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A symplectic representation of E7

Tevian Dray, Corinne A. Manogue, Robert A. Wilson

Abstract. We explicitly construct a particular real form of the Lie algebra e7 in
terms of symplectic matrices over the octonions, thus justifying the identifica-
tions e7 ∼= sp(6,O) and, at the group level, E7

∼= Sp(6,O). Along the way, we
provide a geometric description of the minimal representation of e7 in terms of
rank 3 objects called cubies.

Keywords: exceptional Lie algebras; octonions; E7

Classification: 17B25, 17A35, 20G41

1. Introduction

The Freudenthal-Tits magic square [1], [2] of Lie algebras provides a paramet-
rization in terms of division algebras of a family of Lie algebras that includes all
of the exceptional Lie algebras except g2. The “half-split” version of the magic
square, in which one of the division algebras is split, is given in Table 1. The
interpretation of the Lie algebra real forms appearing in the first two rows of the
magic square as su(3,K) and sl(3,K) has been discussed in [3], [4]; see also [5], [6].
Freudenthal [7] (see also Brown [8]) provided an algebraic description of the sym-
plectic geometry of e7, and Barton & Sudbery [6] advanced this description to the
Lie algebra level by interpreting the third row of the magic square as sp(6,K).
We continue this process here, providing a natural symplectic interpretation of
the minimal representation of e7 = e7(−25). Wilson [9] has also recently given a
quaternionic construction of the group E7.

R C H O

R
′ su(3,R) su(3,C) c3 ∼= su(3,H) f4 ∼= su(3,O)

C
′ sl(3,R) sl(3,C) a5(−7)

∼= sl(3,H) e6(−26)
∼= sl(3,O)

H
′ c3(3) ∼= sp(6,R) su(3, 3,C) d6(−6) e7(−25)

O
′ f4(4) e6(2) e7(−5) e8(−24)

Table 1. The “half-split” 3× 3 magic square of Lie algebras.

2. Freudenthal’s description of e7

Let X ,Y ∈ H3(O) be elements of the Albert algebra, that is, 3 × 3 Hermitian
matrices whose components are octonions. There are two natural products on the
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Albert algebra, namely the Jordan product

(1) X ◦ Y =
1

2

(
XY + YX

)

and the Freudenthal product

(2) X ∗ Y = X ◦ Y −
1

2

(
(trX )Y + (trY)X

)
+

1

2

(
(trX )(trY)− tr(X ◦ Y)

)
I

which can be thought of as a generalization of the cross product on R3 (with the
trace of the Jordan product playing the role of the dot product).

The Lie algebra e6 = e6(−26) acts on the Albert algebra H3(O). The generators
of e6 fall into one of three categories; there are 26 boosts , 14 derivations (of O,
that is, elements of g2), and 38 remaining rotations (the remaining generators
of f4).

1 For both boosts and rotations, φ ∈ e6 can be treated as a 3× 3, tracefree,
octonionic matrix; boosts are Hermitian, and rotations are anti-Hermitian. Such
matrices φ ∈ e6 act on the Albert algebra via

(3) X 7−→ φX + Xφ†

where † denotes conjugate transpose (in O). As discussed at the group level
in [10], the derivations can be obtained by successive rotations (or boosts) through
nesting, corresponding to commutators in the Lie algebra, so it suffices to consider
the boosts and rotations, that is, to consider matrix transformations.2

The dual representation of e6 is formed by the duals φ′ of each φ ∈ e6, defined
via

(4) tr
(
φ(X ) ◦ Y

)
= −tr

(
X ◦ φ′(Y)

)

for X ,Y ∈ H3(O). It is easily checked that φ′ = φ on rotations, but that φ′ = −φ

on boosts. Thus,

(5) φ′ = −φ†

for both boosts and rotations.
We can regard e7 as the conformal algebra associated with e6, since e7 consists

of the 78 elements of e6, together with 27 translations, 27 conformal translations,
and a dilation. In fact, Freudenthal [7] represents elements of e7 as

(6) Θ = (φ, ρ,A,B)

where φ ∈ e6, ρ ∈ R is the dilation, and A,B ∈ H3(O) are elements of the Albert
algebra, representing (null) translations.

