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Existence of entropy solutions for degenerate
quasilinear elliptic equations in L1

Albo Carlos Cavalheiro

Abstract. In this article, we prove the existence of entropy solutions for the
Dirichlet problem

(P )

{
−div[ω(x)A(x, u,∇u)] = f(x)− div(G), in Ω

u(x) = 0, on ∂Ω

where Ω is a bounded open set of RN , N ≥ 2, f ∈ L1(Ω) and G/ω ∈
[Lp′(Ω, ω)]N .

1 Introduction
The main purpose of this article (see Theorem 2) is to establish the existence of
entropy solutions for the Dirichlet problem

(P )

{
−div[ω(x)A(x, u,∇u)] = f(x)− div(G) in Ω

u(x) = 0 on ∂Ω

where Ω ⊂ RN is a bounded open set, ω is a weight function (i.e., a locally integrable
function on RN such that 0 < ω(x) <∞ a.e. x ∈ RN ), f ∈ L1(Ω), G = (g1, . . . , gN )
with G/ω ∈ [Lp

′
(Ω, ω)]N , and the function

A : Ω× R× RN → RN

satisfies the following conditions:

(H1) x 7→ A(x, s, ξ) is measurable on Ω for all (s, ξ) ∈ R × RN and (s, ξ) 7→
A(x, s, ξ) is continuous on R× RN for almost all x ∈ Ω.

(H2) 〈A(x, s, ξ1) − A(x, s, ξ2), ξ1 − ξ2〉 > 0, whenever ξ1, ξ2 ∈ RN , ξ1 6= ξ2 (where
〈·, ·〉 denotes the usual inner product in RN ).
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(H3) 〈A(x, s, ξ), ξ〉 ≥ λ |ξ|p, with 1 < p <∞, and λ > 0.

(H4) |A(x, s, ξ)| ≤ K(x) + h1(x) |s|p/p
′

+ h2(x) |ξ|p/p
′
, where K, h1 and h2 are

positive functions, with h1 ∈ L∞(Ω), h2 ∈ L∞(Ω) and K ∈ Lp′(Ω, ω) (where
1/p+ 1/p′ = 1).

If f/ω ∈ Lp′(Ω, ω) (with 1 < p <∞), the problem (P) has been studied in [4],
and in this case the problem (P) has a solution u ∈ W 1,p(Ω, ω). However, since
L1(Ω) is not a subspace of W−1,p′(Ω, ω) so when we want to consider f ∈ L1(Ω) a
different theory is needed.

In [1], a new concept of solution has been introduced for the elliptic equation{
− div[a(x,∇u)] = f(x) in Ω,

u = 0 on ∂Ω

(when f ∈ L1(Ω)) namely entropy solution. In [3] the author studied the degenerate
elliptic equation Lu = f , where L is a degenerate elliptic operator in divergence
form, i.e.,

Lu = −
n∑

i,j=1

Dj(aij(x)Diu),

and f ∈ L1(Ω). Note that, in the proof of our main result, many ideas have been
adapted from [1] and [3].

For degenerate partial differential equations, i.e., equations with various types
of singularities in the coefficients, it is natural to look for solutions in weighted
Sobolev spaces (see [5], [6], [8], [9] and [13]).

A class of weights, which is particularly well understood, is the class of Ap
weights that was introduced by B. Muckenhoupt in the early 1970s (see [11]).

We propose to solve the problem (P) by approximation with variational solu-
tions: we take fn ∈ C∞0 (Ω) such that fn → f in L1(Ω), Gn/ω ∈ [Lp

′
(Ω, ω)]N such

that Gn/ω → G/ω in [Lp
′
(Ω, ω)]N , we find a solution un ∈ W 1,p

0 (Ω, ω) for the
problem with right-hand side fn and Gn, and we will try to pass to the limit as
n→∞.

2 Definitions and basic results
By a weight we shall mean a locally integrable function ω on RN such that 0 <
ω(x) <∞ for a.e. x ∈ RN . Every weight ω gives rise to a measure on the measurable
subsets of RN through integration. This measure will be denoted by µ. Thus,

µ(E) =

∫
E

ω(x) dx for measurable sets E ⊂ RN .

