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Dihedral-like constructions of automorphic loops

Mouna Aboras

Abstract. Automorphic loops are loops in which all inner mappings are auto-
morphisms. We study a generalization of the dihedral construction for groups.
Namely, if (G,+) is an abelian group, m ≥ 1 and α ∈ Aut(G), let Dih(m,G,α)
be defined on Zm ×G by

(i, u)(j, v) = (i⊕ j, ((−1)ju+ v)αij ).

The resulting loop is automorphic if and only if m = 2 or (α2 = 1 and m is even).
The case m = 2 was introduced by Kinyon, Kunen, Phillips, and Vojtěchovský.
We present several structural results about the automorphic dihedral loops in
both cases.

Keywords: dihedral automorphic loop; automorphic loop; inner mapping group;
multiplication group; nucleus; commutant; center; commutator; associator sub-
loop; derived subloop

Classification: Primary 20N05

1. Introduction

A set Q with a binary operation (·) is a loop if for every x ∈ Q the right and
left translations Rx, Lx : Q −→ Q, yRx = y · x, yLx = x · y are bijections of Q,
and if there is a neutral element 1 ∈ Q such that 1 ·x = x · 1 = x for every x ∈ Q.

Let Q be a loop. The group generated by Rx and Lx for all x ∈ Q is called the
multiplication group of Q and it is denoted by Mlt(Q). The subgroup of Mlt(Q)
stabilizing the neutral element of Q is called the inner mapping group of Q and
it is denoted by Inn(Q). It is well known that the inner mapping group Inn(Q) is
the permutation group generated by

Rx,y = RxRyR
−1
xy , Tx = RxL

−1
x , Lx,y = LxLyL

−1
yx ,

where x, y ∈ Q.
A loop is automorphic (also known as A-loop) if Inn(Q) ≤ Mlt(Q), that is,

if every inner mapping of Q is an automorphism of Q. Note that groups are
automorphic loops, but the converse is certainly not true.

Automorphic loops were first studied in 1956 by Bruck and Paige [3]. Struc-
ture theory for commutative and general automorphic loops was developed in
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[1], [5], [6]. In this paper, we generalize a construction of dihedral automorphic
loops introduced by Kinyon, Kunen, Phillips and Vojtěchovský [1], where they
focused on the special case m = 2. Here, we consider for an integer m ≥ 1, an
abelian group (G,+) and an automorphism α of G the loop Dih(m,G, α) defined
on Zm ×G by

(1) (i, u)(j, v) = (i⊕ j, (sju+ v)αij),

where sj = (−1)j mod m, and where we interpret αij as ordinary integral expo-
nent. To make the multiplication formula unambiguous we demand that i, j ∈
{0, 1, . . . ,m−1}. Then we have αiαj = αi+j . There are several observations that
we will use without reference for i, j ∈ Zm, u ∈ G:

• si(sju) = (sisj)u, so we can write this as sisju,
• sisju = sjsiu,
• si(uα) = (siu)α,
• sisj = si⊕j , when m is even.

Note that withm = 1 the multiplication (1) reduces to (i, u)(j, v) = (i+j, u+v),
so Dih(1, G, α) = Z1 × G = G. We will thus assume throughout the paper that

m > 1.
This paper is organized as follows: Section 2 presents definitions and prelim-

inary results about A-loops. We recall without proofs some facts from [1]. In
Section 3 we determine all parameters m,G, α that yield automorphic loops. In
Section 4 we show how to obtain the nuclei, the commutant and the center. In
Section 5 we calculate the associator subloop A(Q) and the derived subloop Q′.

2. Definitions and preliminary results

In this section we introduce relevant definitions of loop theory [2], and we
present some results on automorphic loops.

Definition 2.1. The dihedral group of order 2n, denoted by D2n, is the group
generated by two elements x and y with presentation x2 = yn = 1 and x · y =
yn−1 · x.

The group D2n is isomorphic to Dih(2,Zn, 1). The generalized dihedral group
D2n(G) is isomorphic to Dih(2, G, 1).

Since it suffices to check the automorphic condition on the generators of Inn(Q),
we see that a loop Q is an automorphic loop if and only if, for all x, y, u, v ∈ Q,

(uv)Rx,y = uRx,y · vRx,y,(Ar)

(uv)Lx,y = uLx,y · vLx,y,(Aℓ)

(uv)Tx = uTx · vTx.(Am)

In fact it is not necessary to verify all of the conditions (Ar), (Aℓ) and (Am):

Proposition 2.2 ([4]). Let Q be a loop satisfying (Am) and (Aℓ). Then Q is

automorphic.
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Definition 2.3. The commutant of a loop Q, denoted by C(Q), is the set of all
elements that commute with every element of Q. In symbols,

C(Q) = {a ∈ Q : x · a = a · x, ∀x ∈ Q}.

Definition 2.4. The left, right, and middle nucleus of a loop Q are defined,
respectively, by

Nλ(Q) = {a ∈ Q : ax · y = a · xy, ∀x, y ∈ Q},

Nρ(Q) = {a ∈ Q : xy · a = x · ya, ∀x, y ∈ Q},

Nµ(Q) = {a ∈ Q : xa · y = x · ay, ∀x, y ∈ Q}.

The nucleus of Q is defined as N(Q) = Nλ(Q) ∩Nρ(Q) ∩Nµ(Q).

