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ABSTRACT THEORY OF VARIATIONAL INEQUALITIES WITH

LAGRANGE MULTIPLIERS AND APPLICATION

TO NONLINEAR PDES

Takeshi Fukao, Nobuyuki Kenmochi, Kyoto

(Received September 30, 2013)

Abstract. Recently, we established some generalizations of the theory of Lagrange multi-
pliers arising from nonlinear programming in Banach spaces, which enable us to treat not
only elliptic problems but also parabolic problems in the same generalized framework. The
main objective of the present paper is to discuss a typical time-dependent double obstacle
problem as a new application of the above mentioned generalization. Actually, we describe
it as a usual parabolic variational inequality and then characterize it as a parabolic inclusion
by using the Lagrange multiplier and the nonlinear maximal monotone operator associated
with the time differential under time-dependent double obstacles.
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1. Introduction

Let N ∈ N, 0 < T <∞, let Ω ⊂ R
N be a bounded domain with smooth boundary

Γ := ∂Ω, Q := (0, T )× Ω and Σ := (0, T )× Γ. We put H := L2(Ω), V := W 1,2
0 (Ω)

with the usual norms and denote by V ∗ the dual space of V . These are Hilbert

spaces with standard inner products and V →֒→֒ H →֒→֒ V ∗ holds with dense and

compact imbeddings.

In this paper, for a given constant k0 and functions ψ0, ψ1 in C([0, T ];W
1,2(Ω)),

we consider a time-dependent double obstacle problem with volume constraint of the

following form (P): Find a function u : Q→ R satisfying

∂u

∂t
−∆u = f in Q(u) := {(t, x) ∈ Q ; ψ0(t, x) < u(t, x) < ψ1(t, x)},

∂u

∂t
−∆u > f in Q0(u) := {(t, x) ∈ Q; u(t, x) = ψ0(t, x)},
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∂u

∂t
−∆u 6 f in Q1(u) := {(t, x) ∈ Q ; u(t, x) = ψ1(t, x)},

∂u

∂n
=
∂ψi

∂n
on Q ∩ ∂Qi(u) for i = 0, 1,

u = 0 on Σ,

u(0, ·) = u0(·) on Ω,

along with the bi-lateral constraint

(1.1) ψ0(t, ·) 6 u(t, ·) 6 ψ1(t, ·) a.e. on Ω for all t ∈ [0, T ],

and the volume constraint

(1.2)

∫ T

0

∫

Ω

u(t, x) dxdt 6 k0,

where n is the unit (spatial) normal vector on Q ∩ ∂Qi(u) outward from {x ∈

Ω; ψ0(t, x) < u(t, x) < ψ1(t, x)} to {x ∈ Ω; u(t, x) = ψi(t, x)}, i = 0, 1.

2. Main theorem

In this section, we give the weak formulation of (P) as a parabolic variational

inequality and show that it has a solution. Moreover, the solution is characterized

by that of an abstract inclusion with Lagrange multiplier.

2.1. Definition of the solution and existence theorem. We define a time-

dependent convex and closed subset K(t) of V for all t ∈ [0, T ] as follows:

K(t) := {z ∈ V ; ψ0(t, ·) 6 z 6 ψ1(t, ·) a.e. in Ω}.

Moreover, we define a linear and continuous functional Ψ: L2(0, T ;V ) → R by

Ψ(ξ) :=
∫ T

0

∫
Ω ξ(t, x) dxdt for all ξ ∈ L2(0, T ;V ). Now, for some given k0 ∈ R, we

put

Ck0
:= {ξ ∈ L2(0, T ;V ) ; Ψ(ξ) 6 k0},

K := {ξ ∈ L2(0, T ;V ) ; ξ ∈ K(t) for a.a. t ∈ [0, T ]},

K0 := {ξ ∈ K ; ξ′ ∈ L2(0, T ;V ∗)};

note that these sets are convex and closed in L2(0, T ;V ). Denote by F the duality

mapping from L2(0, T ;V ) onto L2(0, T ;V ∗).
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Definition 2.1. A function u ∈ C([0, T ];H)∩ L2(0, T ;V ) is called a weak solu-

tion of (P) if u satisfies u ∈ K ∩ Ck0
and

(2.1)

