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KYB ERNET IK A — VO LUME 5 0 ( 2 0 1 4 ) , NUMBER 3 , PAGES 4 3 6 – 4 4 9

SLIDING SUBSPACE DESIGN
BASED ON LINEAR MATRIX INEQUALITIES

Alán Tapia, Raymundo Márquez, Miguel Bernal and Joaqúın Cortez

In this work, an alternative for sliding surface design based on linear and bilinear matrix
inequalities is proposed. The methodology applies for reduced and integral sliding mode con-
trol, both continuous- and discrete-time; it takes advantage of the Finsler’s lemma to provide a
greater degree of freedom than existing approaches for sliding subspace design. The sliding sur-
faces thus constructed are systematically found via convex optimization techniques, which are
efficiently implemented in commercially available software. Examples are provided to illustrate
the effectiveness of the proposed approach.

Keywords: sliding mode control, variable structure, sliding subspace design, linear matrix
inequalities

Classification: 93B12, 90C25, 51M16

1. INTRODUCTION

Nowadays, variable structure control is among one of the most popular control tech-
niques available due to its insensitiveness to matched disturbances and its finite-time
convergence properties [26]. There are two stages of reduced order sliding mode con-
trol design: the definition of an appropriate sliding surface in order to guarantee a
reduced-order sliding motion with prescribed dynamics, then the design of a control law
to keep the system in the aforementioned motion [15]. This paper is concerned with the
first stage. Its goal is to provide the sliding subspace to which the system states will
be attracted. An appropriate construction of this subspace provides desired dynamics,
disturbance rejection, optimal behavior, and robust stability in sliding mode.

On the other hand, in integral sliding mode control the size of the controlled system
is augmented with a number of integrators connected to it, and then, it defines the
sliding subspace for the augmented model, having its state as a concatenation of system
states and integrator outputs. One of its important advantages is that a proper choice
of integrator’s initial conditions eliminates the reaching phase [17].

Several works have appeared for sliding mode motion design, most of them based
on transformations having a form which allows desired pole placement or quadratic
cost function minimization [12, 13, 21]; manipulation of the right eigenvector, spanning
the sliding subspace in continuous- [7] and discrete-time case [6]; closed-form formulas
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based on the Ackermann’s pole-placement procedure [2, 19], and integral continuous
control subspace design [27] as well as a closed form for discrete-time systems [1]. In [14]
continuous- and discrete-time, both reduced and full order (integral) sliding subspace
design are considered and solved through explicit formulas and algorithms; this paper
reformulates these results under the linear matrix inequality (LMI) framework or in
terms of bilinear matrix inequalities (BMI) when the first choice is not possible.

The LMI-based control field has had an impressive growth. Once a problem is stated
in LMI terms, it can be efficiently solved by convex optimization techniques which are
implemented in commercially available software [4], making it possible to solve tradi-
tional control problems using a systematic design procedure with a software implemen-
tation; a similar outcome can be found for solving BMIs [22]. Linear parameter varying
(LPV) as well as quasi-LPV control systems have been treated first under the LMI ap-
proach in [25]. Later, several authors made use of LMIs in sliding mode control: for
pole placement under the sliding motion [3], for first-order sliding surface design [8, 10],
for integral sliding surface design [5, 9], for discrete-time sliding surface design [23], for
linear quadratic-based methods [18], for simultaneous sliding surface and control law
design [16], for asymptotic high-order sliding mode control design [24].

This paper is organized as follows: Section 2 provides basic notation introduced
first in [21] allowing to treat continuous- and discrete-time sliding subspace design in a
single frame, both for reduced- and integral sliding control; this is followed by problem
statements. Section 3 contains the main contribution of this paper: the use of the
Finsler’s lemma to obtain LMI conditions for reduced-order sliding subspace design
and BMI conditions for integral (full) order one. Section 4 exemplifies the developed
techniques. Finally, Section 5 draws some conclusions and perspectives.

2. PRELIMINARIES AND PROBLEM STATEMENT

Consider the following uncertain linear system:

δx = Ax(t) + B
(
u(t) + d(t, x, u)

)
, (1)

where the operator δ represents either the differential operator d/dt in continuous-time
models (thus δx = ẋ) or the forward shift operator in discrete-time models (i. e., δx =
x(t + 1)) [21], x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input, d : R ×
Rn × Rm → Rm represents matched uncertainty satisfying ‖d(t, x, u)‖ ≤ ρ(t, x, u) with
ρ(t, x, u) being a known function, and A ∈ Rn×n, B ∈ Rn×m are the nominal system
matrices. Note that the uncertainty d(t, x, u) will play no role in designing the sliding
surface; it is only included for completeness [16].