Each of the nuclei is a subloop. All nuclei are in fact groups.

Definition 2.5. The center Z(Q) of a loop Q is the set of all elements of Q that
commute and associate with all other elements of Q. It can be characterized as

Z(Q) = C(Q) ∩N(Q).

Definition 2.6. Let S be a subloop of a loop Q. Then S is normal if for all
a, b ∈ Q

aS = Sa, (aS)b = a(Sb), a(bS) = (ab)S.

The center is always a normal subloop of Q.

Proposition 2.7 ([3]). Let Q be an automorphic loop. Then:

(i) Nλ(Q) = Nρ(Q) ⊆ Nµ(Q);
(ii) each nucleus is normal in Q.

Definition 2.8. Let Q be a loop and x, y, z ∈ Q. The commutator [x, y] is the
unique element of Q satisfying the equation

x · y = (y · x) · [x, y].

The associator [x, y, z] is the unique element of Q satisfying the equation

(x · y) · z = (x · (y · z)) · [x, y, z].

Definition 2.9. The associator subloop of a loop Q, denoted by A(Q), is the
smallest normal subloop of Q containing all associators [x, y, z] of Q. Equivalently,
A(Q) is the smallest normal subloop of Q such that Q/A(Q) is associative.

Definition 2.10. The derived subloop of a loop Q, denoted by Q′, is the smallest
normal subloop of Q containing all commutators [x, y] and all associators [x, y, z]
of Q. Equivalently, Q′ is the smallest normal subloop of Q such that Q/Q′ is a
commutative group.
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3. Parameters that yield automorphic loops

For an abelian group (G,+) denote by 2G the subgroup 2G = {u+ u; u ∈ G}.
Note that if α ∈ Aut(G) then the restriction α↾2G of α to 2G is an automorphism
of 2G.

Lemma 3.1. Let Q = Dih(m,G, 1). Then Q is a group iff m is even or 2G = 0.

Proof: With α = 1 the multiplication formula (1) becomes (i, u)(j, v) = (i ⊕
j, sju+ v). We have

(i, u)(j, v) · (k, w) = (i⊕ j, sju+ v)(k, w) = (i ⊕ j ⊕ k, sk(sju+ v) + w),

(i, u) · (j, v)(k, w) = (i, u)(j ⊕ k, skv + w) = (i⊕ j ⊕ k, sj⊕ku+ skv + w),

so Q is a group iff

(2) sksju = sj⊕ku

for every j, k ∈ Zm and every u ∈ G.
If 2G = 0 then u = −u and (2) holds. If m is even then sksj = sj⊕k and (2)

holds again. Conversely, suppose that (2) holds. If m is even, we are done, so
suppose that m is odd. With k = 1, j = m− 1 the identity (2) yields −u = u, or
2G = 0. �

3.1 Middle inner mappings. Recall that yTx = x\(yx).

Lemma 3.2. Let Q = Dih(m,G, α) and (i, u), (j, v) ∈ Q. Then

(3) (j, v)T(i,u) = (j, siv + (1 − sj)u).

Proof: Note that (j, v)T(i,u) = (k, w) iff (j, v)(i, u) = (i, u)(k, w) iff (j⊕ i, (siv+

u)αij) = (i ⊕ k, (sku + w)αik). We deduce k = j, and extend the chain of
equivalences with (siv + u)αij = (sju + w)αij iff siv + u = sju + w iff w =
siv + (1 − sj)u. �

Lemma 3.3. Let Q = Dih(m,G, α) and (i, u) ∈ Q. Then T(i,u) ∈ Aut(Q) iff

(4) (1− sj⊕k)u = (1− sjsk)uα
jk

for every j, k ∈ Zm.

Proof: We will use (3) without reference. We have

((j, v)(k, w))T(i,u) = (j ⊕ k, (skv + w)αjk)T(i,u)

= (j ⊕ k, si(skv + w)αjk + (1− sj⊕k)u)

= (j ⊕ k, siskvα
jk + siwα

jk + (1− sj⊕k)u),

while

(j, v)T(i,u) · (k, w)T(i,u) = (j, siv + (1− sj)u) · (k, siw + (1− sk)u)
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= (j ⊕ k, [sk(siv + (1− sj)u) + siw + (1− sk)u]α
jk)

= (j ⊕ k, sksivα
jk + siwα

jk + [(sk − sksj + 1− sk)u]α
jk)

= (j ⊕ k, sksivα
jk + siwα

jk + (1− sksj)uα
jk),

so T(i,u) ∈ Aut(Q) iff (4) holds for every j, k ∈ Zm. �

Let us call a loop Q satisfying (Am) a middle automorphic loop.

Proposition 3.4. Let Q = Dih(m,G, α).

(i) If m = 2 then Q is a middle automorphic loop.

(ii) If m > 2 is odd then Q is a middle automorphic loop iff 2G = 0.
(iii) If m > 2 is even then Q is a middle automorphic loop iff α2↾2G = 12G.

Proof: Consider T(i,u). Suppose that m = 2. A quick inspection of all cases
j, k ∈ {0, 1} shows that (4) always holds.

Suppose that m > 2 is odd. With j = 2 and k = m− 1, condition (4) becomes
(1 − s2⊕(m−1))u = (1 − s2sm−1)uα

2(m−1), or 2u = 0, so we certainly must have
2G = 0 for every T(i,u) to be an automorphism. Conversely, when 2G = 0 then
(4) reduces to 0 = 0.