1This terminology is based on the analogous action of sl(2,O) ∼= so(9, 1) on H2(O) ∼= R(9,1).
2Since all rotations can be obtained from pairs of boosts, it would be enough to consider

boosts alone.
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What does Θ act on? Freudenthal [7] explicitly constructs the minimal repre-
sentation of e7, which consists of elements of the form

(7) P = (X ,Y, p, q)

where X ,Y ∈ H3(O), and p, q ∈ R. But how are we to visualize these elements?
Freudenthal does tell us that Θ acts on P via

X 7−→ φ(X ) +
1

3
ρX + 2B ∗ Y +A q(8)

Y 7−→ 2A ∗ X + φ′(Y)−
1

3
ρY + B p(9)

p 7−→ tr(A ◦ Y)− ρ p(10)

q 7−→ tr(B ◦ X ) + ρ q(11)

But again, how are we to visualize this action?
We conclude this section by giving two further constructions due to Freuden-

thal [7]. There is a “super-Freudenthal” product ∗ taking elements P of the
minimal representation of e7 to elements of e7, given by3

(12) P ∗P = (φ, ρ,A,B)

where

φ = 〈X ,Y〉(13)

ρ = −
1

4
tr
(
X ◦ Y − pq I

)
(14)

A = −
1

2

(
Y ∗ Y − pX

)
(15)

B =
1

2

(
X ∗ X − q Y

)
(16)

where

(17) 〈X,Y 〉Z = Y ◦ (X ◦ Z)−X ◦ (Y ◦ Z)− (X ◦ Y ) ◦ Z +
1

3
tr(X ◦ Y )Z

Finally, e7 preserves the quartic invariant

(18) J = tr
(
(X ∗ X ) ◦ (Y ∗ Y)

)
− p detX − q detY −

1

4

(
tr(X ◦Y)− pq

)2

which can be constructed using P ∗P.
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R C H O

R
′ so(2) ∼= su(2,R) so(3) ∼= su(2,C) so(5) ∼= su(2,H) so(9) ∼= su(2,O)

C
′ so(2, 1) ∼= sl(2,R) so(3, 1) ∼= sl(2,C) so(5, 1) ∼= sl(2,H) so(9, 1) ∼= sl(2,O)

H
′ so(3, 2) ∼= sp(4,R) so(4, 2) ∼= su(2, 2,C) so(6, 2) so(10, 2)

O
′ so(5, 4) so(6, 4) so(8, 4) so(12, 4)

Table 2. The “half-split” 2× 2 magic square of Lie algebras.

3. The symplectic structure of so(k + 2, 2)

An analogous problem has been analyzed for the 2× 2 magic square, which is
shown in Table 2; the interpretation of the first two rows was discussed in [10];
see also [5]. Dray, Huerta, and Kincaid showed first [11] (see also [12]) how to
relate SO(4, 2) to SU(2,H′ ⊗ C), and later [13] extended their treatment to the
full 2 × 2 magic square of Lie groups in Table 2. In the third row, their Clifford
algebra description of SU(2,H′ ⊗ K) is equivalent to a symplectic description as
Sp(4,K), with K = R,C,H,O.

Explicitly, they represent so(k + 2, 2), where k = |K| = 1, 2, 4, 8, in terms of
actions on 4× 4 matrices of the form

(19) P0 =

(
p I X

−X̃ q I

)

where X is a 2 × 2 Hermitian matrix over K, carrying a representation of
so(k + 1, 1), p, q ∈ R, I denotes the 2 × 2 identity matrix, and tilde denotes

trace-reversal, that is, X̃ = X− tr(X) I. The matrix P0 can be thought of as the
upper right 4 × 4 block of an 8 × 8 Clifford algebra representation over K, and
the action of so(k + 2, 2) on P0 is obtained as usual from (the restriction of) the
quadratic elements of the Clifford algebra. The generators A ∈ so(k + 2, 2) can
be chosen so that the action takes the form

(20) P0 7−→ AP0 ± P0A

where the case-dependent signs are related to the restriction from 8×8 matrices to
4× 4 matrices. Following Sudbery [5], we define the elements A of the symplectic
Lie algebra sp(4,K) by the condition4

(21) AΩ + ΩA† = 0

3We use ∗ to denote this “super-Freudenthal” product because of its analogy to the Freuden-
thal product ∗, with which there should be no confusion. Neither of these products is the same
as the Hodge dual map, also denoted ∗, used briefly in Sections 3 and 4.