∫ T

0

〈η′(t), u(t)− η(t)〉V ∗,V dt+

∫ T

0

a
(
u(t), u(t)− η(t)) dt

6
1

2
|u0 − η(0)|2H +

∫ T

0

〈f(t), u(t)− η(t)〉V ∗,V dt for all η ∈ K0 ∩ Ck0
,

where a(·, ·) : V × V → R is the bilinear form of the Laplacian, namely a(w, z) :=∫
Ω
∇w(x) · ∇z(x) dx for any w, z ∈ V .

Our first theorem is concerned with the existence of a weak solution of (P).

Theorem 2.1. Assume that Ψ(z0) < k0 for some z0 ∈ K0, f ∈ L2(0, T ;H)

and u0 ∈ K(0). Moreover, assume that ψ0, ψ1 ∈ W 1,2(0, T ;W 1,2(Ω)) ∩ L∞(Q),

ψ1 − ψ0 > c0 a.e. in Q for some constant c0 > 0 and

ψ0(t, x) 6 0 6 ψ1(t, x) for a.e. x ∈ Γ,(2.2)

ψ0(t, x)(ψ1(s, x) − ψ0(s, x)) = ψ0(s, x)(ψ1(t, x)− ψ0(t, x)) for a.e. x ∈ Γ,(2.3)

for all s, t ∈ [0, T ]. Then there exists a weak solution of (P).

2.2. Nonlinear operator Lu0
. We recall a nonlinear maximal monotone opera-

tor (cf. [9]), Lu0
: L2(0, T ;V ) → 2L

2(0,T ;V ∗), which is the time differential d/dt under

constraint (1.1).

Definition 2.2. Let u0 ∈ K(0)
H
. Then g ∈ Lu0

u in L2(0, T ;V ∗) if and only if

u ∈ K, g ∈ L2(0, T ;V ∗) and

∫ T

0

〈η′(t)− g(t), u(t)− η(t)〉V ∗,V dt−
1

2
|u0 − η(0)|2H 6 0 for all η ∈ K0.

We define A : L2(0, T ;V ) → L2(0, T ;V ∗) by 〈〈Au, η〉〉 :=
∫ T

0
a(u(t), η(t)) dt for

all u, η ∈ L2(0, T ;V ), where 〈〈·, ·〉〉 is the duality pairing between L2(0, T ;V ) and

L2(0, T ;V ∗). Moreover, we denote by ∂∗ the subdifferential from L2(0, T ;V ) into

L2(0, T ;V ∗). With the above operator Lu0
, the weak solution obtained by Theo-

rem 2.1 is characterized as follows.
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Theorem 2.2. Under the assumptions of Theorem 2.1, there exist u ∈ K ∩ Ck0

and λ ∈ R such that

Lu0
u+Au + λ∂∗Ψ(u) ∋ f in L2(0, T ;V ∗),(2.4)

λ > 0, Ψ(u)− k0 6 0, λ(Ψ(u)− k0) = 0.(2.5)

We first prove Theorem 2.2 by applying the abstract theory on Lagrange multi-

pliers for variational inequalities stated in the next subsection and then prove that

(2.1) is equivalent to (2.4)–(2.5), which shows that Theorem 2.1 holds.

2.3. Related known results. The time-independent case of ψ0, ψ1 double obsta-

cle problems were treated for instance in [1], [4], [11] and these results were extended

to the case of time-dependent constraint in [14]. Also, some related results are found

(e.g., [2], [3], [8]) in connection with optimization problems. Now, we recall the

general theory [7] as mentioned below.