Suppose that m > 2 is even. Then (4) becomes (1− sj⊕k)u = (1− sj⊕k)uα
jk.

When j ⊕ k is even then this becomes 0 = 0. Suppose that j ⊕ k is odd. Then
one of j, k is odd and the other is even, so that jk is even, and (4) becomes
2u = (2u)α2ℓ for some ℓ. With j = 2, k = 1 we obtain 2u = (2u)α2, which is
equivalent to α2↾2G = 12G. Conversely, when α2↾2G = 12G then (4) holds. �

3.2 Left inner mappings. Recall that zLx,y = (yx)\(y(xz)).

Lemma 3.5. Let Q = Dih(m,G, α) and (i, u), (j, v), (k, w) ∈ Q. Then

(5) (k, w)L(j,v),(i,u) = (k, sj⊕kuα
i(j⊕k)−(i⊕j)k + skvα

jk+i(j⊕k)−(i⊕j)k

+ wαjk+i(j⊕k)−(i⊕j)k − sksjuα
ij − skvα

ij).

Proof: The following conditions are equivalent:

(k, w)L(j,v),(i,u) = (ℓ, x),

(i, u) · (j, v)(k, w) = (i, u)(j, v) · (ℓ, x),

(i, u)(j ⊕ k, (skv + w)αjk) = (i⊕ j, (sju+ v)αij)(ℓ, x),

(i⊕ j⊕ k, (sj⊕ku+ (skv+ w)αjk)αi(j⊕k)) = (i⊕ j⊕ ℓ, (sℓ(sju+ v)αij + x)α(i⊕j)ℓ).

We deduce that ℓ = k and the result follows upon solving for x in the equation

(sj⊕ku+ (skv + w)αjk)αi(j⊕k) = (sk(sju+ v)αij + x)α(i⊕j)k . �
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Lemma 3.6. Let Q = Dih(m,G, α) and (i, u), (j, v) ∈ Q. Then L(j,v),(i,u) ∈
Aut(Q) iff

(6)

sℓsj⊕kuα
i(j⊕k)−(i⊕j)k+kℓ + sℓskvα

jk+i(j⊕k)−(i⊕j)k+kℓ

+ sℓwα
jk+i(j⊕k)−(i⊕j)k+kℓ − sℓsksjuα

ij+kℓ − sℓskvα
ij+kℓ

+ sj⊕ℓuα
i(j⊕ℓ)−(i⊕j)ℓ+kℓ + sℓvα

jℓ+i(j⊕ℓ)−(i⊕j)ℓ+kℓ

+ xαjℓ+i(j⊕ℓ)−(i⊕j)ℓ+kℓ − sℓsjuα
ij+kℓ − sℓvα

ij+kℓ

= sj⊕k⊕ℓuα
i(j⊕k⊕ℓ)−(i⊕j)(k⊕ℓ) + sk⊕ℓvα

j(k⊕ℓ)+i(j⊕k⊕ℓ)−(i⊕j)(k⊕ℓ)

+ sℓwα
kℓ+j(k⊕ℓ)+i(j⊕k⊕ℓ)−(i⊕j)(k⊕ℓ) + xαkℓ+j(k⊕ℓ)+i(j⊕k⊕ℓ)−(i⊕j)(k⊕ℓ)

− sk⊕ℓsjuα
ij − sk⊕ℓvα

ij

for every k, ℓ ∈ Zm and every w, x ∈ G.

Proof: This follows from Lemma 3.5, upon comparing (k, w)L(j,v),(i,u) ·
(ℓ, x)L(j,v),(i,u) with ((k, u)(ℓ, x))L(j,v),(i,u). �

Let us call a loop satisfying (Aℓ) a left automorphic loop. We deduce that Q =
Dih(m,G, α) is a left automorphic loop iff (6) holds for every i, j, k, ℓ ∈ Zm and
every u, v, w, x ∈ G. We show that this very complicated condition is equivalent
to two comparatively simple conditions, which we then analyze separately.

First, setting u = v = w = 0 and letting x range over G in (6) yields the
condition

αjℓ+i(j⊕ℓ)−(i⊕j)ℓ+kℓ = αkℓ+j(k⊕ℓ)+i(j⊕k⊕ℓ)−(i⊕j)(k⊕ℓ) .

With ℓ = 0 this further simplifies to

αij = αjk+i(j⊕k)−(i⊕j)k ,

which is equivalent to

(7) αij+(i⊕j)k = αi(j⊕k)+jk .

Suppose that (7) holds for every i, j, k. Then the automorphisms at w in (6)
agree since

αjk+i(j⊕k)−(i⊕j)k = αij+(i⊕j)k−(i⊕j)k = αij = αij+(i⊕j)(k⊕ℓ)−(i⊕j)(k⊕ℓ)

= αi(j⊕k⊕ℓ)+j(k⊕ℓ)−(i⊕j)(k⊕ℓ) .

