p^{w_{q_{k}}^{k}}\right\} \\
& \geq o\left(y_{2 \mu_{k}}^{\prime}\right): p^{w_{\xi_{k}}^{k}} \quad\left(\text { since } w_{\xi_{k}}^{k}<t_{2 \mu_{k}}\right) \\
& \geq o\left(y_{2 \mu_{k}}^{\prime}\right): p^{t_{2 \mu_{k}}-1}=\left(\operatorname{by}\left(\alpha_{3}\right)\right)=p^{m+1} .
\end{aligned}
$$

Since I is infinite we obtained a contradiction to the choice of m (see condition $(*)$), thus proving the claim.

By the claim we can choose k such that $\left(Y_{k}^{\prime}+X_{1}\right) \cap\left(H_{0}+\left\langle e_{0}\right\rangle\right)=\{0\}$. Taking into account $\left(\alpha_{1}\right)$ and $\left(\alpha_{2}\right)$, we can put

$$
H^{1}=X_{1}, \quad g_{j}^{1}=g_{k+j}^{\prime}, \forall j \geq 0, \quad \text { and } G^{1}=\left\langle\left\{g_{j}^{1}\right\}_{j=0}^{\infty}\right\rangle+H^{1}
$$

So $\left(H_{0}+\left\langle e_{0}\right\rangle\right) \cap G^{1}=\{0\}$ and we proceed to the second step for G^{1}, H^{1} and the independent sequence $\left\{g_{j}^{1}\right\}_{j=0}^{\infty}$ satisfying respectively one of the conditions (a) or (b) as $\left\{g_{j}^{0}\right\}$.

Iterating this process, we can find a sequence $\left\{H_{i}\right\}_{i=0}^{\infty}$ of finite nonzero subgroups of H and an independent sequence $\left\{e_{i}\right\}_{i=0}^{\infty}$ satisfying the same condition (a) or (b) as the sequence $\left\{g_{i}\right\}$ such that

$$
H=\bigoplus_{i=0}^{\infty} H_{i} \text { and }\left(H_{k}+\left\langle e_{k}\right\rangle\right) \cap\left(\sum_{i=k+1}^{\infty}\left(H_{i}+\left\langle e_{i}\right\rangle\right)\right)=\{0\}, \text { for every } k \geq 0
$$

Hence the sum $G_{0}:=\sum_{i=0}^{\infty}\left(H_{i}+\left\langle e_{i}\right\rangle\right)$ is direct. Thus G_{0} is as desired. This completes the proof of the proposition.

In what follows we use the next well-known folklore lemma (the proof is similar to that of Lemma 4.2 of [6]):

Lemma 8. Let G be an Abelian group of infinite exponent. Then one of the following assertions holds.
(i) G is not torsion. Then G has a subgroup $H \cong \mathbb{Z}$.
(ii) G is torsion but not reduced. Then G has a subgroup $H \cong \mathbb{Z}\left(p^{\infty}\right)$ for some prime p.
(iii) G is both torsion and reduced. Then G has a subgroup $H \cong \bigoplus_{i=0}^{\infty} \mathbb{Z}\left(n_{i}\right)$, where $n_{0}<n_{1}<\ldots$.
The next two theorems imply and make more precise Theorem 2.
Theorem 9. Let G be an Abelian group of infinite exponent and H its nontrivial subgroup of finite exponent. Then at least one of the following assertions holds.
(1) G contains an element g of infinite order. If we set $G_{0}=\langle g\rangle+H$, then $G_{0} \cong\left(\mathbb{Z} \oplus H_{0}\right) \oplus X$, where
(a) H_{0} is a finite (maybe trivial) subgroup of H,
(b) $H=H_{0} \oplus X$,
(c) $X \neq\{0\}$ if and only if H is infinite. In this case X satisfies condition (Λ).
(2) G contains a subgroup Y of the form $\mathbb{Z}\left(p^{\infty}\right)$. If we set $G_{0}=Y+H$, then $G_{0} \cong\left(\mathbb{Z}\left(p^{\infty}\right)+H_{0}\right) \oplus X$, where
(a) H_{0} is a finite (maybe trivial) subgroup of H,
(b) $H=H_{0} \oplus X$,
(c) $X \neq\{0\}$ if and only if H is infinite. In this case X satisfies condition (Λ).
(3) G is both torsion and reduced. Then G has a subgroup G_{0} of the form

