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Abstract

The object of the present paper is to study almost pseudo-Z-symmetric
manifolds. Some geometric properties have been studied. Next we con-
sider conformally flat almost pseudo-Z-symmetric manifolds. We obtain
a sufficient condition for an almost pseudo-Z-symmetric manifold to be
a quasi Einstein manifold. Also we prove that a totally umbilical hyper-
surface of a conformally flat A(PZS)n (n > 3) is a manifold of quasi
constant curvature. Finally, we give an example to verify the result al-
ready obtained in Section 5.
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1 Introduction

As is well known, symmetric spaces play an important role in differential ge-
ometry. The study of Riemannian symmetric spaces was initiated in the late
twenties by Cartan [3], who, in particular, obtained a classification of those
spaces. Let (Mn, g), (n = dimM) be a Riemannian manifold, i.e., a manifold
M with the Riemannian metric g, and let ∇ be the Levi-Civita connection of
(Mn, g). A Riemannian manifold is called locally symmetric [3] if ∇R = 0,
where R is the Riemannian curvature tensor of (Mn, g). This condition of lo-
cal symmetry is equivalent to the fact that at every point P ∈ M , the local
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geodesic symmetry F (P ) is an isometry [31]. The class of Riemannian symmet-
ric manifolds is very natural generalization of the class of manifolds of constant
curvature. During the last six decades the notion of locally symmetric mani-
folds have been weakened by many authors in several ways to different extent
such as conformally symmetric manifolds by Chaki and Gupta [4], recurrent
manifolds introduced by Walker [41], conformally recurrent manifolds by Adati
and Miyazawa [1], pseudo symmetric manifolds by Chaki [5], weakly symmetric
manifolds by Tamássy and Binh [39] etc.
H. Takeno and M. Ikeda [38] considered geodesic mappings from spherically

symmetric four dimensional Riemannian spaces and N. S. Sinyukov [36] proved
that the symmetric and recurrent Riemannian spaces, with nonconstant curva-
ture do not admit non-trivial geodesic mappings. There are analogous results
for more general recurrent manifolds published J. Mikeš in [27], and, moreover,
general results obtained in ([21], [30], [28], [29]).
A non-flat Riemannian manifold (Mn, g), (n > 2) is said to be a pseudo

symmetric manifold [5] if its curvature tensor satisfies the condition

(∇XR)(Y, Z)W = 2A(X)R(Y, Z)W +A(Y )R(X,Z)W

+A(Z)R(Y,X)W +A(W )R(Y, Z)X + g(R(Y, Z)W,X)ρ,

where A is a non-zero 1-form, ρ is a vector field defined by

g(X, ρ) = A(X),

for all X and ∇ denotes the operator of covariant differentiation with respect
to the metric tensor g. The 1-form A is called the associated 1-form of the
manifold. If A = 0, then the manifold reduces to a symmetric manifold in
the sense of Cartan. An n-dimensional pseudo symmetric manifold is denoted
by (PS)n. The class of pseudo symmetric manifolds arose during the study
of conformally flat space of class one [37]. The notion of weakly symmetric
manifold was introduced by Tamássy and Binh [39]. A non-flat Riemannian
manifold (Mn, g) (n > 2) is called weakly symmetric if the curvature tensor R
of type (0,4) satisfies the condition

(∇XR)(Y, Z,W, V ) = A(X)R(Y, Z,W, V ) +B(Y )R(X,Z,W, V )

+ C(Z)R(Y,X,W, V ) +D(W )R(Y, Z,X, V ) + E(V )R(Y, Z,W,X), (1.1)

where ∇ denotes the Levi-Civita connection on (Mn, g), and A,B,C,D and E
are 1-forms respectively which are non-zero simultaneously. Such a manifold is
denoted by (WS)n. It was proved in [11] that the 1-forms must be related as
follows B(X) = C(X) and D(X) = E(X).
That is, the weakly symmetric manifold is characterized by the condition

(∇XR)(Y, Z,W, V ) = A(X)R(Y, Z,W, V ) +B(Y )R(X,Z,W, V )

+B(Z)R(Y,X,W, V ) +D(W )R(Y, Z,X, V ) +D(V )R(Y, Z,W,X), (1.2)

where A,B,D are 1-forms (not simultaneously zero). The 1-forms A,B and D
are called the associated 1-forms. If in (1.2) the 1-form A is replaced by 2A;
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B and D are replaced by A, then the manifold (Mn, g) reduces to a pseudo
symmetric manifold in the sense of Chaki [5]. Again if A = B = D = 0, the
manifold reduces to a symmetric manifold in the sense of Cartan. The existence
of a (WS)n was proved by Prvanović [34] and a concrete example is given by
De and Bandyopadhyay ([11],[12]).
Weakly symmetric manifolds have been studied by several authors ([2], [10],

