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Semicontinuous integrands as jointly measurable maps

Oriol Carbonell-Nicolau

Abstract. Suppose that (X,A) is a measurable space and Y is a metrizable,
Souslin space. Let Au denote the universal completion of A. For x ∈ X, let
f(x, ·) be the lower semicontinuous hull of f(x, ·). If f : X × Y → R is (Au ⊗

B(Y ),B(R))-measurable, then f is (Au ⊗ B(Y ),B(R))-measurable.

Keywords: lower semicontinuous hull; jointly measurable function; measurable
projection theorem; normal integrand

Classification: 54C30, 28A20

Let (X,A) be a measurable space. For every bounded measure µ on (X,A),
let Aµ denote the completion of A with respect to µ. Let

Au :=
⋂

{Aµ : µ is a bounded measure on (X,A)} .

The σ-algebra Au is called the universal completion of A.
Let Y be a topological space, and let B(Y ) represent the σ-algebra of Borel

subsets of Y . The space Y is said to be Souslin if it is Hausdorff and there exist
a Polish space P and a continuous surjection from P to Y .

Given f : X × Y → R, define the map f : X × Y → R by

f(x, y) := sup
Vy

inf
z∈Vy

f(x, z),

where Vy ranges over all neighborhoods of y. For each x ∈ X , f(x, ·) is the lower

semicontinuous hull of f(x, ·). If Y is metrizable, f can be expressed as

f(x, y) = sup
n∈N

inf
z∈N 1

n

(y)
f(x, z),

where N 1

n

(y) represents the open 1
n
-neighborhood of y.

Theorem. Suppose that (X,A) is a measurable space and Y is a metrizable,

Souslin space. Suppose further that the map f : X×Y → R is (Au⊗B(Y ),B(R))-
measurable. Then f is (Au ⊗ B(Y ),B(R))-measurable.
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Proof: Define gn : X × Y → R by

gn(x, y) := inf
z∈N 1

n

(y)
f(x, z).

We first show that gn is (Au ⊗ B(Y ),B(R))-measurable for each n.
Let

Dn :=
{

(x, y, z) ∈ X × Y × Y : z ∈ N 1

n

(y)
}

.

The map gn is (Au ⊗ B(Y ),B(R))-measurable if for a ∈ R,

(1) {(x, y) ∈ X × Y : gn(x, y) < a} ∈ Au ⊗ B(Y ).

Given a ∈ R we have

(2) {(x, y) ∈ X × Y : gn(x, y) < a} = ProjX×Y (E
n),

where

En := {(x, y, z) ∈ Dn : f(x, z) < a}

and ProjX×Y (E
n) represents the projection of En onto X×Y . Thus, to establish

(1) it suffices to show that ProjX×Y (E
n) belongs to Au ⊗ B(Y ).

Because Y is a Souslin space, Y is a Lindelöf space, and since Y is in addition
metrizable, Y is separable. Because Y is separable, there is a countable, dense
subset Q of Y . Let {y1, y2, . . . } be an enumeration of this set. For α > 0 and
y ∈ Y , define

A(α,y) := {(x, z) ∈ X ×Nα(y) : f(x, z) < a} .

Let ProjX(A(α,y)) be the projection of A(α,y) onto X . Let Q denote the set of
rational numbers in (0, 1

n
). Define

Sn :=
{

(α, β) ∈ Q×Q : α+ β ≤ 1
n

}

.

We have

(3) ProjX×Y (E
n) =

⋃

(m,(α,β))∈N×Sn

[

ProjX(A(α,ym))×Nβ(y
m)

]

.

To see this, observe that given (x, y) ∈ ProjX×Y (E
n), there exists z such that

(x, y, z) ∈ Dn (i.e., (x, y, z) ∈ X × Y × Y and z ∈ N 1

n

(y)) and f(x, z) < a. Let d

be a compatible metric on Y , and fix

ǫ ∈
(

0, 13
(

1
n
− d(y, z)

))

.
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For y′ ∈ Nǫ(y) we have

d(y′, z) ≤ d(y′, y) + d(y, z) < ǫ+ d(y, z) < 1
3

(

1
n
− d(y, z)

)

+ d(y, z),

so there is a rational number

β ∈
(

1
3

(

1
n
− d(y, z)

)

, 1
2

(

1
n
− d(y, z)

))

such that d(y′, z) < β + d(y, z) for all y′ ∈ Nǫ(y), and hence there is a rational
number

α ∈
(

β + d(y, z), 12
(

1
n
− d(y, z)

)

+ d(y, z)
)

such that d(y′, z) < α for all y′ ∈ Nǫ(y). Consequently, since by denseness of Q in
Y one may choose m such that ym ∈ Nǫ(y), we have z ∈ Nα(y

m). It follows that
(x, z) ∈ X ×Nα(y

m) and f(x, z) < a (so that x ∈ ProjX(A(α,ym))) and, since

d(y, ym) < ǫ < 1
3

(

1
n
− d(y, z)

)

< β,

we have y ∈ Nβ(y
m). We conclude that (x, y) ∈ ProjX(A(α,ym)) ×Nβ(y

m) with
(α, β) ∈ Q×Q and

α+ β ≤ 1
2

(

1
n
− d(y, z)

)

+ d(y, z) + 1
2

(

1
n
− d(y, z)

)

≤ 1
n
.