$$
G_{0}=X \oplus \bigoplus_{i=0}^{\infty}\left(H_{i}+\left\langle e_{i}\right\rangle\right)
$$

where
(a) the independent sequence $\left\{e_{i}\right\}$ satisfies the condition

$$
\exp (H) \leq o\left(e_{0}\right)<o\left(e_{1}\right)<\ldots ;
$$

(b) there is $0 \leq M \leq \infty$ such that H_{j} is a finite nonzero subgroup of G for every $0 \leq j<M$, and, if $M<\infty, H_{j}=\{0\}$ for each $j \geq M$;
(c) $H=X \oplus \bigoplus_{i=0}^{\infty} H_{i}$;
(d) $X \neq\{0\}$ if and only if H is uncountable. In this case X satisfies condition (Λ).

Proof: (1) Let G contain an element g of infinite order. It is clear that G_{0} is a direct sum, i.e., $G_{0}=\langle g\rangle \oplus H$.

If H is infinite, by Lemma 3, H can be represented in the form $H=H_{0} \oplus X$, where H_{0} is finite (maybe trivial) and X satisfies condition (Λ). So $G_{0} \cong(\mathbb{Z} \oplus$ $\left.H_{0}\right) \oplus X$.

If H is finite we set $H_{0}=H$. Then $G_{0} \cong \mathbb{Z} \oplus H_{0}$.
(2) Let G contains a subgroup Y of the form $\mathbb{Z}\left(p^{\infty}\right)$.

If H is infinite, the assertion follows from Proposition 4.
If H is finite, it is enough to set $H_{0}=H$ (and $X=0$).
(3) Let G be both torsion and reduced. For a prime p, let H_{p} and G_{p} be the p-components of H and G respectively. Since H is of finite exponent, there are pairwise disjoint primes $p_{1}, \ldots, p_{n}, p_{n+1}, \ldots, p_{N}$, where $n<\infty$ and $n \leq N \leq \infty$, such that (see [1, Theorem 2.1])

$$
H=\bigoplus_{i=1}^{n} H_{p_{i}} \text { and } G=\bigoplus_{i=1}^{n} G_{p_{i}} \oplus G_{1}
$$

where $G_{1}=\bigoplus_{i=n+1}^{N} G_{p_{i}}$ and all the groups $H_{p_{i}}$ and $G_{p_{i}}$ are nonzero.
We distinguish between the following two cases.
Case 1. $\exp \left(G_{1}\right)=\infty$. By Lemma 8, there is an independent sequence $\left\{e_{n}\right\}_{n=0}^{\infty}$ in G_{1}, where $\exp (H) \leq o\left(e_{0}\right)<o\left(e_{1}\right)<\ldots$.

Subcase 1.1. Assume that H is uncountable. By Lemma 3, $H=H_{0} \oplus X^{\prime}$, where H_{0} is finite (maybe trivial) and X^{\prime} is an uncountable subgroup of H satisfying condition (Λ). Set $X=X^{\prime}$.

If $H_{0} \neq 0$, we set

$$
G_{0}=\left(\left(H_{0} \oplus\left\langle e_{0}\right\rangle\right) \oplus \bigoplus_{i=1}^{\infty}\left\langle e_{i}\right\rangle\right) \oplus X, \text { and } H_{i}=0, \text { for every } i \geq 1
$$

Then we obtain the desired (with $M=1$).
If $H_{0}=0$ and hence $H=X$, we set

$$
G_{0}=\left(\bigoplus_{i=0}^{\infty}\left\langle e_{i}\right\rangle\right) \oplus X, \text { and } H_{i}=0, \text { for every } i \geq 0
$$