Definition 1. Let 1 ≤ p <∞. A weight ω is said to be an Ap-weight, if there is a
positive constant C = C(p, ω) such that for every ball B ⊂ RN(

1

|B|

∫
B

ω(x) dx

)(
1

|B|

∫
B

ω1/(1−p)(x) dx

)p−1

≤ C if p > 1,(
1

|B|

∫
B

ω(x) dx

)(
ess sup
x∈B

1

ω(x)

)
≤ C if p = 1,
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where |·| denotes the N -dimensional Lebesgue measure in RN .

If 1 < q ≤ p, then Aq ⊂ Ap (see [8], [9] or [14] for more information about
Ap-weights). As an example of an Ap-weight, the function ω(x) = |x|α, x ∈ RN ,
is in Ap if and only if, −N < α < N(p − 1) (see [12], Chapter IX, Corollary 4.4).
If ϕ ∈ BMO(RN ) then ω(x) = eαϕ(x) ∈ A2 for some α > 0 (see [12]).

Remark 1. If ω ∈ Ap, 1 < p <∞, then(
|E|
|B|

)p
≤ C µ(E)

µ(B)

for all measurable subsets E of B (see 15.5 strong doubling property in [9]). There-
fore if µ(E) = 0 then |E| = 0. Thus, if {un} is a sequence of functions defined in
B and un → u µ-a.e. then un → u a.e. .

Definition 2. Let ω be a weight. We shall denote by Lp(Ω, ω) (1 ≤ p < ∞) the
Banach space of all measurable functions f defined in Ω for which

‖f‖Lp(Ω,ω) =

(∫
Ω

|f(x)|pω(x) dx

)1/p

<∞ .

We denote [Lp
′
(Ω, ω)]N = Lp

′
(Ω, ω)× · · · × Lp′(Ω, ω).

Remark 2. If ω ∈ Ap, 1 < p < ∞, then since ω−1/(p−1) is locally integrable, we
have Lp(Ω, ω) ⊂ L1

loc(Ω) (see [14], Remark 1.2.4). It thus makes sense to talk about
weak derivatives of functions in Lp(Ω, ω).

Definition 3. Let Ω ⊂ RN a bounded open set, 1 < p <∞, k a nonnegative integer
and ω ∈ Ap. We shall denote by W k,p(Ω, ω), the weighted Sobolev spaces, the set
of all functions u ∈ Lp(Ω, ω) with weak derivatives Dαu ∈ Lp(Ω, ω), 1 ≤ |α| ≤ k.
The norm in the space W k,p(Ω, ω) is defined by

‖u‖Wk,p(Ω,ω) =

(∫
Ω

|u(x)|pω(x) dx+
∑

1≤|α|≤k

∫
Ω

|Dαu(x)|pω(x) dx

)1/p

. (1)

We also define the space W k,p
0 (Ω, ω) as the closure of C∞0 (Ω) with respect to

the norm

‖u‖Wk,p
0 (Ω,ω) =

( ∑
1≤|α|≤k

∫
Ω

|Dαu(x)|pω(x) dx

)1/p

.

The dual space of W 1,p
0 (Ω, ω) is the space [W 1,p

0 (Ω, ω)]∗ = W−1,p′(Ω, ω),

W−1,p′(Ω, ω) =
{
T = f − div(G) : G = (g1, . . . , gN ),

f

ω
,
gj
ω
∈ Lp

′
(Ω, ω)

}
.

It is evident that a weight function ω which satisfies 0 < C1 ≤ ω(x) ≤ C2,
for a.e. x ∈ Ω, gives nothing new (the space Wk,p(Ω, ω) is then identical with
the classical Sobolev space Wk,p(Ω)). Consequently, we study all such weight
function ω that either vanish in Ω ∪ ∂Ω or increase to infinity (or both).

We need the following basic result.
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Theorem 1. (The weighted Sobolev inequality) Let Ω ⊂ RN be a bounded open
set and let ω be an Ap-weight, 1 < p <∞. Then there exist positive constants CΩ

and δ such that for all f ∈ C∞0 (Ω) and 1 ≤ η ≤ N/(N − 1) + δ

‖f‖Lηp(Ω,ω) ≤ CΩ|||∇f |||Lp(Ω,ω). (2)

Proof. See [6], Theorem 1.3. �

Definition 4. We say that u ∈ T 1,p
0 (Ω, ω) if Tk(u) ∈ W 1,p

0 (Ω, ω), for all k > 0,
where the function Tk : R→ R is defined by

Tk(s) =

{
s, if |s| ≤ k
k sign(s), if |s| > k.