4The Lie algebra sp(4,K) also contains the isometry algebra of Im(K).
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where

(22) Ω =

(
0 I

−I 0

)

Solutions of (21) take the form

(23) A =

(
φ− 1

2 ρ I A

B −φ† + 1
2 ρ I

)

where both A and B are Hermitian, tr(φ) = 0, and ρ ∈ R. But generators of
so(k + 2, 2) take exactly the same form: φ represents an element of so(k + 1, 1),
A and B are (null) translations, and ρ is the dilation. Direct computation shows
that the generators A of so(k + 2, 2) do indeed satisfy (21), so that so(k + 2, 2)
and sp(4,K) can be identified as vector spaces, and hence also as Lie algebras;
the above construction therefore establishes the isomorphism

(24) so(k + 2, 2) ∼= sp(4,K)

as claimed.
We can bring the representation (19) into a more explicitly symplectic form by

treating X as a vector-valued 1-form, and computing its Hodge dual ∗X, defined
by

(25) ∗X = Xǫ

where

(26) ǫ =

(
0 1
−1 0

)

is the Levi-Civita tensor in two dimensions. Using the identity

(27) ǫXǫ = X̃T

we see that P = P0 I⊗ ǫ takes the form

(28) P =

(
p ǫ ∗X

−(∗X)T q ǫ

)

which is antisymmetric, and whose block structure is shown in Figure 1. The
diagonal blocks, labeled 00 and 11, are antisymmetric, and correspond to p and q,
respectively, whereas the off-diagonal blocks, labeled 01 and 10, contain equivalent
information, corresponding to ∗X. Note that ∗X does not use up all of the degrees
of freedom available in an off-diagonal block; the set of all antisymmetric 4 × 4
matrices is not an irreducible representation of sp(4,K).

The action of sp(4,K) on P is given by

(29) P 7−→ AP + PAT
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00

01

10

11

Figure 1. The block structure of a 4× 4 antisymmetric matrix
in terms of 2× 2 blocks. A binary labeling of the blocks is shown
on the left; on the right, blocks with similar shading contain
equivalent information.

for A ∈ sp(4,K), that is, for A satisfying (21).5 When working over K = R or C,
the action (29) is just the antisymmetric square

(30) v ∧ w 7−→ Av ∧ w + v ∧Aw

of the natural representation v 7−→ Av, with v ∈ K
4.

4. Cubies

Before generalizing the above construction to the 3× 3 magic square, we first
consider the analog of ∗X. Let X ∈ H3(O) be an element of the Albert algebra,
which we can regard as a vector-valued 1-form with components Xa

b, with a, b ∈
{1, 2, 3}. The Hodge dual ∗X of X is a vector-valued 2-form with components

(31) (∗X )abc = Xa
mǫmbc

where ǫabc denotes the Levi-Civita tensor in three dimensions, that is, the com-
pletely antisymmetric tensor satisfying

(32) ǫ123 = 1

and where repeated indices are summed over. We refer to ∗X as a cubie. We also
introduce the dual of ǫabc, the completely antisymmetric tensor ǫabc satisfying

(33) ǫmnsǫ
mns = 6

and note the further identities

ǫamn ǫ
bmn = 2 δa

b(34)

ǫabm ǫcdm = δa
c δb

d − δa
d δb

c(35)

ǫabc ǫ
def = δa

d δb
e δc

f + δb
d δc

e δa
f + δc

d δa
e δb

f

− δa
d δc

e δb
f − δb

d δa
e δc

f − δc
d δa

e δb
f(36)

5Thus, (29) can be used if desired to determine the signs in (20).
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In particular, we have

(37) (∗X )amnǫ
bmn = 2Xa

b

Operations on the Albert algebra can be rewritten in terms of cubies. For
instance,

trX =
1

2
Xabc ǫ

abc(38)

(
∗(X Y)

)
abc

=
1

2
Xamn Ypbc ǫ

mnp(39)

(
∗(X ◦ Y)