In the sequel, a zero (0) inside a matrix will be a zero matrix block of appropriate
dimensions; similarly, I will denote an identity matrix of appropriate size. For in-line
expressions, an asterisk (∗) represents the transpose of the terms on its left-hand side;
inside a matrix, it denotes the transpose of its symmetric terms. For matrix expressions,
symbols < and > stand for negative- and positive-definite relations, respectively; whereas
≺ and � represent element-wise negative and positive relations, respectively.

The following assumptions are made:
A1) Matrix B is of full rank, i. e., rank B = m.
A2) The pair (A,B) is controllable.
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Recalling the concept of equivalent control, a matrix K can be designed such that
the closed-loop model

δx = Ax−BKx = (A−BK)x (2)

has some desired dynamic features; therefore, pole placement comes at hand. Since this
paper presents a full LMI/BMI methodology, pole placement will be achieved under
the same framework. To that end, let J be a diagonal matrix containing the n desired
poles in its diagonal entries. The following lemma shows that pole assignment can be
performed via LMIs:

Lemma 2.1. The closed-loop model (2) has the same poles of matrix J if there exist
matrices T = TT > 0 and M such that LMIs −ε ≺ AT −BM − TJ ≺ ε hold.

P r o o f . If matrices A−BK and J share the same eigenvalues, then a similarity trans-
formation should exist between them, i. e., T−1(A − BK)T = J with nonsingular T =
TT > 0. It is clear that (A−BK)T = TJ , which implies AT −BKT −TJ = 0. Defining
M = KT , it is clear that the desired LMIs arise from the fact that if AT −BM−TJ = 0
then an arbitrarily small ε > 0 exists such that the desired LMIs hold, thus concluding
the proof. �

Remark 2.2. In the sequel, gain matrix K will be calculated as in the previous lemma
as a first step leading to the sliding subspace design; it will be therefore assumed to be
available.

Reduced-order sliding subspace design [14]: The following pair of equations defines the
sliding mode that will be attained with a suitable switching type control law. Combining
(2) and (3) leads to (4):

g(t) = Cx(t) = 0, (3)

δg = Cδx = C(Ax + Bu) = C(A−BK)x = 0, (4)

where C ∈ Rm×n is a full-rank sliding subspace matrix.
Assuming that

A3) Matrix CB is full rank, i. e., rank(CB) = m,
it can be shown from (4) that the equivalent feedback matrix is K = (CB)−1CA.

Problem statement 1: Find C such that the sliding mode dynamics (2) – (4) have the
pole assignment given by K under assumptions A1 – A3.

Full-order (integral) sliding subspace design [14]: This approach is based on adding
m integrators to the system (1), thus leading to the following equations which define
the integral sliding mode scheme under an appropriate switching type control law. Note
that (7) stems from (2), (5), and (6):

g(t) = Dx + σ = 0, (5)

δσ = Ex + qσ, (6)

δg = D(Ax + Bu) + Ex + qσ = D(A−BK)x + Ex + qσ
=

(
D(A−BK) + E

)
x + qσ,

(7)
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with sliding subspace matrices D ∈ Rm×n and E ∈ Rm×n, q being a parameter which
equals to 1 for the discrete-time case and 0 for the continuous-time case.

Assuming that

A4) Matrix DB is full rank, i. e., rank(DB) = m,

it can be shown from (7) that the equivalent feedback matrix is K = (DB)−1
(
D(A −

qI) + E
)
.

Equations (2) and (6) can be put together in the following matrix form:[
δx
δσ

]
=

[
A−BK 0

E qI

] [
x
σ

]
. (8)

Problem statement 2: Find D and E such that the sliding mode dynamics (2),(5) – (7)
have the pole assignment given by K under assumptions A1, A2, and A4.