Focusing on x in (6), the following conditions are equivalent:

αjℓ+i(j⊕ℓ)−(i⊕j)ℓ+kℓ = αkℓ+j(k⊕ℓ)+i(j⊕k⊕ℓ)−(i⊕j)(k⊕ℓ) ,

αjℓ+i(j⊕ℓ)−(i⊕j)ℓ = αj(k⊕ℓ)+i(j⊕k⊕ℓ)−(i⊕j)(k⊕ℓ) ,

αjℓ+i(j⊕ℓ)+(i⊕j)(k⊕ℓ) = αj(k⊕ℓ)+i(j⊕k⊕ℓ)+(i⊕j)ℓ ,

αij+(i⊕j)ℓ+(i⊕j)(k⊕ℓ) = αij+(i⊕j)(k⊕ℓ)+(i⊕j)ℓ ,
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where we have used (7) twice in the last step. Since the last identity is trivially
true, we see that (7) implies that the automorphisms at x in (6) agree, too. Let
us now focus on v in (6). Using (7), the following conditions are equivalent:

sℓskvα
jk+i(j⊕k)−(i⊕j)k+kℓ − sℓskvα

ij+kℓ + sℓvα
jℓ+i(j⊕ℓ)−(i⊕j)ℓ+kℓ − sℓvα

ij+kℓ

= sk⊕ℓvα
j(k⊕ℓ)+i(j⊕k⊕ℓ)−(i⊕j)(k⊕ℓ) − sk⊕ℓvα

ij ,

sℓskvα
ij+(i⊕j)k−(i⊕j)k+kℓ − sℓskvα

ij+kℓ + sℓvα
ij+(i⊕j)ℓ−(i⊕j)ℓ+kℓ − sℓvα

ij+kℓ

= sk⊕ℓvα
ij+(i⊕j)(k⊕ℓ)−(i⊕j)(k⊕ℓ) − sk⊕ℓvα

ij .

Upon canceling several αn−n and the automorphism αij present in all summands,
we see that the above is equivalent to

sℓskvα
kℓ − sℓskvα

kℓ + sℓvα
kℓ − sℓvα

kℓ = sk⊕ℓv − sk⊕ℓv,

which is trivially true. Hence (7) implies that the automorphisms at v in (6)
agree, too. Finally, we focus on u in (6). Note that the equality

αi(j⊕ℓ)−(i⊕j)ℓ = αij−jℓ

immediately follows from (7). Using this identity, the following conditions are
equivalent:

sℓsj⊕kuα
i(j⊕k)−(i⊕j)k+kℓ − sℓsksjuα

ij+kl + sj⊕ℓuα
i(j⊕ℓ)−(i⊕j)ℓ+kℓ − sℓsjuα

ij+kℓ

= sj⊕k⊕ℓuα
i(j⊕(k⊕ℓ))−(i⊕j)(k⊕ℓ) − sk⊕ℓsjuα

ij ,

sℓsj⊕kuα
ij−jk+kℓ − sℓsksjuα

ij+kℓ + sj⊕ℓuα
ij−jℓ+kℓ − sℓsjuα

ij+kℓ

= sj⊕k⊕ℓuα
ij−j(k⊕ℓ) − sk⊕ℓsjuα

ij ,

sℓsj⊕kuα
−jk+kℓ − sℓsksjuα

kℓ + sj⊕ℓuα
−jℓ+kℓ − sℓsjuα

kℓ

= sj⊕k⊕ℓuα
−j(k⊕ℓ) − sk⊕ℓsju.

Upon rearranging, we obtain the identity

(8) sℓsj⊕kuα
−jk+kℓ + sj⊕ℓuα

−jℓ+kℓ + sk⊕ℓsju

= sℓsksjuα
kℓ + sℓsjuα

kℓ + sj⊕k⊕ℓuα
−j(k⊕ℓ).

We have proved:

Lemma 3.7. Let Q = Dih(m,G, α). Then Q is left automorphic iff (7) and (8)
hold for every i, j, k, ℓ ∈ Zm and every u ∈ G.

Let us now analyze the two conditions (7) and (8).

Lemma 3.8. Let Q = Dih(m,G, α). If m = 2 then (7) holds. If m > 2 then (7)
holds iff αm = 1.
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Proof: Consider the condition

(9) ij + (i⊕ j)k = i(j ⊕ k) + jk.

When m = 2 then (9) holds by a quick inspection of the cases, and thus (7) holds
as well. Suppose that m > 2. With i = j = 1, k = m − 1 the condition (9)
reduces to 1 + 2(m− 1) = 1 · 0 +m− 1, or m = 0, thus if (7) holds then αm = 1.
Conversely, if αm = 1, then (7) holds because (9) is valid modulo m. �

Lemma 3.9. Let Q = Dih(m,G, α). If (7) and (8) hold then αm−2 = 1.

Proof: When m = 2 the conclusion is trivially true. Let us therefore assume
that m > 2 and, using Lemma 3.8, that αm = 1. Let k = 1, j = ℓ = m− 1. Then
(8) becomes

sm−1uα
−(m−1)+(m−1) + sm−2uα

−(m−1)2+(m−1) + sm−1u

= −uαm−1 + uαm−1 + sm−1u,

or, equivalently,

sm−1u = −sm−2uα
−(m−1)2+(m−1).

Since sm−1 = −sm−2 and (m − 1)2 ≡ 1 (mod m), the last identity is equivalent
to u = uα−1+m−1 = uαm−2, or to αm−2 = 1. �

Lemma 3.10. Let Q = Dih(m,G, α) be a left automorphic loop.

(i) If m > 2 is even then α2 = 1.
(ii) If m > 2 is odd then α = 1.