)
abc

=
1

4

(
Xamn Ypbc + Yamn Xpbc

)
ǫmnp(40)

tr(X ◦ Y) =
1

8

(
Xamn Ypbc + Yamn Xpbc

)
ǫmnp ǫbca

=
1

8

(
Xamn Ypbc + Ypbc Xamn

)
ǫmnp ǫbca(41)

(trX )(trY) =
1

2
Xabc Ydef ǫ

abc ǫdef(42)

from which the components of ∗(X ∗ Y) can also be worked out. In the special
case where the components of X and Y commute, contracting both sides of (34)
with X ⊗ Y yields

(43)
1

2
Xc

mYd
n ǫamn ǫ

bcd = (X ∗ Y)a
b

or equivalently

(44)
(
∗(X ∗ Y)

)
abc

=
1

2
(Xb

mYc
n −Xc

mYb
n) ǫamn

providing two remarkably simple expressions for the Freudenthal product, albeit
only in a very special case. We will return to this issue below.

Lemma 1. The action of φ ∈ e6 on cubies is given by

(45) (∗X )abc 7−→ φa
m(∗X )mbc + (∗X )amcφ

′
b
m + (∗X )abmφ′

c
m

Proof: Consider the expression

(46) Qnbc = φ′
n
mǫmbc + φ′

b
mǫnmc + φ′

c
mǫnbm

which is completely antisymmetric, and hence vanishes unless n, b, c are distinct.
But then

(47) Qnbc = tr(φ′) ǫnbc
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000
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010

011

100

101

110

111

Figure 2. The block structure of a 6×6×6 antisymmetric tensor
in terms of 3× 3× 3 “cubies”. A binary labeling of the cubies is
shown on the pulled-apart cube on the left; on the right, cubies
with similar shading contain equivalent information.

which vanishes, since tr(φ′) = −tr(φ) = 0. Thus, (3) becomes

Xa
mǫmbc 7−→

(
φa

nXn
m + Xa

nφ†
n
m
)
ǫmbc

= φa
nXn

m ǫmbc + Xa
nφ′

b
mǫnmc + Xa

nφ′
c
mǫnbm(48)

as claimed, where we have used (5), (31), and (47). �

A similar result holds for the action of φ′.

5. The symplectic structure of e7

The representation (6) can be written in block form, which we also call Θ,
namely6

(49) Θ =

(
φ− 1

3 ρ I A

B φ′ + 1
3 ρ I

)

where I denotes the 3×3 identity matrix. By analogy with Section 3, we would like
Θ to act on ∗X , which has 3 indices, and is antisymmetric in 2 of them, and hence
has the correct symmetries to be an off-diagonal block of a rank 3 antisymmetric
tensor P. The components of P make up a 6× 6× 6 cube, which we divide into
3×3×3 cubies, as shown in Figure 2; compare Figure 1. We identify the diagonal
cubies, labeled 000 and 111, with p ∗I and q ∗I, respectively, the cubie labeled
011 with ∗X , the cubie labeled 100 with ∗Y, and then let antisymmetry do the

6The derivations g2 ⊂ e6 require nested matrix transformations of the form (49).
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rest. Explicitly, we have

(50) Pabc =






p ǫabc a ≤ 3, b ≤ 3, c ≤ 3

(∗Y)âbc a ≥ 4, b ≤ 3, c ≤ 3

(∗X )
ab̂ĉ

a ≤ 3, b ≥ 4, c ≥ 4

q ǫ
âb̂ĉ

a ≥ 4, b ≥ 4, c ≥ 4

where we have introduced the convention that â = a−3, and where the remaining
components are determined by antisymmetry.7

In the complex case, we could begin with the natural action of Θ on 6-
component complex vectors, and then take the antisymmetric cube, that is, we
could consider the action

(51) u ∧ v ∧ w 7−→ Θu ∧ v ∧ w + u ∧Θv ∧ w + u ∧ v ∧Θw

with u, v, w ∈ C6, or equivalently

(52) Pabc 7−→ Θa
m
Pmbc +Θb

m
Pamc +Θc

m
Pabm

Over the octonions, however, the action (52) must be modified and reinterpreted
in order to yield the Freudenthal action (8), as we now show.

Lemma 2. The action of the dilation Θ = (0, ρ, 0, 0) ∈ e7 on P is given by (52).