The following well-known matrix property will play an essential role in deriving the
results presented in this paper:

Finsler’s lemma [11]: Let x ∈ Rn, Q = QT ∈ Rn×n, and R ∈ Rm×n such that rank(R) <
n; the following expressions are equivalent:

xT Qx < 0, ∀x ∈ {x ∈ Rn : x 6= 0, Rx = 0} (9)

∃H ∈ Rn×m : Q + HR + RT HT < 0. (10)

3. MAIN RESULTS

Consider the following quadratic Lyapunov funcion candidate:

V = gT (t)P̄ g(t), P̄ = P̄T > 0. (11)

Let P = CT P̄C. Then using (3), (11) can be rewritten as:

V = gT (t)P̄ g(t) = xT (t)CT P̄Cx(t) = xT (t)Px(t), P = PT > 0. (12)

Theorem 3.1. (reduced-order continuous-time case) Assume A1 – A3 and δx =
ẋ. The sliding mode dynamics (2) – (4) have the pole assignment A − BK if the LMIs
in the following conditions hold:

P (A−BK) + M + (∗) < 0, −ε ≺ M(A−BK) ≺ ε (13)

with P = PT = [P1 P2] > 0, P1 ∈ Rn×m, P2 ∈ Rn×(n−m), and M ∈ Rn×n being
decision variables, and sliding subspace matrix given by C = P+

1 M .

P r o o f . Omitting arguments when convenient, the time-derivative of (12) can be writ-
ten as:

V̇ = xT Pδx + δxT Px = xT P (A−BK)x + xT (A−BK)T Px
= xT

[
P (A−BK) + (∗)

]
x < 0.

(14)
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Applying the Finsler’s lemma in (10) with Q = P (A − BK) + (∗) taken from (14)
and R = C taken from restriction (3) leads to the following equivalent condition:

P (A−BK) + HC + (∗) < 0. (15)

Considering H = P1 ∈ Rn×m and M = HC = P1C ∈ Rn×n, the previous inequality
yields

P (A−BK) + M + (∗) < 0,

which is a sufficient LMI condition to guarantee V̇ < 0 under restriction Cx = 0 where
decision variables are given by P , M , and sliding subspace matrix can be calculated
from C = P+

1 M .
In order to guarantee K = (CB)−1CA, notice that:

CA = CBK ⇔ C(A−BK) = 0 ⇔ P1C(A−BK) = 0 ⇔ M(A−BK) = 0.

The latter equality guarantees the existence of an arbitrarily small ε > 0 such that
the second LMI in (13) holds, thus concluding the proof. �

Theorem 3.2. (reduced-order discrete-time case) Assume A1 – A3 and δx = x(t + 1).
The sliding mode dynamics (2) – (4) have the pole assignment A − BK if the LMIs in
the following conditions hold:

M + (∗) + (A−BK)T P (A−BK)− P < 0, −ε ≺ M(A−BK) ≺ ε (16)

with P = PT = [P1 P2] > 0, P1 ∈ Rn×m, P2 ∈ Rn×(n−m), and M ∈ Rn×n being
decision variables, and sliding subspace matrix given by C = P+

1 M .

P r o o f . It follows a similar outline as for theorem 3.1 using the difference equation
from (11). �

For integral sliding subspace design, consider the same quadratic Lyapunov function
candidate (11). Taking into account the extended definition of the sliding surface in (5),
this candidate Lyapunov function can be written as:

V = gT (t)P̄ g(t) = x̄T [D I]T P [D I]x̄, (17)

with x̄ = [xT (t) σT (t)]T , P̄ = P̄T = [D I]T P [D I] > 0, P =
[

P11 (∗)
P21 P22

]
∈

R(n+m)×(n+m), P11 ∈ Rn×n, P21 ∈ Rm×n, P22 ∈ Rm×m.
The next theorems state BMI conditions to solve the full order sliding subspace design;

they are followed by 2-steps algorithms which allow to efficiently solve these BMIs.
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Theorem 3.3. (full-order continuous-time case) Assume A1, A2, A4, δx = ẋ, and
δσ = σ̇. The sliding mode dynamics (2), (5) – (7) have the pole assignment A − BK if
the BMIs in the following conditions hold:[

P11(A−BK) + PT
21E + H1D H1

P21(A−BK) + P22E + H2D H2

]
+ (∗) < 0,

[
P11 (∗)
P21 P22

]
> 0,

−ε ≺ D(A−BK) + E ≺ ε

(18)

with P11 ∈ Rn×n, D, E, P21 ∈ Rm×n, H1 ∈ Rn×m, and P22, H2 ∈ Rm×m being decision
variables.