Then we obtain the desired (with $M=0$).
Subcase 1.2. Assume that H is countably infinite. By Lemma 3, $H=H_{0} \oplus X^{\prime}$, where H_{0} is finite (maybe trivial) and X^{\prime} is a countably infinite subgroup of H satisfying condition (Λ). By $[1,11.2]$ we have $X^{\prime}=\bigoplus_{i=1}^{\infty}\left\langle h_{i}\right\rangle$. Set

$$
G_{0}=\left(H_{0} \oplus\left\langle e_{0}\right\rangle\right) \oplus \bigoplus_{i=1}^{\infty}\left(H_{i} \oplus\left\langle e_{i}\right\rangle\right), \text { where } H_{i}=\left\langle h_{i}\right\rangle \text { for every } i \geq 1
$$

Then we obtain the desired (in this case $X=0$ and $M=\infty$).
Subcase 1.3. Assume that H is finite and non-trivial. In this case we set

$$
H_{0}=H, G_{0}=\left(H_{0} \oplus\left\langle e_{0}\right\rangle\right) \oplus \bigoplus_{i=1}^{\infty}\left\langle e_{i}\right\rangle, \text { and } H_{i}=0, \text { for every } i \geq 1
$$

Then we obtain the desired (in this case $X=0$ and $M=1$).
Case 2. $\exp \left(G_{1}\right)<\infty$. In this case there is $1 \leq l \leq n$ such that $\exp \left(G_{p_{l}}\right)=\infty$. If $\bigoplus_{i=1, i \neq l}^{n} H_{p_{i}}$ is finite, we set $H_{0}^{\prime}:=\bigoplus_{i=1, i \neq l}^{n} H_{p_{i}}$ and $X^{\prime}=0$. If $\bigoplus_{i=1, i \neq l}^{n} H_{p_{i}}$ is infinite, then, by Lemma $3, \bigoplus_{i=1, i \neq l}^{n} H_{p_{i}}=H_{0}^{\prime} \oplus X^{\prime}$, where H_{0}^{\prime} is finite (maybe trivial) and X^{\prime} satisfies condition (Λ). Set $N=\exp (H)$.

Since G is both torsion and reduced, by Lemma 8, there is an independent sequence $\left\{g_{i}\right\}_{i=0}^{\infty}$ in $G_{p_{l}}$ satisfying the condition $N \leq o\left(g_{0}\right)<o\left(g_{1}\right)<\ldots$. Set $A:=\left\{g_{i}\right\}_{i=0}^{\infty}$ and $Y:=\langle A\rangle+H_{p_{l}}$. Note that $H_{p_{l}}$ is nonzero by construction. If $H_{p_{l}}$ is uncountable, we apply Proposition 5 to Y and $H_{p_{l}}$. If $H_{0} \neq\{0\}$ in that Proposition 5 or in the case $H_{p_{l}}$ is countable, we apply Proposition 7. So we can find a subgroup Y_{0} of Y of the form

$$
Y_{0}=X^{\prime \prime} \oplus \bigoplus_{i=0}^{\infty}\left(H_{p_{l}}^{i}+\left\langle e_{i}\right\rangle\right)
$$

where
$\left(a_{1}\right)$ the independent sequence $\left\{e_{i}\right\}$ satisfies the condition

$$
N \leq o\left(e_{0}\right)<o\left(e_{1}\right)<\ldots ;
$$

$\left(a_{2}\right)$ there is $0 \leq M \leq \infty$ such that $H_{p_{l}}^{i}$ is a finite nonzero subgroup of Y for every $0 \leq i<M$, and, if $M<\infty, H_{p_{l}}^{i}=\{0\}$ for each $i \geq M$;
(a_{3}) $H_{p_{l}}=X^{\prime \prime} \oplus \bigoplus_{i=0}^{\infty} H_{p_{l}}^{i}$;
$\left(a_{4}\right) X^{\prime \prime} \neq\{0\}$ if and only if $H_{p_{l}}$ is uncountable. In this case $X^{\prime \prime}$ satisfies condition (Λ).
Subcase 2.1. Assume that H is uncountable. Set $X=X^{\prime} \oplus X^{\prime \prime}$. Then X is an uncountable subgroup of H satisfying the condition (Λ). Set

$$
H^{0}=H_{0}^{\prime} \oplus H_{p_{l}}^{0}, H^{i}=H_{p_{l}}^{i} \text { for } i \geq 1, \text { and } G_{0}=X \oplus \bigoplus_{i=0}^{\infty}\left(H^{i}+\left\langle e_{i}\right\rangle\right)
$$