[17], [22], [32], [33], [43]). This justifies the name weakly symmetric manifold
defined by (1.1). In 1993 Tamássy and Binh [40] introduced the notion of weakly
Ricci symmetric manifolds. A non-flat Riemannian manifold (Mn, g) (n > 2) is
called weakly Ricci symmetric if its Ricci tensor S of type (0,2) is not identically
zero and satisfies the condition

(∇XS)(Y, Z) = A(X)S(Y, Z) +B(Y )S(X,Z) + C(Z)S(Y,X), (1.3)

where A,B,C are three non-zero 1-forms, and ∇ denotes the operator of covari-
ant differentiation with respect to the metric g. Such an n-dimensional manifold
is denoted by (WRS)n. If in (1.3) the 1-form A is replaced by 2A; B and C are
replaced by A, then the manifold is called a pseudo Ricci symmetric manifold
introduced by Chaki [6]. This implies that pseudo Ricci symmetric manifold is
a particular case of a weakly Ricci symmetric manifold defined by (1.3).
The notion of an almost pseudo Ricci symmetric manifold was introduced

by Chaki and Kawaguchi [7]. It was a generalization of the notion of pseudo
Ricci symmetric manifold and was defined as follows:
A non-flat Riemannian manifold (Mn, g) is called an almost pseudo Ricci

symmetric manifold if its Ricci tensor S of type (0,2) is not identically zero and
satisfies

(∇XS)(Y, Z) = [A(X) +B(X)]S(Y, Z) +A(Y )S(X,Z) + A(Z)S(Y,X), (1.4)

where A and B are two 1-forms and ∇ denotes the operator of covariant differ-
entiation with respect to the metric tensor g. In such a case A and B are called
the associated 1-forms and an n-dimensional manifold of this kind is denoted
by A(PRS)n. If B = A, then the (1.4) takes the following form:

(∇XS)(Y, Z) = 2A(X)S(Y, Z) +A(Y )S(X,Z) +A(Z)S(Y,X),

which is called a pseudo Ricci symmetric manifold introduced by Chaki [6]. Let

g(X,P ) = A(X) and g(X,Q) = B(X), for all X. (1.5)

Then P , Q are called the basic vector fields of the manifold corresponding to
the associated 1-forms A and B, respectively.
In a recent paper [24] Mantica and Molinari introduced weakly-Z-symmetric

manifolds which is denoted by (WZS)n. It was a generalization of the notion of
weakly Ricci symmetric manifolds, pseudo Ricci symmetric manifolds, pseudo
projective Ricci symmetric manifolds. A (0,2) symmetric tensor is a generalized
Z tensor if

Z(X,Y ) = S(X,Y ) + φg(X,Y ), (1.6)
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where φ is an arbitrary scalar function. The scalar Z is obtained by contracting
(1.6) over X and Y as follows:

Z = r + nφ. (1.7)

A manifold is called almost pseudo-Z-symmetric and denoted by A(PZS)n,
if the generalized Z tensor is non-zero and satisfies the condition (1.4), that is,

(∇XZ)(Y,W ) = [A(X) +B(X)]Z(Y,W ) +A(Y )Z(X,W ) +A(W )Z(X,Y ),
(1.8)

where Z is the generalized Z tensor. The classical Z tensor is obtained with
the choice φ = − 1

nr, where r is the scalar curvature. Hereafter we refer to the
generalized Z tensor simply as the Z tensor.
On the otherhand, quasi Einstein manifolds arose during the study of ex-

act solutions of the Einstein field equations as well as during considerations of
quasi-umbilical hypersurfaces of semi-Euclidean spaces. A non-flat Riemannian
manifold (Mn, g) (n > 2) is defined to be a quasi Einstein manifold if its Ricci
tensor S of type (0,2) is not identically zero and satisfies the condition:

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where a, b are smooth functions and η is a non-zero 1-form such that

g(X, ξ) = η(X),

for all vector fields X. The quasi Einstein manifold is denoted by (QE)n.
A. Gray [20] introduced the notion of cyclic parallel Ricci tensor and Codazzi

type of Ricci tensor. A Riemannian manifold is said to satisfy cyclic parallel
Ricci tensor if its Ricci tensor S of type (0,2) is non-zero and satisfy the condition

(∇XS)(Y, Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y ) = 0. (1.9)

Again a Riemannian manifold is said to satisfy Codazzi type of Ricci tensor if
its Ricci tensor S of type (0,2) is non-zero and satisfy the following condition