Proof: By Lemma 3.7, Q satisfies (7) and (8). Suppose that m > 2. Then
Lemma 3.8 implies αm = 1 and Lemma 3.9 implies αm−2 = 1. Thus α2 = 1. If
m is also odd then α2 = 1 and αm = 1 imply α = 1. �

Lemma 3.11. Let Q = Dih(m,G, α).

(i) If m = 2 then (8) holds.
(ii) If m is even and α2 = 1 then (8) holds.
(iii) If m > 2 is odd and α = 1 then (8) implies 2G = 0.

Proof: Suppose that m = 2. We can then reduce all subscripts modulo 2 in (8)
and use sisj = si+j . Hence (8) becomes

(10) sℓ+j+kuα
−jk+kℓ + sj+ℓuα

−jℓ+kℓ + sk+ℓ+ju

= sℓ+k+juα
kℓ + sℓ+juα

kℓ + sj+k+ℓuα
−j(k⊕ℓ)

where all subscripts are reduced modulo 2. When j is even (that is, j = 0), (10)
becomes

sk+ℓuα
kℓ + sℓuα

kℓ + sk+ℓu = sk+ℓuα
kℓ + sℓuα

kℓ + sk+ℓu,
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a valid identity. If j is odd and k is even, (10) becomes

−sℓu− sℓuα
−ℓ − sℓu = −sℓu− sℓu− sℓuα

−ℓ,

clearly true. If j, k are odd and ℓ is even, (10) becomes

uα−1 − u+ u = u− u+ uα−1,

again true. Finally, if j, k, ℓ are odd, (10) becomes

−u+ u− u = −uα+ uα− u,

which holds trivially.
Suppose that m is even and α2 = 1. Then we can reduce all subscripts and

superscripts in (8) modulo 2, and we proceed as in case (i).
For the rest of the proof let m > 2 be odd and suppose that α = 1. Then (8)

becomes

sℓsj⊕ku+ sj⊕ℓu+ sk⊕ℓsju = sℓsksju+ sℓsju+ sj⊕k⊕ℓu.

With j = m− 1 and k = ℓ = 1 we obtain −u+ u+ u = u− u− u, or 2u = 0. �

Proposition 3.12. Let Q = Dih(m,G, α).

(i) If m = 2 then Q is left automorphic.

(ii) If m > 2 is even then Q is left automorphic iff α2 = 1.
(iii) If m > 2 is odd then Q is left automorphic iff α = 1 and 2G = 0, in

which case Q is a group.

Proof: We will use Lemma 3.7 without reference.
Suppose that m = 2. Then (7) holds by Lemma 3.8 and (8) holds by Lem-

ma 3.11.
Suppose that m > 2 is even. If Q is left automorphic then α2 = 1 by

Lemma 3.10. Conversely, suppose that α2 = 1. Then (8) holds by Lemma 3.11.
Since also αm = 1, (7) holds by Lemma 3.8.

Finally, suppose that m > 2 is odd. If Q is left automorphic then α = 1 by
Lemma 3.10. By Lemma 3.11, 2G = 0. Conversely, suppose that α = 1 and
2G = 0. Then Q is a group by Lemma 3.1, so certainly also a left automorphic
loop. �

3.3 Main result.

Theorem 3.13. Let m > 1 be an integer, G an abelian group and α an auto-

morphism of G. Let Q = Dih(m,G, α) be defined by (1).

(i) If m = 2 then Q is automorphic.

(ii) If m > 2 is even then Q is automorphic iff α2 = 1.
(iii) If m > 2 is odd then Q is automorphic iff α = 1 and 2G = 0, in which

case Q is a group.



278 M. Aboras

Proof: The claim follows from Propositions 2.2, 3.4 and 3.12. �

From now on we will refer to loops Q = Dih(m,G, α) that are automorphic
(equivalently, that satisfy the conditions of Theorem 3.13) as dihedral automorphic

loops . Since nonassociative examples of dihedral automorphic loops are obtained
only when m = 2 or when m > 2 is even and α2 = 1, we will from now on safely
write sisj = si+j = si⊕j , and we do not have to reduce exponents of α modulo m.

Remark 3.14. If in the multiplication formula (1) we also reduce the exponent of
α (that is, we have (i, u) · (j, v) = (i⊕ j, (sju+ v)αij (mod m))), then the resulting
loop Dihred(m,G, α) is not necessarily isomorphic to Dih(m,G, α). However, it
can be shown that Dihred(m,G, α) = Dih(m,G, α) whenever one of the loops is
automorphic. See [7] for details.

4. Nuclei, commutant and center

In this section we calculate the nuclei, the commutant and the center of dihedral
automorphic loops satisfying α2 = 1. (So we do not always cover the case m = 2,
α2 6= 1.)

Lemma 4.1. Let Q = Dih(m,G, α) be a dihedral automorphic loop such that

α2 = 1. If α = 1 then Nµ(Q) = Q, else Nµ(Q) = 〈2〉 ×G.

Proof: If α = 1 then Q is a group and thus Nµ(Q) = Q. Suppose that α 6= 1.
Note that in automorphic loops (that satisfy (7) by Lemma 3.7) the formula of
Lemma 3.5 simplifies to

(11) (k, w)L(j,v),(i,u) = (k, sj+kuα
ij−jk + skvα

ij + wαij − sksjuα
ij − skvα

ij)

= (k, sj+kuα
ij−jk − sksjuα

ij + wαij).