Since $H=X \oplus \bigoplus_{i=0}^{\infty} H^{i}$ we obtain the desired.
Subcase 2.2. Assume that H is countably infinite. Then $X^{\prime \prime}=0$, and X^{\prime} is either trivial or $X^{\prime}=\bigoplus_{i=1}^{\infty} H_{i}^{\prime}$ by [1, 11.2], where H_{i}^{\prime} is a finite (maybe trivial) cyclic group for every $i \geq 1$. Set $H^{0}=H_{0}^{\prime} \oplus H_{p_{l}}^{0}$, and for every $i \geq 1$ put

$$
H^{i}=H_{i}^{\prime} \oplus H_{p_{l}}^{i} \text { if } X^{\prime} \neq 0, \text { and } H^{i}=H_{p_{l}}^{i} \text { if } X^{\prime}=0
$$

Then, by $\left(a_{2}\right), H^{i}$ is a finite (maybe trivial) subgroup of H for every $i \geq 0$, and $H=\bigoplus_{i=0}^{\infty} H^{i}$ by $\left(a_{3}\right)$. Setting

$$
G_{0}=\bigoplus_{i=0}^{\infty}\left(H^{i}+\left\langle e_{i}\right\rangle\right)
$$

we obtain the desired by $\left(a_{1}\right)$.
Subcase 2.3. Assume that H is finite and non-trivial. In this case we put $H^{0}=H$. By Lemma 6 we can choose $k \geq 0$ such that $H^{0} \cap\left\langle\left\{g_{k+i}\right\}_{i=0}^{\infty}\right\rangle=\{0\}$. Set $e_{i}=g_{k+i}$ for every $i \geq 0$. Putting

$$
G_{0}=\left(H^{0} \oplus\left\langle e_{0}\right\rangle\right) \oplus \bigoplus_{i=1}^{\infty}\left\langle e_{i}\right\rangle, \text { and } H^{i}=0, \text { for every } i \geq 1
$$

we obtain the desired (in this case $X=0$ and $M=1$).
Theorem 10. Let G be an Abelian group of finite exponent and H its nonzero subgroup. If G contains a subgroup of the form $\mathbb{Z}(\exp (H))^{(\omega)}$, then G has a subgroup G_{0} of the form

$$
G_{0}=X \oplus \bigoplus_{i=0}^{\infty}\left(H_{i}+\left\langle e_{i}\right\rangle\right)
$$

where
(1) the independent sequence $\left\{e_{i}\right\}$ satisfies the condition

$$
\exp (H)=o\left(e_{0}\right)=o\left(e_{1}\right)=\ldots ;
$$

(2) there is $0<M \leq \infty$ such that H_{j} is a finite nonzero subgroup of G for every $0 \leq j<M$, and, if $M<\infty, H_{j}=\{0\}$ for each $j \geq M$;
(3) $H=X \oplus \bigoplus_{i=0}^{\infty} H_{i}$;
(4) $X \neq\{0\}$ if and only if H is uncountable. In this case X satisfies condition (Λ).