Let V be a real reflexive and strictly convex Banach space and V∗ the dual space

of V , let A : D(A) ⊂ V → 2V
∗

be a maximal monotone operator, and Ψ: D(Ψ) =

V → [0,∞) a continuous, convex and bounded functional; hence Ψ(B) is a bounded

subset of R for each bounded subset B of V . Now let k0 be a number and put Ck0
:=

{v ∈ V ; Ψ(v) 6 k0} 6= ∅. Moreover, assume the following constraint qualification of

the Slater type and coercivity:

(A1) There exists z0 ∈ D(A) such that Ψ(z0) < k0;

(A2) A is coercive in the following sense:

inf
v∗∈Av

〈〈v∗, v − z0〉〉+Ψ(v)2

‖v‖V
→ ∞ as ‖v‖V → ∞,

where z0 is the same as in (A1).

Then we obtained the following result in [7]:

Proposition 2.1. Assume (A1) and (A2) hold. Then, for each f ∈ V∗, there

exist u ∈ D(A) ∩ Ck0
and λ ∈ R such that

Au+ λ∂∗Ψ(u) ∋ f in V∗,(2.6)

λ > 0, Ψ(u)− k0 6 0, λ(Ψ(u)− k0) = 0.(2.7)

Note here that if A is maximal cyclically monotone, namely A = ∂∗ϕ with some

proper lower semicontinuous convex functional ϕ : V → (−∞,∞], then Proposi-

tion 2.1 is well-known as a minimizing problem min{ϕ(u) ; u ∈ Ck0
} under the
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Slater constraint qualification (A1) (see [3], Chapter 3). For a similar result for

parabolic variational inequalities, we focus our interest on the general case of A

(see [12]).

3. Proof of main theorem

In this section, we first give a detailed characterization of the operator Lu0
. Sec-

ond, we show that Lu0
+ A is maximal monotone, and then we prove the main

theorems.

3.1. Characterization of Lu0
. The operator Lu0

is characterized by the auxil-

iary operator L̃u0
: D(L̃u0

) ⊂ L2(0, T ;V ) → 2L
2(0,T ;V ∗):

Definition 3.1. Element g ∈ L̃u0
u in L2(0, T ;V ∗) if and only if u ∈ K ∩

C([0, T ];H) with u(0) = u0 in H , g ∈ L2(0, T ;V ∗) and there exist {un}n∈N ⊂

K ∩W 1,2(0, T ;H) and {gn}n∈N ⊂ L2(0, T ;H) such that 〈〈u′n − gn, un − η〉〉 6 0 for

all η ∈ K with un → u in C([0, T ];H) and weakly in L2(0, T ;V ), gn → g weakly in

L2(0, T ;V ∗) as n→ ∞, and lim sup
n→∞

〈〈gn, un〉〉 6 〈〈g, u〉〉.

Lemma 3.1 (cf. [9], Part 2, Lemma 1.1). For all u0 ∈ K(0)
H
, we have that

G(L̃u0
) ⊂ G(Lu0

) and 〈〈g−h, u−w〉〉 > 0 for all [u, g] ∈ G(L̃u0
) and [w, h] ∈ G(Lu0

).

Moreover, L̃u0
is monotone, where G(L̃u0

) and G(Lu0
) are, respectively, the graphs

of L̃u0
and Lu0

.

P r o o f. It is easy to see G(L̃u0
) ⊂ G(Lu0

). Next, by definition, for all [u, g] ∈

G(L̃u0
) there exist {un}n∈N ⊂ K ∩W 1,2(0, T ;H) and {gn}n∈N ⊂ L2(0, T ;H) such

that
0 > 〈〈u′n − gn, un − η〉〉 = 〈〈η′ − gn, un − η〉〉

+
1

2
|un(T )− η(T )|2H −

1

2
|un(0)− η(0)|2H for all η ∈ K0,

with convergences mentioned in Definition 3.1. Therefore, taking lim inf
n→∞

in the above,

we obtain [u, g] ∈ G(Lu0
). Next, let [w, h] ∈ G(Lu0

). Then, since un ∈ K0, we have

〈〈u′n − h,w − un〉〉 6 (1/2)|u0 − un(0)|2H for all n ∈ N. On the other hand, from the

definition of [u, g] ∈ G(L̃u0
) it follows that 〈〈u′n − gn, un − w〉〉 6 0 for all n ∈ N.