P r o o f . Positiveness of the Lyapunov function candidate in (17) is guaranteed by the
second LMI in (18).

The time-derivative of (17) can be written as:

V̇ = 2x̄T P ˙̄x =
[

x
σ

]T ([
P11 (∗)
P21 P22

] [
A−BK 0

E 0

]
+ (∗)

) [
x
σ

]
< 0. (19)

Applying the Finsler’s lemma in (10) with Q =
[

P11 (∗)
P21 P22

] [
A−BK 0

E 0

]
+ (∗)

taken from (19) and R = [D I] taken from restriction (5) leads to the following
equivalent condition:[

P11 (∗)
P21 P22

] [
A−BK 0

E 0

]
+

[
H1

H2

] [
D I

]
+ (∗)

=
[

P11(A−BK) + PT
21E 0

P21(A−BK) + P22E 0

]
+

[
H1D H1

H2D H2

]
+ (∗)

=
[

P11(A−BK) + PT
21E + H1D H1

P21(A−BK) + P22E + H2D H2

]
+ (∗) < 0,

(20)

where H1 ∈ Rn×m, H2 ∈ Rm×m are new free decision variables: this corresponds to the
first LMI in (18).

Finally, note that the third LMI in (18) allows to guarantee K = (DB)−1(DA+E),
since it implies the existence of an arbitrarily small ε>0 guaranteeing D(A−BK)+E =0.

�

Remark 3.4. Conditions in theorem 3.3 are BMIs; therefore it is suggested to solve
them in two steps, as follows:

Step 1: Solve the first two LMIs in (18) for P11, P21, P22, H1, H2, and N1 = PT
21E,

N2 = P22E, M1 = H1D, and M2 = H2D. Once solved, take D =
[

H1

H2

]+ [
M1

M2

]
,

E =
[

PT
21

P22

]+ [
N1

N2

]
.
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Step 2: Take D (preserving N1 and N2) or E (preserving M1 and M2) from the
previous step in order to solve all the LMIs in (18). If D is chosen, the third LMI in
(18) turns into:

−ε ≺
[

PT
21

P22

]
D(A−BK) +

[
N1

N2

]
≺ ε;

otherwise, if E is chosen, the third LMI in (18) is rewritten as:

−ε ≺
[

M1

M2

]
(A−BK) +

[
H1

H2

]
E ≺ ε.

Theorem 3.5. (full-order discrete-time case) Assume A1, A2, A4, δx = x(t + 1), and
δσ = σ(t+1). The sliding mode dynamics (2), (5) – (7) have the pole assignment A−BK
if the BMIs in the following conditions hold:

P −
[

H1D H1

H2D H2

]
+ (∗) (∗)[

P11(A−BK) + PT
21E PT

21

P21(A−BK) + P22E P22

]
P

 > 0, P =
[

P11 (∗)
P21 P22

]
> 0,

−ε ≺ D(A−BK − I) + E ≺ ε

(21)

with P11 ∈ Rn×n, D, E, P21 ∈ Rm×n, H1 ∈ Rn×m, and H2, P22 ∈ Rm×m, being decision
variables.

P r o o f . Positiveness of the Lyapunov function candidate in (17) is guaranteed by the
second LMI in (21); its one-step variation is developed as follows:

∆V = V (t + 1)− V (t) = x̄T (t + 1)Px̄(t + 1)− x̄T (t)Px̄(t)

= x̄T (t)
[ [

A−BK 0
E I

]T

P

[
A−BK 0

E I

]
− P

]
x̄(t) < 0.

(22)

Applying the Finsler’s lemma in (10) with Q =
[

A−BK 0
E I

]T

P

[
A−BK 0

E I

]
−P

taken from (22) and R = [D I] taken from restriction (5) leads to the following
equivalent condition:[

H1

H2

] [
D I

]
+ (∗) +

[
A−BK 0

E I

]T

P

[
A−BK 0

E I

]
− P < 0,

where H1 ∈ Rn×m and H2 ∈ Rm×m are new free decision variables. By Schur comple-
ment, this inequality renders:

P −
[

H1

H2

] [
D I

]
+ (∗) (∗)[

(A−BK) 0
E I

]
P−1

 > 0.
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Pre- and post-multiplying the previous expression by
[

I 0
0 P

]
yields


P −

[
H1

H2

] [
D I

]
+ (∗) (∗)

P

[
(A−BK) 0

E I

]
P

 =


P −

[ [
H1

H2

]
D

[
H1

H2

] ]
+ (∗) (∗)[

P11(A−BK) + PT
21E PT

21

P21(A−BK) + P22E P22

]
P

 > 0,

which is equivalent to the first LMI in (21). As in theorem 3.3, the third LMI in (21)
guarantees K = (DB)−1(DA + E −D), a requisite coming from (7) with q = 1. �

Remark 3.6. Conditions in theorem 3.5 are BMIs. The two-step procedure in remark
3.4 can be adapted to solve them systematically.