Remark 3. (i) Note that for given h > 0 and k > 0 we have

Th(u− Tk(u)) =


0, if |u| ≤ k
(|u| − k) sign(u), if k < |u| ≤ k + h

h sign(u), if |u| > k + h.

And if α ∈ R, α 6= 0, we have Tk(αu) = αTk/|α|(u).

(ii) If u ∈W 1,1
loc (Ω, ω) then we have

∇Tk(u) = χ{|u|<k}∇u

where χE denotes the characteristic function of a measurable set E ⊂ RN .

Definition 5. Let f ∈ L1(Ω), G/ω ∈ [Lp
′
(Ω, ω)]N and u ∈ T 1,p

0 (Ω, ω). We say
that u is an entropy solution to problem (P ) if∫

Ω

〈
A(x, u,∇u),∇Tk(u−ϕ)

〉
ω dx =

∫
Ω

fTk(u−ϕ) dx+

∫
Ω

〈
G,∇Tk(u−ϕ)

〉
dx (3)

for all k > 0 and all ϕ ∈W 1,p
0 (Ω, ω) ∩ L∞(Ω).

We recall that the gradient of u which appears in (3) is defined as in Remark 2.8
of [3], that is to say that ∇u = ∇Tk(u) on the set where |u| < k.

Remark 4. Note that if u1, u2 ∈W 1,p
0 (Ω, ω) then

ϕ = Tk(u1 + u2) ∈W 1,p
0 (Ω, ω) ∩ L∞(Ω)

and we have
∇ϕ = ∇Tk(u1 + u2) = ∇(u1 + u2)χ{|u1+u2|≤k}.

Definition 6. Let 0 < p < ∞ and let ω be a weight function. We define the
weighted Marcinkiewicz space Mp(Ω, ω) as the set of all measurable functions
f : Ω→ R such that the function

Γf (k) = µ({x ∈ Ω : |f(x)| > k}), k > 0,

satisfies an estimate of the form Γf (k) ≤ Ck−p, 0 < C <∞.
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Remark 5. If 1 ≤ q < p and Ω ⊂ RN is a bounded set, we have that

Lp(Ω, ω) ⊂Mp(Ω, ω) and Mp(Ω, ω) ⊂ Lq(Ω, ω)

(the proof follows the lines of Theorem 2.18.8 in [10]).

Lemma 1. Let u ∈ T 1,p
0 (Ω, ω) and ω ∈ Ap, 1 < p <∞, be such that

1

k

∫
{|u|<k}

|∇u|pω dx ≤M , (4)

for every k > 0. Then u ∈Mp1(Ω, ω), where p1 = η (p−1) (where η is the constant
in Theorem 1). More precisely, there exists C > 0 such that Γu(k) ≤ CMηk−p1 .

Proof. See Lemma 3.3 in [3]. �

Lemma 2. Let u ∈ T 1,p
0 (Ω, ω), where ω ∈ Ap, 1 < p <∞, be such that

1

k

∫
{|u|<k}

|∇u|pω dx ≤M ,

for every k > 0. Then |∇u| ∈ Mp2(Ω, ω), where p2 = p p1/(p1 + 1) (with η as in
Lemma 2 and p1 = η(p− 1)). More precisely, there exists C > 0 such that

Γk(|∇u|) ≤ CM (p1+η)/(p1+1)k−p2 .

Proof. See Lemma 3.4 in [3]. �

3 Main Result
In this section, we prove the main result of this paper. We need the following
result.

Lemma 3. Let ω ∈ Ap, 1 < p <∞ and a sequence {un}, un ∈W 1,p
0 (Ω, ω) satisfies

(i) un ⇀ u in W 1,p
0 (Ω, ω) and µ-a.e. in Ω;

(ii)
∫

Ω

〈A(x, un,∇un)−A(x, un,∇u),∇(un − u)〉ω dx→ 0 with n→∞.

Then un → u in W 1,p
0 (Ω, ω).