(∇XS)(Y, Z) = (∇Y S)(X,Z). (1.10)

In a recent paper De and Gazi [13] studied almost pseudo symmetric manifolds.
In subsequent papers ([14], [15]) De and Gazi studied almost pseudo confor-
mally symmetric manifolds and conformally flat almost pseudo Ricci symmetric
manifolds.
If B = A in (1.8) then the manifold is called pseudo-Z-symmetric manifold

and denoted by (PZS)n. Pseudo-Z-symmetric and recurrent Z forms on Rie-
mannian manifolds have been studied in [25] and [26] respectively. It may be
mentioned that any (PZS)n is a particular case of an A(PZS)n, but a (WZS)n
is not a particular case of an A(PZS)n. So it is interesting to study A(PZS)n.
In a recent paper [15] De and Gazi give two examples of A(PRS)n. Among
these two examples one is conformally flat A(PRS)4 and another one is non-
conformally flat A(PRS)n. Also in a recent paper De, Őzgűr and De [18] studied
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conformally flat almost pseudo Ricci symmetric space-time. Motivated by these
works we study A(PZS)n (n > 2) in the present paper.
We also have a very useful lemma as follows:

Walker’s Lemma. [41] If aij, bi are numbers satisfying aij = aji, and

aijbk + ajkbi + akibj = 0,

for i, j, k = 1, 2, . . . , n, then either all aij = 0 or, all bi are zero.

The paper is organized as follows: After preliminaries in Section 3, we study
A(PZS)n (n > 2) with cyclic parallel Z-tensor. In Section 4, we consider
A(PZS)n with Codazzi type of Z-tensor. We prove that in an A(PZS)n if
the Z-tensor is of Codazzi type, then the manifold reduces to a quasi Einstein
manifold. Section 5 is devoted to study conformally flat A(PZS)n (n > 3)
and it is shown that such a manifold is a quasi Einstein manifold. Next we
obtain a sufficient condition for an A(PZS)n to be a quasi Einstein manifold.
In Section 7, we show that a totally umbilical hypersurface of a conformally flat
A(PZS)n (n > 3) is a manifold of quasi constant curvature. Finally, we give
an example of an A(PZS)4 to verify the result already obtained in Section 5.

2 Preliminaries

Let S and r denote the Ricci tensor of type (0,2) and the scalar curvature
respectively. L denotes the symmetric endomorphism of the tangent space at
each point corresponding to the Ricci tensor S, that is,

g(LX, Y ) = S(X,Y ), (2.1)

for any vector fields X, Y . Let Ā and B̄ are two 1-forms defined by

A(LX) = Ā(X), B(LX) = B̄(X). (2.2)

Then Ā and B̄ are called auxiliary 1-forms corresponding to the 1-forms A and
B respectively. We have from (1.6)

Z(X,Y ) = Z(Y,X), (2.3)

and
Z(Y,Q) = S(Y,Q) + φg(Y,Q),

or,
Z(Y,Q) = B̄(Y ) + φB(Y ). (2.4)

Also we obtain from (1.8)

(∇XZ)(Y,W )− (∇WZ)(X,Y ) = B(X)Z(Y,W )−B(W )Z(X,Y ). (2.5)

Using (1.6) in (2.5) we get

(∇XS)(Y,W ) + (Xφ)g(Y,W )− (∇WS)(X,Y )− (Wφ)g(X,Y )

= B(X)Z(Y,W )−B(W )Z(Y,X). (2.6)
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Now contracting (2.6) over Y , W and using (1.7) and (2.4) we get

dr(X) = {2r + 2(n− 1)φ}B(X)− 2B̄(X)− 2(n− 1)(Xφ). (2.7)

A conformally flat Riemannian manifold (Mn, g) (n > 3) is said to be quasi-
constant curvature [8] if its curvature tensor R̃ of type (0,4) satisfies the condi-
tion

R̃(X,Y, U,W ) = p[g(Y, U)g(X,W )− g(X,U)g(Y,W )]

+ q[g(X,W )H(Y )H(U) + g(Y, U)H(X)H(W )

− g(X,U)H(Y )H(W )− g(Y,W )H(X)H(U)], (2.8)

where R̃(X,Y, U,W ) = g(R(X,Y )U,W ), and R is the curvature tensor of type
(1,3), p, q are scalar functions of which q �= 0 and H is a non-zero 1-form defined
by g(X,μ) = H(X) for all X, μ being a unit vector field.
In such a case p and q are called associated scalars, H is called the associated

1-form and μ is called the generator of the manifold.
In 1956, S. S. Chern [9] studied a type of Riemannian manifold whose cur-

vature tensor R̃ of type (0,4) satisfies the condition

R̃(X,Y, U,W ) = F (Y, U)F (X,W )− F (X,U)F (Y,W ), (2.9)

where F is a symmetric tensor of type (0,2). Such an n-dimensional manifold
was called a special manifold with the associated symmetric tensor F and was
denoted by ψ(F )n. Such a manifold is important for the following reasons:
Firstly, for possessing some remarkable properties relating to curvature and

characteristic classes and secondly, for containing a manifold of quasi-constant
curvature as a subclass.