Conversely, if (x, y) ∈ ProjX(A(α,ym))×Nβ(y
m) for some (m, (α, β)) ∈ N×Sn,

then there exists z such that (x, z) ∈ X ×Nα(y
m) and f(x, z) < a. In addition,

d(y, z) ≤ d(y, ym) + d(ym, z) < β + α ≤ 1
n
.

Consequently, (x, y, z) ∈ X × Y × Y and z ∈ N 1

n

(y) (so that (x, y, z) ∈ Dn) and

f(x, z) < a, which implies that (x, y) ∈ ProjX×Y (E
n).

Because f is (Au ⊗ B(Y ),B(R))-measurable, we have A(α,y) ∈ Au ⊗ B(Y ) for
every α > 0 and y ∈ Y . Therefore, because Y is a Souslin space, the measurable
projection theorem (e.g., Sainte-Beuve [6, Theorem 4]) gives ProjX(A(α,y)) ∈ Au

for α > 0 and y ∈ Y .1 In light of (3), therefore, we conclude that ProjX×Y (E
n) ∈

Au ⊗ B(Y ).
Because ProjX×Y (E

n) ∈ Au⊗B(Y ), gn is (Au⊗B(Y ),B(R))-measurable (recall
(2) and (1)). It only remains to observe that

f(x, y) = sup
n∈N

inf
z∈N 1

n

(y)
f(x, z) = sup

n∈N

gn(x, y),

so f is (Au ⊗ B(Y ),B(R))-measurable. �

In the remainder of the paper we present an application of the above result.
Let (X,A, µ) be a finite measure space with A = Au. Let Y be a metrizable Lusin
space (i.e., a metrizable topological space which is homeomorphic to a Borel subset

1For the case when Y is Polish, the measurable projection theorem can also be found in
Cohn [5, Proposition 8.4.4].
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of a compact metrizable space). A transition probability with respect to (X,A)
and (Y,B(Y )) is a function σ : B(Y )×X → [0, 1] satisfying the following:

• σ(·|x) is a probability measure on (Y,B(Y )) for every x ∈ X ;
• σ(B|·) is (A,B([0, 1]))-measurable for every B ∈ B(Y ).

The set of transition probabilities with respect to (X,A) and (Y,B(Y )) is denoted
by S.

A normal integrand on X×Y is a map f : X×Y → R satisfying the following:

• f(x, ·) is lower semicontinuous on Y for every x ∈ X ;
• f is (A⊗ B(Y ),B(R))-measurable.

Let L1(X,A, µ) represent the set of (A,B(R))-measurable functions ξ : X → R

such that
∫

X

|ξ(x)|µ(dx) < ∞.

The set of all normal integrands f on X×Y for which there exists ξ ∈ L1(X,A, µ)
such that ξ(x) ≤ f(x, y) for all (x, y) ∈ X × Y is denoted by F .

For f ∈ F , the functional If : S → R is defined by

If (σ) :=

∫

X

∫

Y

f(x, y)σ(dy|x)µ(dx).

The narrow topology on S is the coarsest topology that makes the functionals
in {If : f ∈ F} lower semicontinuous. This topology has been studied by Balder
[1], [2], [3] and applied to the theory of games with incomplete information (e.g.,
Balder [2] and Carbonell-Nicolau and McLean [4]).

Suppose that the map f : X×Y → R is (A⊗B(Y ),B(R))-measurable. Suppose
further that there exists ξ ∈ L1(X,A, µ) such that ξ(x) ≤ f(x, y) for all (x, y) ∈
X × Y . Then f satisfies ϕ(x) ≤ f(x, y) for all (x, y) ∈ X × Y and for some
ϕ ∈ L1(X,A, µ). In addition, f(x, ·) is lower semicontinuous on Y for every x ∈ X ,

and, by virtue of Theorem, f is (A ⊗ B(Y ),B(R))-measurable. Consequently,
f ∈ F . It follows that if S is endowed with the narrow topology, for each ǫ > 0
and every σ ∈ S there exists an open set V in S containing σ such that

If (ν) ≥ If (σ)− ǫ, for all ν ∈ V.
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