Proof. The proof of this lemma follows the lines of Lemma 5 in [2]. �

Theorem 2. Let ω ∈ Ap, 1 < p < ∞, and A(x, s, ξ) satisfies the conditions (H1),
(H2), (H3) and (H4). Then, there exists an entropy solution u of problem (P).
Moreover, u ∈ Mp1(Ω, ω) and |∇u| ∈ Mp2(Ω, ω), with p1 = η (p − 1) and p2 =
p1 p/(p1 + 1) (where η is the constant in Theorem 1).
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Proof. Considering a sequence {fn}, fn ∈ C∞0 (Ω), which

fn→f in L1(Ω) and ‖fn‖L1(Ω) ≤ ‖f‖L1(Ω) ,

and a sequence {Gn}, with Gn/ω ∈ [Lp
′
(Ω, ω)]N such that

Gn
ω
→ G

ω
in [Lp

′
(Ω, ω)]N and

∥∥∥∥ |Gn|ω
∥∥∥∥
Lp′ (Ω,ω)

≤
∥∥∥∥ |G|ω

∥∥∥∥
Lp′ (Ω,ω)

.

For each n, there exists a solution un ∈W 1,p
0 (Ω, ω) of the Dirichlet problem

(Pn)

{
−div[ω(x)A(x, un,∇un)] = fn(x)− div(Gn), in Ω

un(x) = 0, on ∂Ω

(by Theorem 1.1 in [4]) that is,∫
Ω

ω 〈A(x, un,∇un),∇ϕ〉dx =

∫
Ω

fnϕdx+

∫
Ω

〈Gn,∇ϕ〉dx , (5)

for all ϕ ∈W 1,p
0 (Ω, ω). For ϕ = Tk(un) we obtain in (5) that∫

Ω

ω 〈A(x, un,∇un),∇Tk(un)〉dx =

∫
Ω

fnTk(un) dx+

∫
Ω

〈Gn,∇Tk(un)〉dx. (6)

Using (H3) and Remark 3 (ii) we have,∫
Ω

ω 〈A(x, un,∇un),∇Tk(un)〉dx =

∫
Ω

ω 〈A(x, un,∇Tk(un)),∇Tk(un)〉dx

≥ λ
∫

Ω

|∇Tk(un)|pω dx.

We also have∣∣∣∣ ∫
Ω

fnTk(un) dx

∣∣∣∣ ≤ ∫
Ω

|fn| |Tk(un)|dx ≤ k‖fn‖L1(Ω) ≤ k‖f‖L1(Ω) ,

and using Young’s inequality there exists a constant C1 > 0 such that∣∣∣∣ ∫
Ω

〈Gn,∇Tk(un)〉dx
∣∣∣∣ ≤ ∫

Ω

∣∣∣∣Gnω
∣∣∣∣|∇Tk(un)|ω dx

≤
(∫

Ω

∣∣∣∣Gnω
∣∣∣∣p′ω dx

)1/p′(∫
Ω

|∇Tk(un)|pω dx

)1/p

≤ λ

2

∫
Ω

|∇Tk(un)|pω dx+ C1

∫
Ω

∣∣∣∣Gnω
∣∣∣∣p′ω dx

≤ λ

2

∫
Ω

|∇Tk(un)|pω dx+ C1

∫
Ω

∣∣∣∣Gω
∣∣∣∣p′ω dx .
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Hence in (6) we obtain

λ

∫
Ω

|∇Tk(un)|pω dx ≤ k ‖f‖L1(Ω) +
λ

2

∫
Ω

|∇Tk(un)|pω dx+ C1

∫
Ω

∣∣∣∣Gω
∣∣∣∣p′ω dx ,

and ∫
Ω

|∇Tk(un)|pω dx ≤ k

λ

(
‖f‖L1(Ω) + C1

∥∥∥∥Gω
∥∥∥∥p′
Lp′ (Ω,ω)

)
= C2 k , for all k > 0 . (7)

By Lemma 1 and Lemma 2, we have that the sequence {un} is bounded inMp1(Ω, ω)
(with p1 = η (p−1) and {|∇un|} is bounded inMp2(Ω, ω) (with p2 = p1 p/(p1+1)).
Moreover, {un} is a Cauchy sequence in µ-measure. Consequently, there exists a
function u and a subsequence, that we will still denote by {un}, such that

un → u µ-a.e. in Ω, (8)

and un → u a.e. in Ω (by Remark 1).
Using (7) and (8), we have

Tk(un) ⇀ Tk(u) weakly in W 1,p
0 (Ω, ω),

Tk(un)→ Tk(u) strongly in Lp(Ω, ω) and µ-a.e. in Ω, (9)

for all k > 0. Hence Tk(u) ∈W 1,p
0 (Ω, ω).