Proof: From (49), we have

(53) Θa
b = ±

1

3
ρ δa

b

with the sign being negative for a = b ≤ 3 and positive for a = b ≥ 3. Thus, (52)
becomes

(54) Pabc 7−→ ±
1

3
ρPabc ±

1

3
ρPabc ±

1

3
ρPabc

where the signs depend on which of a, b, c are “small” (≤ 3) or “large” (≥ 4).
Examining (50), it is now easy to see that p 7→ −ρ p, q 7→ +ρ p, X 7→ + ρ

3X , and
Y 7→ − ρ

3Y, exactly as required by (8)–(11). �

Lemma 3. If the elements of A,B ∈ H3(O) commute with those of P, then

the action of the translations Θ = (0, 0,A, 0) and Θ = (0, 0, 0,B) on P is given

by (52).

Proof: Set Θ = (0, 0,A, 0) and consider the action of Θ on p, X , Y, and q. We
need to verify (8)–(11) with φ = 0, ρ = 0, and B = 0. From (49), we have

(55) Θa
b =

{
Aa

b̂ a ≤ 3, b ≥ 4

0 otherwise

7Note that P is a cube, and has components Pabc with a, b, c ∈ {1, 2, 3, 4, 5, 6}, whereas ǫabc,
∗Xabc, and ∗Yabc are the components of cubies, which are subblocks of P, with a, b, c ∈ {1, 2, 3}.
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Since A has one “small” index and one “large” index, it reduces the number
of “large” indices present, e.g. mapping cubie 100 to 000, and thus maps q 7→
X 7→ Y 7→ p. In particular, this confirms the lack of a term involving A in (11).
Considering terms involving q, we look at cubie 011, where the only nonzero term
of (52) is

(56) (∗X )abc 7−→ Aa
mq ǫmbc = q (∗A)abc

which verifies (8) in this case.
We next look at cubie 000, where (52) becomes

(57) p ǫabc 7−→ Aa
m(∗Y)mbc +Ab

m(∗Y)mca +Ac
m(∗Y)mab

which is clearly antisymmetric, so we can use (33) and (37) to obtain

(58) p 7−→
1

2
Aa

m(∗Y)mbc ǫ
abc = Aa

mYm
a = tr(AY) = tr(A ◦ Y)

which is (10), where we have used commutativity only in the last equality.
Finally, turning to cubie 100, (52) becomes

(∗Y)abc 7−→ Ab
m(∗X )cam +Ac

m(∗X )bma(59)

= Ab
mXc

n ǫnam +Ac
mXb

n ǫnma

or equivalently, using (37) and (43),

(60) 2Ya
b 7−→ 2Ae

mXf
n ǫamn ǫ

bef = 4 (X ∗ Y)a
b

which is (9).
This entire argument can be repeated with only minor changes if Θ=(0, 0, 0,B).

�

Over R or C, we are done; Lemmas 1, 2, and 3 together suffice to show that
the action (52) is the same as the Freudenthal action (8)–(11). Unfortunately,
the action (52) fails to satisfy the Jacobi identity over H or O. However, we can
still use Lemmas 1, 2, and 3 to reproduce the Freudenthal action in those cases,
as follows.

Lemma 4. The action of Θ = (φ, 0, 0, 0) ∈ e7 on P is determined by

(61) Pabc 7−→ Θa
m
Pmbc +PamcΘb

m +PabmΘc
m

when acting on elements of the form (50), which extends to all of e7 by antisym-

metry.



A symplectic representation of E7 397

Proof: From (49), we have

(62) Θa
b =





φa
b a ≤ 3, b ≤ 3

φ′
â
b̂ a ≥ 4, b ≥ 4

0 otherwise

Inserting (62) into (61) now yields precisely (45) when acting on X ; the argument
for the action on Y is similar. Furthermore, using an argument similar to that
used to prove Lemma 1 to begin with, (52) acts on p via

(63) p ǫabc 7−→ φa
mp ǫmbc + φb

mp ǫamc + φc
mp ǫabm

which is completely antisymmetric in a, b, c, and therefore proportional to
tr(φ) = 0. The argument for the action on q is similar, with φ replaced by φ′.
Although (61) itself is only antisymmetric in its last two indices, that suffices to
define an action on cubies 000, 011, 100, and 111; the action on the remaining 4
cubies is uniquely determined by requiring that antisymmetry be preserved. �

We now have all the pieces, and can state our main result.