Remark 3.7. Results in theorems 3.1 and 3.2 include those in [14] for reduced-order
design as particular cases since they can be recovered from the second LMI in (13) and
(16) (for the continuous- and discrete-time case, respectively) if CB = I. Similarly,
integral full-order design in [14] can be obtained from theorems 3.3 and 3.5 if DB = I
is assumed.

Remark 3.8. LQR design as in [14] can be used for controller design of matrix K with-
out affecting the validity of the LMI results above; moreover, due to this LMI structure,
additional constraints can be easily included (for instance, performance requirements
such as those described in [4]).

Some examples are provided in the next section to illustrate the effectiveness of the
proposed approach.

4. EXAMPLES

In the sequel, the proposed methodology is applied to three plants already considered
in the literature for sliding subspace design: a continuous and a discretized model of an
aircraft in examples 4.1 and 4.2, respectively; an experimental furnace in 4.3; finally,
a DC motor setup in 4.4.

Example 4.1. Reduced-Order Continuous-Time Case: Consider the following lineariza-
tion of a continuous-time model of an aircraft given in [14, 20]:

ẋ(t) =


0 0 1.132 0 −1
0 −0.0638 −0.1712 0 0.0705
0 0 0 1 0
0 0.0468 0 −0.8556 −1.013
0 −0.2908 0 1.0532 −0.6059

x(t)

+


0 0 0

−0.12 1 0
0 0 0

4.419 0 −1.656
1.575 0 −0.0732

u(t).

(23)
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Fig. 1. Simulation results for perturbed model (25) in example 4.1.

Applying theorem 3.1 for sliding subspace design of (23), the matrix C is designed
using LMI conditions (13). As a first step, gain K is obtained using LMI condi-
tions in lemma 2.1 such that the system (A − BK) has eigenvalues in (−2.5894 +
1.3723i,−2.5894− 1.3723i, 0, 0, 0):

K =

 0 −0.2123 −1.5405 6.2176 0.9541
0 −0.0893 −2.0488 −19.1819 1.6804
0 −0.5947 −4.2985 15.1074 3.3237

 . (24)

Theorem 3.1 produces the following sliding surface matrix:

C =

 −2.4818 −0.0649 0.6507 −2.5232 1.0110
13.6457 −4.6916 0.3449 −14.878 −5.7447
2.5973 −0.5519 −3.2672 −1.5806 −1.1827

 .

Consider a perturbed version of LTI model (23)

δx = Ax(t) + B
(
u(t) + d(t)

)
, (25)

where d(t) = [2+2 sin(t) 2 cos(t) 0]T is a matched disturbance on the input. Applying
the switching control law u = −10sign(Cx) to (25) under the initial conditions x(0) =
[0.5 0.5 0.5 0.5 0.5]T , results in Figure 1 arise. They show an important feature of
the designed control law: it is able to remain insensitive to matched perturbations, thus
accomplishing the task of remaining in the sliding subspace. It is important to stress
that these results cannot be obtained with the techniques in [16] since the assigned poles
are not all the same; they cannot be obtained with those in [14] either since CB 6= I.
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Example 4.2. Full-Order Discrete-Time Case: The following model corresponds to the
discretization of (23) with sampling period T = 0.1:

x(t + 1) =


1 0.0014 0.1132 0.0005 −0.0967
0 0.9945 −0.0171 −0.0005 0.0068
0 0.0003 1 0.0957 −0.0048
0 0.0060 0 0.9131 −0.0936
0 −0.0277 0.0002 0.0973 0.9287

x(t)

+


−0.0076 0 0.0003
−0.0115 0.0997 0
0.0212 0 −0.0081
0.4152 0.0003 −0.1598
0.1742 −0.0014 −0.0154

u(t).