Since (j, v) ∈ Nµ(Q) iff (k, w) = (k, w)L(j,v),(i,u) for all (i, u), (k, w), we conclude
that (j, v) ∈ Nµ(Q) iff

(12) sj+kuα
ij−jk − sksjuα

ij + wαij = w

for all (i, u), (k, w) ∈ Q. With u = 0, i = 1 this reduces to wαj = w, so αj = 1
is necessary. Because α 6= 1 = α2, we obtain j ∈ 〈2〉. Conversely, if j ∈ 〈2〉 then
(12) holds thanks to sj+k = sksj (since m is even). �

For an abelian group G and α ∈ Aut(G), let G2 = {u ∈ G : |u| ≤ 2},
Fix(α) = {u ∈ G : u = uα} and Fix(α)2 = G2 ∩ Fix(α).

Lemma 4.2. Let Q = Dih(m,G, α) be a dihedral automorphic loop with α2 = 1.
If α = 1 then N(Q) = Nλ(Q) = Nρ(Q) = Q, else N(Q) = Nλ(Q) = Nρ(Q) =
〈2〉 × Fix(α).

Proof: Recall that N(Q) = Nλ(Q) = Nρ(Q) ≤ Nµ(Q) in all automorphic loops.
We are again done if α = 1, so suppose that α 6= 1. Note that (i, u) ∈ Nλ(Q)
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iff (k, w)L(j,v),(i,u) = (k, w) for all (j, v), (k, w) ∈ Q. We deduce from (11) that
(i, u) ∈ Nλ(Q) iff (12) holds for all (j, v), (k, w).

If (i, u) ∈ Nλ(Q) then i ∈ 〈2〉 by Lemma 4.1, so (12) reduces to sj+kuα
−jk −

sj+ku = 0, i.e., uα−jk = u for all j, k. With j = k = 1 we see that u ∈ Fix(α).
Conversely, if u ∈ Fix(α) and i ∈ 〈2〉 then (12) clearly holds. �

Recall that the commutant C(Q) is not necessarily a (normal) subloop of a
loop Q.

Lemma 4.3. Let Q = Dih(m,G, α) be a dihedral automorphic loop such that

α2 = 1. Then:

(i) if exp(G) ≤ 2 then C(Q) = Q;

(ii) if exp(G) > 2 then C(Q) = 〈2〉 ×G2.

In either case, C(Q)EQ.

Proof: By Lemma 3.2, (i, u) ∈ C(Q) iff

(13) siv + (1− sj)u = v

holds for all (j, v) ∈ Q. If exp(G) = 2 then (13) holds. If exp(G) > 2 then
(13) holds for all (j, v) iff i ∈ 〈2〉 and u ∈ G2. Hence if exp(G) > 2 then
C(Q) = 〈2〉 ×G2.

Note that 〈2〉 ×G is a group. Thus, to show C(Q) ≤ Q, we only need to check
that C(Q) is closed under multiplication and inverses, and this is clear from the
multiplication formula.

If (j, v) ∈ C(Q) then, by Lemma 3.2, (j, v)T(i,u) ∈ {(j,±v)} ∈ C(Q). If

(k, w) ∈ C(Q) then, by (11), (k, w)L(j,v),(i,u) = (k, sjuα
ij − sjuα

ij + wαij) ∈
{(k, w), (k, wα)} ∈ C(Q). The proof is similar for right inner mappings. Hence
C(Q)EQ. �

Lemma 4.4. Let Q = Dih(m,G, α) be a dihedral automorphic loop such that m
is even and α2 = 1. Then:

(i) if exp(G) ≤ 2 and α = 1 then Z(Q) = Q;

(ii) if (exp(G) ≤ 2 and α 6= 1) or exp(G) > 2 then Z(Q) = 〈2〉 × Fix(α)2.

Proof: Suppose that α = 1. ThenQ is a group and Z(Q) = C(Q). If exp(G) ≤ 2
then Z(Q) = Q by Lemma 4.3. If exp(G) > 2 then C(Q) = 〈2〉 × G2 = 〈2〉 ×
Fix(α)2, by Lemma 4.3.

Now suppose that α 6= 1 = α2. If exp(G) ≤ 2 then C(Q) = Q and Z(Q) =
N(Q) = 〈2〉 × Fix(α)2 = 〈2〉 × Fix(α) by Lemma 4.2. If exp(G) > 2 then
Z(Q) = N(Q) ∩ C(Q) = 〈2〉 × Fix(α)2, by Lemmas 4.2 and 4.3. �

Proposition 4.5. Let Q be a dihedral automorphic loop with α 6= 1 = α2. Then

Q/Z(Q) ∼= Dih(2, G/H, β), where H = Fix(α)2 and β ∈ Aut(G/H) is defined by

(u+H)β = uα+H . Moreover, β2 = 1.

Proof: By Lemma 4.4, Z(Q) = 〈2〉 × Fix(α)2. The mapping β is well-defined
(if u +H = v +H then u − v ∈ H ⊆ Fix(α), uα − vα = (u − v)α = u − v ∈ H ,
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uα + H = vα + H) and obviously a surjective homomorphism. Since α fixes
elements of H pointwise, we have u+H ∈ kerβ iff u ∈ H , so β ∈ Aut(G/H).