Furthermore, by the weak lower semicontinuity of the norm W 1,p
0 (Ω, ω), we

have that (7) still holds for u, that is,∫
Ω

|∇Tk(u)|pω dx ≤ C2 k .

Applying Lemma 1 and Lemma 2, we have that u ∈Mp1(Ω, ω) (with p1 = η(p−1))
and |∇u| ∈ Mp2(Ω, ω) (with p2 = p1 p/(p1 + 1)).

• We need to show that Tk(un)→Tk(u) strongly in W 1,p
0 (Ω, ω), for all k > 0.

Let h > k and applying (5) with function

ϕn = T2k(un − Th(un) + Tk(un)− Tk(u)) ,

we get ∫
Ω

ω 〈A(x, un,∇un),∇ϕn〉dx =

∫
Ω

fnϕn dx+

∫
Ω

〈Gn,∇ϕn〉dx . (10)

If we set M = 4k+h, we have ∇ϕn = 0 for |un| > M . Hence, since condition (H3)
implies that A(x, s, 0) = 0, we can write∫

Ω

ω 〈A(x, TM (un),∇TM (un)),∇ϕn〉dx =

∫
Ω

fnϕn dx+

∫
Ω

〈Gn,∇ϕn〉dx . (11)
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In the left-hand side of (11), we have∫
Ω

ω
〈
A(x, TM (un),∇TM (un)),∇T2k(un − Th(un) + Tk(un)− Tk(u))

〉
dx

=

∫
{|un|≤k}

ω
〈
A(x, TM (un),∇TM (un)),∇T2k(un − Th(un) + Tk(un)− Tk(u))

〉
dx

+

∫
{|un|>k}

ω
〈
A(x, TM (un),∇TM (un)),∇T2k(un − Th(un) + Tk(un)− Tk(u))

〉
dx

(12)

(a) If |un| ≤ k. Since h > k, if |un| ≤ k < h, then Th(un) = Tk(un) = un. Hence,

un − Th(un) + Tk(un)− Tk(u) = un − Tk(u) .

We also have that |un − u| ≤ 2k. Then, since ∇TM (un) = ∇Tk(un) (because
|un| ≤ k < M),∫
{|un|≤k}

ω
〈
A(x, TM (un),∇TM (un)),∇T2k(un − Th(un) + Tk(un)− Tk(u))

〉
dx

=

∫
{|un|≤k}

ω
〈
A(x, Tk(un),∇Tk(un)),∇(Tk(un)− Tk(u))

〉
dx

=

∫
Ω

ω
〈
A(x, Tk(un),∇Tk(un)),∇(Tk(un)− Tk(u))

〉
dx .

(b) If |un| > k. Since un, Tk(un) and Tk(u) are in W 1,p
0 (Ω, ω), if

|un − Th(un) + Tk(un)− Tk(u)| ≤ 2k ,

we obtain

∇T2k(un − Th(un) + Tk(un)− Tk(u)) = ∇(un − Th(un) + Tk(un)− Tk(u))

= ∇un −∇Th(un) +∇Tk(un)−∇Tk(u)

= ∇un −∇Th(un)−∇Tk(u)

(because ∇Tk(un) = 0 if |un| > k). There are two possible cases as follows:

(i) If k < |un| < h, we have ∇Th(un) = ∇un. Then

∇T2k(un − Th(un) + Tk(un)− Tk(u)) = −∇Tk(u).

(ii) If h < |un| ≤M , we have that ∇Th(un) = 0. Then

∇T2k(un−Th(un)+Tk(un)−Tk(u)) = ∇un−∇Tk(u) = ∇TM (un)−∇Tk(u).