Proof: For a prime p, let H_{p}^{\prime} and G_{p} be the p-components of H and G respectively. Since G has finite exponent, by $[1,2.1]$ there are different primes p_{1}, \ldots, p_{n}, p_{n+1}, \ldots, p_{N}, where $1 \leq n \leq N<\infty$, such that

$$
H=\bigoplus_{k=1}^{n} H_{p_{k}}^{\prime} \quad \text { and } \quad G=\bigoplus_{k=1}^{n} G_{p_{k}} \oplus G_{1}
$$

where $G_{1}=\bigoplus_{k=n+1}^{N} G_{p_{k}}$ and all the groups $H_{p_{k}}^{\prime}$ and $G_{p_{k}}$ are nonzero.
By assumption, for every $1 \leq k \leq n, G_{p_{k}}$ has a subgroup of the form $\mathbb{Z}\left(\exp \left(H_{p_{k}}^{\prime}\right)\right)^{(\omega)}$. Thus, for every $1 \leq k \leq n, G_{p_{k}}$ has an independent sequence $A_{k}=\left\{g_{i}^{k}\right\}_{i=0}^{\infty}$ such that $o\left(g_{i}^{k}\right)=\exp \left(H_{p^{k}}^{\prime}\right)$ for every $i \geq 0$.

Fix arbitrarily $k, 1 \leq k \leq n$, and consider the next two possible cases.
Case 1. $H_{p_{k}}^{\prime}$ is a (nonzero) countable group. So we can apply Proposition 7 to the group $\left\langle A_{k}\right\rangle+H_{p_{k}}^{\prime}\left(\subseteq G_{p_{k}}\right)$. Thus the group $\left\langle A_{k}\right\rangle+H_{p_{k}}^{\prime}$ has a subgroup G_{0}^{k} of the form

$$
G_{0}^{k}:=\bigoplus_{i=0}^{\infty}\left(H_{i}^{k}+\left\langle e_{i}^{k}\right\rangle\right)
$$

where
(a_{1}) the independent sequence $\left\{e_{i}^{k}\right\}$ satisfies the condition

$$
\exp \left(H_{p_{k}}^{\prime}\right)=o\left(e_{1}^{k}\right)=o\left(e_{2}^{k}\right)=\ldots
$$

(a_{2}) there is $0<M_{k} \leq \infty$ such that H_{i}^{k} is a finite nonzero subgroup of G_{0}^{k} for every $0 \leq i<M_{k}$, and, if $M_{k}<\infty, H_{i}^{k}=\{0\}$ for each $i \geq M_{k}$;
($\left.\mathrm{a}_{3}\right) H_{p_{k}}^{\prime}=\bigoplus_{i=0}^{\infty} H_{i}^{k}$;
In this case we also put $X_{k}=\{0\}$.
Case 2. $H_{p_{k}}^{\prime}$ is an uncountable group. Applying Propositions 5 to the group $\left\langle A_{k}\right\rangle+H_{p_{k}}^{\prime}\left(\subseteq G_{p_{k}}\right)$, we can find a countable (maybe trivial) subgroup S_{k}^{\prime} of $H_{p_{k}}^{\prime}$ and an uncountable subgroup $S_{k}^{\prime \prime}$ of $H_{p_{k}}^{\prime}$ such that
$\left(\mathrm{b}_{1}\right) H_{p_{k}}^{\prime}=S_{k}^{\prime} \oplus S_{k}^{\prime \prime}$;
$\left(\mathrm{b}_{2}\right)\left\langle A_{k}^{\prime}\right\rangle+H_{p_{k}}^{\prime}=\left(\left\langle A_{k}\right\rangle+S_{k}^{\prime}\right) \oplus S_{k}^{\prime \prime}$;
$\left(\mathrm{b}_{3}\right) S_{k}^{\prime \prime}$ satisfies condition (Λ).
Represent $S_{k}^{\prime \prime}$ in the form $S_{k}^{\prime \prime}=X_{k} \oplus\left(\bigoplus_{i=0}^{\infty} R_{i}^{k}\right)$, where
$\left(\mathrm{c}_{1}\right) R_{i}^{k}$ is nonzero and finite for every $i \geq 0$;
$\left(\mathrm{c}_{2}\right) \exp \left(S_{k}^{\prime} \oplus \bigoplus_{i=0}^{\infty} R_{i}^{k}\right)=\exp \left(H_{p_{k}}^{\prime}\right)$;
$\left(c_{3}\right) X_{k}$ is uncountable and satisfies condition (Λ).
Now we can apply Proposition 7 to the group

$$
\left(\left\langle A_{k}\right\rangle+S_{k}^{\prime}\right) \oplus \bigoplus_{i=0}^{\infty} R_{i}^{k}=\left\langle A_{k}\right\rangle+\left(S_{k}^{\prime} \oplus \bigoplus_{i=0}^{\infty} R_{i}^{k}\right) .
$$