Consider f : Q → Dih(2, G/H, β) defined by (i, u)f = (i mod 2, u+H). Since

(i, u)f(j, v)f = (i mod 2, u+H)(j mod 2, v +H)

= ((i + j) mod 2, (sj(u+H) + (v +H))βij)

= ((i + j) mod 2, (sju+ v)αij +H)

= (i+ j, (sju+ v)αij)f = ((i, u)(j, v))f,

f is a homomorphism, obviously onto Dih(2, G/H, β). Finally, ker(f) = 〈2〉×H =
Z(Q). �

Corollary 4.6. Every dihedral automorphic loop Dih(m,G, α) with α 6= 1 = α2

is a central extension of an elementary abelian 2-group by a dihedral automorphic

loop of the form Dih(2,K, β) with β2 = 1 and K isomorphic to a factor of G.

As an application of the results in this section, let us have a look at central
nilpotency of dihedral automorphic loops. Let Q = Dih(m,G, α) be a dihedral
automorphic loop with α2 = 1 and m even.

If α = 1 and exp(G) ≤ 2 then Z(Q) = Q by Lemma 4.4. If α = 1 and
exp(G) > 2 then Q is a group and Z(Q) = 〈2〉 × Fix(α)2 = 〈2〉 × G2, and since
(i, u)Z(Q)·(j, v)Z(Q) = (i⊕j, sju+v)(〈2〉×G2) = ((i+j) mod 2, sju+v)Z(Q), we
see that Q/Z(Q) is isomorphic to the generalized dihedral group Dih(2, G/G2, 1).

Now suppose that α 6= 1 = α2. Then Q/Z(Q) ∼= Dih(2, G/H, β), where H =
Fix(α)2 and β2 = 1. If H 6= 1, we proceed by induction, else G/H = G, β = α
and Z(Q/Z(Q)) = 1.

Example 4.7. If G is an abelian group of odd order and α ∈ Aut(G) such that
α 6= 1 = α2 then Z(Dih(2, G, α)) = 1.

Suppose that |G| = 2n and α ∈ Aut(G) is such that α 6= 1 = α2. Since
the involution α fixes the neutral element of G and permutes the subgroup G2

of even order (a divisor of |G|), we have H = Fix(α)2 6= 1. Thus Q/Z(Q) =
Dih(2, G/H, β) and 2ℓ = |G/H | < |G|. By induction, Q is centrally nilpotent of
class ≤ n.

Finally suppose that G = Z2n , α ∈ Aut(G) and 1 = α2. Whether α = 1 or
not, we have Q/Z(Q) = Dih(2, G/H, β) for H = Fix(α)2 = {0, 2n−1} and some
β ∈ Aut(G/H) satisfying β2 = 1, because 2n−1 is the unique element of order 2
in G. By induction, Q has nilpotence class n.

5. Commutators and associators

Recall that in a loop Q, the commutator [x, y] is defined as (yx)\(xy), and the
associator [x, y, z] as (x · yz)\(xy · z).

Lemma 5.1. In a loop Q = Dih(m,G, α) we have

(14) [(i, u), (j, v)] = (0, ((sj − 1)u+ (1− si)v)α
ij)
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for (i, u), (j, v) ∈ Q.

Proof: Let (k, w) = [(i, u), (j, v)], so (i, u)(j, v) = (j, v)(i, u) · (k, w), hence,

(i ⊕ j, (sju+ v)αij) = (j ⊕ i, (siv + u)αij) · (k, w) ⇐⇒

(i⊕ j, sjuα
ij + vαij) = (i⊕ j ⊕ k, (sksivα

ij + skuα
ij + w)α(i⊕j)k).

We deduce k = 0, and can rewrite the above expression as w = (sj − 1)uαij +
(1− si)vα

ij . �

Proposition 5.2. Let Q = Dih(m,G, α) be a dihedral automorphic loop with

α2 = 1. Then

〈[x, y] : x, y ∈ Q〉 = {[x, y] : x, y ∈ Q} = 0× 2G

is a normal subloop of Q.

Proof: First, using Lemma 5.1 and looking at all cases i, j (mod 2), it is easy
to see that [(i, u), (j, v)] ∈ 0 × 2G. Second, [(1, 0), (0, v)] = (0, 2v). This shows
that {[x, y] : x, y ∈ Q} = 0 × 2G. It is easy to see from (1) that 0 × 2G is a
subloop of Q. Finally, to show that 0 × 2G is normal in Q, we calculate, using
Lemmas 3.2, 3.5 and an analog of Lemma 3.5:

(0, 2w)L(j,v),(i,u) = (0, 2wα1+ij),

(0, 2w)T(i,u) = (0, 2siw),

(0, 2w)R(j,v),(i,u) = (0, 2wαij).

�

Lemma 5.3. In a dihedral automorphic loop Q = Dih(m,G, α) with α2 = 1 we

have

(15) [(i, u), (j, v), (k, w)] = (0, (sj+ku(1− α−jk)αij + w(1 − αij))α(i⊕j)k)

for (i, u), (j, v), (k, w) ∈ Q.