Since 〈A(x, s, ξ), ξ〉 ≥ λ|ξ|p ≥ 0, in both cases we obtain〈
A(x, TM (un),∇TM (un)),∇T2k(un − Th(un) + Tk(un)− Tk(u))

〉
≥ −

〈
A(x, TM (un),∇TM (un),∇Tk(u)

〉
≥ −

∣∣A(x, TM (x),∇TM (x))
∣∣∣∣∇Tk(u)

∣∣.
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Therefore we obtain in (12)

∫
Ω

ω
〈
A(x, TM (un),∇TM (un)),∇T2k(un − Th(un) + Tk(un)− Tk(u))

〉
dx

=

∫
{|un|≤k}

ω
〈
A(x, TM (un),∇TM (un)),∇T2k(un − Th(un) + Tk(un)− Tk(u))

〉
dx

+

∫
{|un|>k}

ω
〈
A(x, TM (un),∇TM (un)),∇T2k(un − Th(un) + Tk(un)− Tk(u))

〉
dx

≥
∫

Ω

ω
〈
A(x, Tk(un),∇Tk(un)),∇(Tk(un)− Tk(u))

〉
dx

−
∫
{|un|>k}

ω
∣∣A(x, TM (un),∇TM (un)

)∣∣∣∣∇Tk(u)
∣∣ dx .

Hence, in (11) we obtain

∫
Ω

ω
〈
A(x, Tk(un),∇Tk(un))−A(x, Tk(un),∇Tk(u)),∇(Tk(un)− Tk(u))

〉
dx

≤
∫
{|un|>k}

ω|A(x, TM (un),∇TM (un))||∇Tk(u)|dx

+

∫
Ω

fnT2k(un − Th(un) + Tk(un)− Tk(u)) dx

+

∫
Ω

〈
Gn,∇T2k(un − Th(un) + Tk(un)− Tk(u))

〉
dx

−
∫

Ω

ω
〈
A(x, Tk(un),∇Tk(u)),∇(Tk(un)− Tk(u))

〉
dx . (13)

Considering the test function ψn = T2k(un − Th(un)) in (5), we have

∫
Ω

ω 〈A(x, un,∇un),∇ψn〉dx =

∫
Ω

fnψn dx+

∫
Ω

〈Gn,∇ψn〉dx ,

and by (7) we obtain

∫
Ω

|∇T2k(un − Th(un))|pω dx ≤ C2(2k + 1), for all k ≥ 1 .

Now using that T2k(un − Th(un)) ⇀ T2k(u− Th(u)) weakly in W 1,p
0 (Ω, ω) (by (9)

and Remark 3 (i)), we have

∫
Ω

|∇T2k(u− Th(u))|pω dx ≤ C2(2k + 1) . (14)
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We have (by Remark 3 (i) and (ii) and (14))∫
Ω

|G|
∣∣∇T2k(u−Th(u))

∣∣ dx =

∫
{h<|u|<2k+h}

|G||∇u|dx

≤
(∫
{|u|≥h}

|G/ω|p
′
ω dx

)1/p′(∫
{h<|u|<2k+h}

|∇u|pω dx

)1/p

=

(∫
{|u|≥h}

|G/ω|p
′
ω dx

)1/p′(∫
Ω

| ∇T2k(u− Th(u))|pω dx

= C3

(∫
{|u|≥h}

|G/ω|p
′
ω dx

)1/p′

,

where C3 depends on k but not on h. Therefore we have

lim
h→∞

∫
Ω

〈
G,∇T2k(u− Th(u))

〉
dx = 0 .

We also have (by Theorem 1)∫
Ω

|T2k(u− Th(u))|pω dx ≤ CΩ

∫
Ω

|∇T2k(u− Th(u))|pω dx

≤ CΩ C2(2k + 1).

Moreover, by Lebesgue’s theorem, we obtain

lim
h→∞

∫
Ω

f T2k(u− Th(u)) dx = 0 .

We can fix a positive real number hε sufficiently large to have∫
Ω

fT2k(u− Thε(u)) dx+

∫
Ω

〈
G,∇T2k(u− Thε(u))

〉
dx ≤ ε. (15)

Considering h = hε in (13) (and M = Mε = 4k + hε), by (H4) and (7), we have∫
Ω

∣∣A(x, TM (un),∇TM (un))
∣∣p′ω dx

≤
∫

Ω

(
K(x) + h1(x)|TM (un)|p/p

′
+ h2(x)|∇TM (un)|p/p

′
)p′

ω dx

≤ C
[ ∫

Ω

Kp′(x)ω dx+

∫
Ω

hp
′

1 (x)|TM (un)|pω dx

+

∫
Ω

hp
′

2 (x)|∇TM (un)|pω dx

]
≤ C

(
‖K‖p

′

Lp′ (Ω,ω)
+ ‖h1‖p

′

L∞(Ω)

∫
Ω

|TM (un)|pω dx

+ ‖h2‖p
′

L∞(Ω)

∫
Ω

|∇TM (un)|pω dx
)

≤ C
(
‖K‖p

′

Lp′ (Ω,ω)
+ ‖h1‖p

′

L∞(Ω)M
pµ(Ω) + ‖h2‖p

′

L∞(Ω)M C2

)
,
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that is, |A(x, TM (un),∇TM (un))| is bounded in Lp
′
(Ω, ω).