Therefore,

〈〈gn − h, un − w〉〉 > −〈〈u′n − h,w − un〉〉 > −
1

2
|u0 − un(0)|

2
H .

Taking lim sup
n→∞

in the above, we get the conclusion. �
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Lemma 3.2 (cf. [9], Part 2, Lemma 1.2). For all u0 ∈ K(0)
H
, f ∈ L2(0, T ;V ∗)

and µ ∈ (0, 1] there exists a unique u ∈ D(L̃u0
) with u(t) ∈ K(t) for all t ∈ [0, T ]

and

(3.1) f ∈ L̃u0
u+ µFu in L2(0, T ;V ∗),

namely, L̃u0
is maximal monotone and L̃u0

= Lu0
.

P r o o f. The uniqueness comes from the strict monotonicity of L̃u0
+ µF . Next,

let us define convex functionals by

ϕ(z) :=

{ µ

2
|z|2V , if z ∈ V,

∞, if z ∈ H \ V,
IK(t)(z) :=

{
0, if z ∈ K(t),

∞, if z ∈ H \K(t),

and ϕt(z) := ϕ(z)+IK(t)(z). Then ϕ
t is proper, lower semi-continuous onH . Thanks

to the well-known result on the evolution inclusion governed by time-dependent sub-

differential [10], [13] and its application [6], [14] under the assumptions on ψ0, ψ1

with (2.2)–(2.3) (see [14, Lemma 5.1]), there exists a unique un inW
1,2(0, T ;H) such

that t 7→ ϕ(un(t)) is also bounded on [0, T ], un(t) ∈ K(t) for all t ∈ [0, T ] and

u′n(t) + u∗n(t) = fn(t), u∗n(t) ∈ ∂(ϕ+ IK(t))(un(t)) in H for a.e. t ∈ (0, T ),

with un(0) = u0,n in H , where {u0,n}n∈N ⊂ K(0) and {fn}n∈N ⊂ L2(0, T ;H) are

approximate sequences so that u0,n → u0 in H and fn → f in L2(0, T ;V ∗) as

n → ∞. From the usual energy estimate we easily see that {un}n∈N is bounded in

L∞(0, T ;V ). Here, for simplicity, we use the same notation ∂∗ for the subdifferential

from V into V ∗ as for that from L2(0, T ;V ) into L2(0, T ;V ∗). Then we obtain the

characterization

u∗n(t) ∈ ∂(ϕ+ IK(t))(un(t)) ⊂ ∂∗(ϕ+ IK(t))(un(t))

= µFun(t) + ∂∗IK(t)(un(t)) in V ∗ for a.e. t ∈ (0, T ),

because of ∂∗ϕ = µF , where F : V → V ∗ is the duality mapping. Therefore,

(u∗n(t)− u∗m(t), un(t)− um(t))H

= µ〈Fun(t)− Fum(t), un(t)− um(t)〉V ∗,V

+ 〈u∗∗n (t)− u∗∗m (t), un(t)− um(t)〉V ∗,V

= µ|un(t)− um(t)|2V + 〈u∗∗n (t)− u∗∗m (t), un(t)− um(t)〉V ∗,V ,
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where u∗∗n (t) ∈ ∂∗IK(t)(un(t)) in V
∗ for all n ∈ N. Consequently, we have

1

2

d

dt
|un(t)− um(t)|2H + µ|un(τ) − um(t)|2V + 〈u∗∗n (t)− u∗∗m (t), un(t)− um(t)〉V ∗,V

= 〈fn(t)− fm(t), un(t)− um(t)〉V ∗,V for all t ∈ [0, T ],

whence it follows that {un}n∈N is a Cauchy sequence in C([0, T ];H) ∩ L2(0, T ;V )

and

lim
n,m→∞

∫ t

0

〈u∗∗n (t)− u∗∗m (t), un(t)− um(t)〉V ∗,V dt = 0.