Proof: When m is odd and α = 1 then Q is a group and (15) yields
[(i, u), (j, v), (k, w)] = 1. The case when m is even and α2 = 1 follows by straight-
forward calculation, but since the identity (7) is involved, we give all the details:
let (ℓ, x) = [(i, u), (j, v), (k, w)] so

(i, u)(j, v) · (k, w) = ((i, u) · (j, v)(k, w))(ℓ, x),

(i⊕ j, (sju+ v)αij) · (k, w) = ((i, u) · (j ⊕ k, (skv + w)αjk))(ℓ, x),

(i⊕ j ⊕ k, [(sk+ju+ skv)α
ij + w]α(i⊕j)k)

= (i ⊕ j ⊕ k, [sj+ku+ skvα
jk + wαjk ]αi(j⊕k))(ℓ, x),
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(i⊕ j ⊕ k, sk+juα
ij+(i⊕j)k + skvα

ij+(i⊕j)k + wα(i⊕j)k)

= (i ⊕ j ⊕ k, sj+kuα
i(j⊕k) + skvα

jk+i(j⊕k) + wαjk+i(j⊕k))(ℓ, x),

(i⊕ j ⊕ k, sk+juα
ij+(i⊕j)k + skvα

ij+(i⊕j)k + wα(i⊕j)k)

= (i ⊕ j ⊕ k, sj+kuα
ij+(i⊕j)k−jk + skvα

jk+i(j⊕k) + wαjk+i(j⊕k))(ℓ, x).

Here we have used identity (7) in the last step. We obtain

(i⊕ j ⊕ k, sk+juα
ij+(i⊕j)k + skvα

ij+(i⊕j)k + wα(i⊕j)k)

= (i ⊕ j ⊕ k ⊕ ℓ, [sj+k+ℓuα
ij+(i⊕j)k−jk

+ sk+ℓvα
jk+i(j⊕k) + sℓwα

jk+i(j⊕k) + x]α(i⊕j⊕k)ℓ).

We deduce ℓ = 0, and can rewrite the above expression as

sk+juα
ij+(i⊕j)k + skvα

ij+(i⊕j)k + wα(i⊕j)k

= sj+kuα
ij+(i⊕j)k−jk + skvα

ij+(i⊕j)k + wαij+(i⊕j)k + x,

x = (sj+ku(1− α−jk)αij + w(1 − αij))α(i⊕j)k . �

Proposition 5.4. Let Q = Dih(m,G, α) be a dihedral automorphic loop with

α2 = 1. Then

A(Q) = 〈[x, y, z] : x, y, z ∈ Q〉 = {[x, y, z] : x, y, z ∈ Q} = 0×G(1 − α).

Proof: Here we check all choices of i, j, k (mod 2), using Lemma 5.3.

[(0, u), (0, v), (0, w)] = (0, u(1− 1) + w(1 − 1)) = (0, 0),

[(0, u), (1, v), (0, w)] = (0,−u(1− 1) + w(1 − 1)) = (0, 0),

[(0, u), (0, v), (1, w)] = (0,−u(1− 1) + w(1 − 1)) = (0, 0),

[(0, u), (1, v), (1, w)] = (0, (u(1− α−1) + w(1 − 1))α)

= (0, u(1− α−1)α) = (0,−u(1− α)),

[(1, u), (0, v), (0, w)] = (0, u(1− 1) + w(1 − 1)) = (0, 0),

[(1, u), (1, v), (0, w)] = (0, (−u(1− 1)α+ w(1 − α))) = (0, w(1 − α)),

[(1, u), (0, v), (1, w)] = (0, (−u(1− 1) + w(1− 1))α) = (0, 0),

[(1, u), (1, v), (1, w)] = (0, u(1− α)α + w(1 − α)),

= (0, u(1− α−1)α+ w(1 − α)),

= (0, (−u+ w)(1 − α)).
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We can see that [(i, u), (j, v), (k, w)] ∈ 0×G(1−α). Second, [(1, u), (1, v), (0, w)] =
(0, w(1 − α)). This shows that {[x, y, z] : x, y, z ∈ Q} = 0×G(1 − α).

Next, we need to show 0 × G(1 − α) is subloop of Q. Let (0, u(1 − α)) and
(0, v(1− α)) be two elements of 0×G(1− α). Then

(0, u(1− α)) · (0, v(1− α)) = (0, (u+ v)(1− α)),

(0, u(1− α))\(0, v(1 − α)) = (0, (v − u)(1− α)),

(0, u(1− α))/(0, v(1 − α)) = (0, (u− v)(1− α)).

Finally, to show 0×G(1−α) is normal in Q we use Lemmas 3.2 and 3.5 to obtain:

(0, w(1 − α))L(j,v),(i,u) = (0, sjuα
ij + vαij + w(1 − α)αij − sjuα

ij − vαij)

= (0, w(1− α)αij),

(0, w(1 − α))T(i,u) = (0, siw(1 − α) + (1− 1)u)

= (0, siw(1 − α)),

(0, w(1− α))R(j,v),(i,u) = (0, (w(1− α) + s−(i+j)u(1− 1))αij)

= (0, w(1− α)αij). �

Proposition 5.5. Let Q = Dih(m,G, α) be a dihedral automorphic loop with

α2 = 1. Then

Q′ = 0× (G(1 − α) + 2G).

Proof: The proof is immediate from Propositions 5.2 and 5.4, since Q′ = 0 ×
(G(1 − α) + 2G) is a normal subloop of Q. �

Acknowledgments. I would like to express my great appreciation to Dr. Voj-
těchovský for many helpful discussions about constructions of automorphic loops
and I thank him for his valuable and constructive suggestions during the planning
and development of this paper.

References

[1] Kinyon M.K., Kunen K., Phillips J.D., Vojtěchovský P., The structure of automorphic
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