Moreover, χ{|un|>k}|∇Tk(u)| → 0 in Lp(Ω, ω) as n→∞. Therefore,

lim
n→∞

∫
{|un|>k}

∣∣A(x, TM (un),∇TM (un))
∣∣ |∇Tk(u)|ω dx = 0. (16)

Furthermore, we have that

T2k(un − Th(un) + Tk(un)− Tk(u)) ⇀ T2k(u− Th(u)) ,

weakly in W 1,p
0 (Ω, ω), as n→∞.

Hence, by (9), (15) and (16), passing to the limit in (13), we have

lim
n→∞

∫
Ω

〈
A(x, Tk(un),∇Tk(un))−A(x, Tk(un),∇Tk(u)),∇(Tk(un)−Tk(u))

〉
ω dx

≤
∫

Ω

fT2k(u− Thε(u)) dx+

∫
Ω

〈G,∇T2k(u− Thε(u))〉dx ≤ ε,

for all ε > 0, that is,∫
Ω

〈
A(x, Tk(un),∇Tk(un))−A(x, Tk(un),∇Tk(u)),∇(Tk(un)− Tk(u))

〉
ω → 0 ,

as n→∞. Applying Lemma 3 we get

Tk(un)→ Tk(u) (17)

strongly in W 1,p
0 (Ω, ω) for every k > 0. This convergence implies that, for every

fixed k > 0

A
(
x, Tk(un),∇Tk(un)

)
→ A

(
x, Tk(u),∇Tk(u)

)
(18)

in (Lp
′
(Ω, ω))N = Lp

′
(Ω, ω)× · · · × Lp′(Ω, ω).

• Finally, we need to show that u is an entropy solution to Dirichlet problem (P).
Let us take ψn = Tk(un−ϕ) as test function in (5), with ϕ ∈W 1,p

0 (Ω, ω)∩L∞(Ω).
We obtain,∫

Ω

ω
〈
A(x, un,∇un),∇ψn

〉
dx =

∫
Ω

fnψn dx+

∫
Ω

〈
Gn,∇ψn

〉
dx . (19)

If M = k + ‖ϕ‖L∞(Ω) and n > M , we have

∫
Ω

ω
〈
A(x, un,∇un),∇Tk(un − ϕ)

〉
dx

=

∫
Ω

ω
〈
A(x, TM (un),∇TM (un)),∇Tk(un − ϕ)

〉
dx .
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Hence, in (19) we obtain∫
Ω

ω 〈A(x, TM (un),∇TM (un)),∇Tk(un − ϕ)〉dx

=

∫
Ω

fnTk(un − ϕ) dx+

∫
Ω

〈G,∇Tk(un − ϕ)〉dx . (20)

Therefore, by (9) and (18), passing to the limit as n→∞ in (20), we obtain∫
Ω

ω
〈
A(x, u,∇u),∇Tk(u− ϕ)

〉
dx =

∫
Ω

f Tk(u− ϕ) dx+

∫
Ω

〈
G,∇Tk(u− ϕ)

〉
dx

for all ϕ ∈W 1,p
0 (Ω, ω) ∩ L∞(Ω) and for each k > 0.

Therefore u is an entropy solution of problem (P ). �

Example 1. Let Ω = {(x, y) ∈ R2 : x2 + y2 < 1}, the weight function

ω(x, y) = (x2 + y2)−1/2 (ω ∈ A3),

f(x, y) =
cos(xy)

(x2 + y2)1/3
,

G(x, y) =
(
(x2 + y2) sin(xy), (x2 + y2)−1/3 cos(xy)

)
and A : Ω× R× R2 → R2, A((x, y), s, ξ) = |ξ| ξ. By Theorem 2, the problem

(P )

−div[(x2 + y2)−1/2A(x, u,∇u)] =
cos(xy)

(x2 + y2)1/3
− div(G(x, y)), in Ω

u(x, y) = 0, on ∂Ω

has an entropy solution.
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