Theorem 1. The Lie algebra e7 acts symplectically on cubes, that is, e6 ⊂ e7
acts on cubes via (61), as do real translations and the dilation, and all other e7
transformations can then be constructed from these transformations using linear

combinations and commutators.

Proof: Lemmas 2 and 3 are unchanged by the use of (61) rather than (52), since
the components of Θ commute with those ofP in both cases, and Lemma 4 verifies
that e6 acts via (61), as claimed. It only remains to show that the remaining
generators of e7 can be obtained from these elements via commutators.

Using (8)–(11), it is straightforward to compute the commutator of two e7
transformations of the form (6). Letting φ = Q ∈ e6 be a boost, so that Q† = Q
and tr(Q) = 0, and using the identity

(64) −(A ◦ B) ∗ X =
(
B − tr(B)I

)
◦ (A ∗ X ) +A ∗ (B ◦ X )

for any A,B,X ∈ H3(O), we obtain

(65)
[
(0, 0,A, 0), (Q, 0, 0, 0)

]
= (0, 0,A ◦ Q, 0)

We can therefore obtain the null translation (0, 0,Q, 0) for any tracefree Albert
algebra element Q as the commutator of (0, 0, I, 0) and (Q, 0, 0, 0); a similar
argument can be used to construct the null translation (0, 0, 0,Q). �

Thus, all generators of e7 can be implemented either as a symplectic transfor-
mation on cubes via (61), or as the commutator of two such transformations.
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6. Discussion

We have showed that the algebraic description of the minimal representation
of e7 introduced by Freudenthal naturally corresponds geometrically to a sym-
plectic structure. Along the way, we have emphasized both the similarities and
differences between e7 and so(10, 2) (see also Rohrle [14]). Both of these alge-
bras are conformal ; their elements divide naturally into generalized rotations (e6
or so(9, 1), respectively), translations, and a dilation. Both act naturally on a
representation built out of vectors (3× 3 or 2× 2 Hermitian octonionic matrices,
respectively), together with two additional real degrees of freedom (p and q).8 In
the 2×2 case, the representation (19) contains just one vector; in the 3×3 case (7),
there are two. This at first puzzling difference is fully explained by expressing
both representations as antisymmetric tensors, as in (28) and (50), respectively,
and as shown geometrically in Figures 1 and 2.

In the complex case, we have shown that the symplectic action (52) exactly
reproduces the Freudenthal action (8)–(11). The analogy goes even further. In
2n dimensions, there is a natural map taking two n-forms to a tensor of rank 2.
When acting on P, this map takes the form

(66) P 7−→ PacdPefg ǫ
cdefgb

where ǫ now denotes the volume element in six dimensions, that is, the completely
antisymmetric tensor with ǫ123456 = 1. It is not hard to verify that, in the complex
case, (66) is (a multiple of) P ∗ P, as given by (12)–(16). Similarly, the quartic
invariant (18) can be expressed in the complex case as

(67) J ∼ PgabPcdePfhiPjkl ǫ
abcdef ǫghijkl

up to an overall factor.
Neither the form of the action (52), nor the expressions (66) and (67), hold

over H or O. This failure should not be a surprise, as trilinear tensor products are
not well defined over H, let alone O. Nonetheless, Theorem 1 does tell us how to
extend (52) to the octonions. Although it is also possible to write down versions
of (66) and (67) that hold over the octonions, by using case-dependent algorithms
to determine the order of multiplication, it is not clear that such expressions
have any advantage over the original expressions (12)–(16) and (18) given by
Freudenthal.

Despite these drawbacks, it is clear from our construction that e7 should be
regarded as a natural generalization of the traditional notion of a symplectic Lie
algebra, and fully deserves the name sp(6,O).

8The relations (31) and (37) can be used to identify any 3× 3 matrix over K with a “cubie-
like” piece of a “cube-like” 3-form. However, the set of all such 3-forms does not carry an
irreducible representation of e7; in fact, it does not carry a representation of e7 at all, as the
algebra fails to close. Similar statements hold in the 2× 2 case.
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