(26)

Using pole placement for a full-order case at (0.5138, 0.5138, 0.95, 0.98, 0.98), gain
matrix K is obtained as follows:

K =

 −0.6367 −0.2062 −3.7755 −0.0654 2.8486
8.6056 0.4029 46.9047 13.2960 −41.4777
−1.6391 −0.5713 −10.3666 −2.7456 7.9230

 . (27)

Applying theorem 3.5 for sliding subspace design for (26), matrices D and E can be
found using LMI conditions in (21):

D =

 0.0046 0.0053 0.0365 −0.0838 −0.0213
−0.0027 0.0431 −0.0091 0.0174 −0.0052
0.0043 −0.0001 0.0284 −0.0557 −0.0297

 ,

E =

 0.0066 0.0003 0.0281 −0.0360 −0.0322
0.0378 0.0021 0.2090 0.0670 −0.1827
0.0028 0 0.0103 −0.0277 −0.0141

 .

Note that this solution is no longer subject to the restriction D = B+ as in [14];
moreover, since it concerns integral sliding design, the methodology in [16] no longer
applies.

Figure 2 results from applying the equivalent control law u = −Kx to (26) under the
initial conditions x(0) = [0.5 − 0.5 0.5 − 0.3 0.1]T and σ(0) = −Dx(0). Note that
the system already starts on the sliding surface, an advantage that comes with full-order
sliding surface design.

Example 4.3. Reduced Order Continuous-Time Sliding Surface Design of an Exper-
imental Furnace: Consider the model of a two-input two-output experimental furnace
[16] with system matrices

A =


−0.0186 −0.0065 0.0064 −0.0012
0.0026 −0.1354 0.0020 −0.0028
−0.1311 0.0349 −0.4684 −0.0095
1.0120 −0.7736 −0.2741 −0.1523

 , B =


0 0
0 0
1 0
0 1

 . (28)
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Fig. 2. Simulation results for model (26) in example 4.2.

The two-dimensional output (given by the temperature and excess oxygen concentration)
is chosen as the sliding surface.

Applying theorem 3.1 for sliding subspace design of (28), the matrix C is designed
using LMI conditions (13). As a first step, gain K is obtained using LMI conditions in
lemma 2.1 such that the system (A−BK) has eigenvalues in (−2.5, −1.2, 0, 0):

K =
[
−7.2131 −42.3726 2.8164 −1.3358
−4.6999 26.2018 1.0711 0.1089

]
. (29)

Theorem 3.1 produces the following sliding surface matrix:

C =
[

1.3452 −28.0601 −0.0439 0.0716
0.4359 −7.6257 −0.0118 0.0196

]
.

Once a switching control law with a suitable gain is applied based on the previously
designed sliding surface, the states remain in the sliding subspace thus designed.

Example 4.4. Full-Order Continuous-Time Sliding Surface Design of a DC Motor:
Consider the following simple model of a DC motor taken from [15]:

ẋ(t) =

 0 1 0
0 0 88.7574
0 −0.6000 −24

x(t) +

 0
0
1

u(t). (30)

Considering the pole placement for the sliding motion at (−2.22 + 1.5i, −2.22 −
1.5i, −0.72) and via lemma 2.1, the following matrix K is found:

K =
[

0.0586 −0.4830 −18.8326
]
. (31)

Using LMI conditions (18) in theorem 3.3 for the system given in (30), the following
matrices D and E are found under the controller gain in (31):

D =
[
−0.0117 17.7281 −2.6670

]
, E =

[
−0.1563 −0.3000 −1587.3

]
.
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Fig. 3. Simulation results for example 4.4.

Applying the equivalent control law ueq = −(DB)−1(DA + E) = −Kx to the LTI
system (30) where (6) holds, the simulation results shown in Figure 3 are obtained.
These simulations are run from the initial conditions x(0) =

[
1 0.5 −0.5

]T and
σ(0) = −20 6= −Dx(0) [14].

5. CONCLUSION AND PERSPECTIVES

A novel technique for sliding surface design based on linear and bilinear matrix inequal-
ities has been presented. The proposed approach has been developed for reduced- and
integral sliding mode, both for continuous- and discrete-time case in a single unified
framework. The results thus offered prove to be more general and flexible than others
recently appeared since the sliding motion is systematically designed via convex opti-
mization techniques which are efficiently implemented by commercially available soft-
ware. Examples are provided to illustrate the effectiveness of the proposed approach.
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