Taking into account $\left(\mathrm{b}_{1}\right)-\left(\mathrm{b}_{3}\right)$ and $\left(\mathrm{c}_{1}\right)-\left(\mathrm{c}_{3}\right)$, we obtain that the group $\left\langle A_{k}\right\rangle+$ $H_{p_{k}}^{\prime}\left(\subseteq G_{p_{k}}\right)$ has a subgroup G_{0}^{k} of the form

$$
G_{0}^{k}:=X_{k} \oplus \bigoplus_{i=0}^{\infty}\left(H_{i}^{k} \oplus\left\langle e_{i}^{k}\right\rangle\right)
$$

where
$\left(\mathrm{a}_{4}\right)$ the independent sequence $\left\{e_{i}^{k}\right\}$ satisfies the condition

$$
\exp \left(H_{p_{k}}^{\prime}\right)=o\left(e_{1}^{k}\right)=o\left(e_{2}^{k}\right)=\ldots ;
$$

(a_{5}) there is $0<M_{k} \leq \infty$ such that H_{i}^{k} is a finite nonzero subgroup of G_{0}^{k} for every $0 \leq i<M_{k}$, and, if $M_{k}<\infty, H_{i}^{k}=\{0\}$ for each $i \geq M_{k}$;
($\left.\mathrm{a}_{6}\right) H_{p_{k}}^{\prime}=X_{k} \oplus \bigoplus_{i=0}^{\infty} H_{i}^{k}$;
(a_{7}) X_{k} is uncountable and satisfies condition (Λ).
Set $M=\max \left\{M_{1}, \ldots, M_{n}\right\}$ and

$$
G_{0}=\bigoplus_{k=1}^{n} G_{0}^{k}, X=\bigoplus_{k=1}^{n} X_{k}, H_{i}=\bigoplus_{k=1}^{n} H_{i}^{k} \text { and } e_{i}=e_{i}^{1}+\cdots+e_{i}^{n} \text { for every } i \geq 0
$$

By $\left(a_{1}\right)-\left(a_{7}\right)$, all the conditions (1)-(4) are fulfilled. The theorem is proved.
Proof of Theorem 2: (i) immediately follows from Theorem 9.
(ii) If H has a simple extension in G, then G has a subgroup of the form $\mathbb{Z}(\exp (H))^{(\omega)}$ by item $(2 \mathrm{~b})$ of the definition of simple extension. The converse follows from Theorem 10.

Acknowledgment. I wish to thank the referee for the suggestions which allow to simplify essentially the original proofs of Propositions 4 and 5.

References

[1] Fuchs L., Abelian Groups, Budapest: Publishing House of the Hungarian Academy of Sciences 1958, Pergamon Press, London, third edition, reprinted 1967.
[2] Gabriyelyan S.S., Finitely generated subgroups as a von Neumann radical of an Abelian group, Mat. Stud. 38 (2012), 124-138.
[3] Gabriyelyan S.S., Bounded subgroups as a von Neumann radical of an Abelian group, preprint.
[4] Markov A.A., On free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 9 (1945), 3-64 (in Russian); English transl. in: Amer. Math. Soc. Transl. (1) 8 (1962), 195-272.
[5] Markov A.A., On the existence of periodic connected topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 8 (1944), 225-232 (in Russian); English transl. in: Amer. Math. Soc. Transl. (1) 8 (1962), 186-194.
[6] Nienhuys J.W., Constructions of group topologies on abelian groups, Fund. Math. $\mathbf{7 5}$ (1972), 101-116.

Department of Mathematics, Ben-Gurion University of the Negev, BeerSheva P.O. 653, Israel

E-mail: saak@math.bgu.ac.il
(Received April 19, 2013, revised October 10, 2013)