These facts imply that there exists u ∈ C([0, T ];H)∩L∞(0, T ;V ) such that u(0) = u0
in H , u(t) ∈ K(t) for all t ∈ [0, T ] and

un → u in C([0, T ];H) ∩ L2(0, T ;V ), weakly-∗ in L∞(0, T ;V ),

fn − µFun → f − µFu in L2(0, T ;V ∗) as n→ ∞.

Now, we note that 〈〈u′n − (fn − µFun), un − η〉〉 6 0 for all η ∈ K and lim sup
n→∞

〈〈fn −

µFun, un〉〉 = 〈〈f − µFu, u〉〉. This means that f − µFu ∈ L̃u0
u, namely (3.1).

Thus, L̃u0
is maximal monotone (see [2], [5]). As a consequence of Lemma 3.1,

G(L̃u0
) = G(Lu0

). Actually, if not, there would exist [w, h] ∈ G(Lu0
) such that

[w, h] /∈ G(L̃u0
). Then we can extend L̃u0

by

Lu0
u :=

{
L̃u0

u if u 6= w,

h if u = w,

and moreover Lemma 3.1 implies that Lu0
is monotone and Lu0

is a proper extension

of L̃u0
. This is a contradiction to the maximality of L̃u0

. �

P r o o f of Theorem 2.2. We now apply Proposition 2.1 to show Theorem 2.2.

Actually, put V := L2(0, T ;V ), A := Lu0
+ A : D(A) ⊂ L2(0, T ;V ) → 2L

2(0,T ;V ∗).

Since D(A) = L2(0, T ;V ), A is maximal monotone (see, [2], [5]) and (A1) and (A2)

hold on account of z0 ∈ D(Lu0
). Hence we get Theorem 2.2. �

P r o o f of Theorem 2.1. We see that u ∈ D(A) ∩ Ck0
, λ ∈ R with (2.6)–(2.7) is

equivalent to u ∈ D(A) ∩ Ck0
and the variational inequality

(3.2) 〈〈α∗, u− η〉〉 6 〈〈f, u− η〉〉 for all η ∈ Ck0
,

with α∗ ∈ Au in L2(0, T ;V ∗). In fact, for f ∈ L2(0, T ;V ∗), assume that u ∈

D(A)∩Ck0
and λ ∈ R satisfy (2.6)–(2.7). If λ = 0, then (3.2) trivially holds. If λ > 0,
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then it follows from (2.7) that Ψ(u) = k0, and from (2.6) that 〈〈(f −α∗)/λ, η−u〉〉 6

Ψ(η)−Ψ(u) for all η ∈ V . We have Ψ(η) 6 k0 for all η ∈ Ck0
, thus

〈〈α∗ − f, u− η〉〉 6 λΨ(η)− λk0 6 0 for all η ∈ Ck0
.

Conversely, assume that u ∈ D(A) ∩ Ck0
satisfies (3.2). Put Â := A + F and

f̂ := f + Fu. Now, applying Proposition 2.1 to these Â and f̂ , we see that there

exist an element û ∈ D(A) ∩ Ck0
and a number λ ∈ R such that

Aû+ F û+ λ∂∗Ψ(û) ∋ Fu+ f in V∗,

λ > 0, Ψ(û)− k0 6 0, λ(Ψ(û)− k0) = 0.

Moreover, û ∈ D(A) ∩ Ck0
is a solution of

(3.3) 〈〈α̂∗ + F û, û− η〉〉 6 〈〈Fu + f, û− η〉〉 for all η ∈ Ck0
,

with α̂∗ ∈ Aû in L2(0, T ;V ∗). Clearly, the solution of the variational inequality (3.3)

is unique, because A + F is strictly monotone. Now, note that u is a solution of

(3.3); in fact, substituting u for û in (3.3), we see from (3.2) that (3.3) holds. This

implies that û = u in V . Going back to (3.2), we conclude that u satisfies (2.6).

Finally, from (3.2) and Definition 2.2 we conclude that u satisfies (2.1). �
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