3 A(PZS)n (n > 2) with cyclic parallel Z tensor

In (1.8) if we replace Y , W by X we get

(∇XZ)(X,X) = [A(X) +B(X)]Z(X,X) +A(X)Z(X,X) +A(X)Z(X,X).

or,
(∇XZ)(X,X) = [3A(X) +B(X)]Z(X,X). (3.1)

By hypothesis the Z tensor is non-zero, hence from (3.1) it follows that

(∇XZ)(X,X) = 0 if and only if 3A(X) +B(X) = 0.

Hence we have the following theorem:

Theorem 3.1 In an A(PZS)n the Z tensor is covariantly constant in the di-
rection of X if and only if 3A(X) +B(X) = 0.
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Again interchanging X, Y, W in (1.8) and then adding we get

(∇XZ)(Y,W ) + (∇Y Z)(X,W ) + (∇WZ)(X,Y )

= F (X)Z(Y,W ) + F (Y )Z(X,W ) + F (W )Z(X,Y ), (3.2)

where F (X) = 3A(X) + B(X). Now if the Z tensor of the manifold be cyclic
parallel, then we have

(∇XZ)(Y,W ) + (∇Y Z)(X,W ) + (∇WZ)(X,Y ) = 0. (3.3)

From (3.2) we get

F (X)Z(Y,W ) + F (Y )Z(X,W ) + F (W )Z(X,Y ) = 0. (3.4)

Then by Walker’s lemma we can see that either, F (X) = 0 or, Z(X,Y ) = 0 for
all X, Y . But since Z(X,Y ) �= 0, we have F (X) = 0 for all X, which implies
that

3A(X) +B(X) = 0. (3.5)

Conversely, if 3A(X) +B(X) = 0, then from(3.2) we obtain

(∇XZ)(Y,W ) + (∇Y Z)(X,W ) + (∇WZ)(X,Y ) = 0

which implies that the Z tensor is cyclic parallel. Thus we can state the following
theorem:

Theorem 3.2 In an A(PZS)n (n > 2) the Z-tensor is cyclic parallel if and
only if the associated 1-forms A and B satisfy the relation (3.5).

Let the Z tensor of the manifold be cyclic parallel. Then the associated
1-forms A and B satisfy the relation (3.5) from which we get

A(X) = −1

3
B(X). (3.6)

Hence if the 1-form B is closed, then from (3.6) we obtain that A is also closed
and conversely. Thus we have the following:

Corollary 3.1 In an A(PZS)n (n > 2) if the Z tensor is cyclic parallel, then
the 1-form A is closed if and only if the 1-form B is also closed.

4 An A(PZS)n (n > 2) with Codazzi type of Z tensor

Here we suppose that the Z-tensor in A(PZS)n is of Codazzi type. Now from
(1.8) we get

(∇XZ)(Y,W )− (∇WZ)(X,Y ) = B(X)Z(Y,W )−B(W )Z(X,Y ). (4.1)

Since Z is of Codazzi type we have from (4.1)

B(X)Z(Y,W )−B(W )Z(X,Y ) = 0. (4.2)
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Putting X = Q in (4.2) we get

B(Q)Z(Y,W ) = B(W )Z(Q, Y ). (4.3)

Again putting Y = W = ei in (4.2) and taking summation over i, 1 ≤ i ≤ n,
where {ei} is an orthonormal basis of the tangent space at each point of the
manifold, we get

B(X)Z = Z(X,Q), (4.4)

where Z = Σn
i=1Z(ei, ei). Using (4.4) in (4.3) we get

Z(Y,W ) =
ZB(Y )B(W )

B(Q)
. (4.5)

Now using (1.6) in (4.5) we get

S(Y,W ) = −φg(Y,W ) + tB(Y )B(W ),

where t = Z
B(Q) . Thus we have

S(X,Y ) = ag(X,Y ) + bB(X)B(Y ), (4.6)

where a = −φ and b = t = Z
B(Q) . Thus the manifold is a quasi-Einstein

manifold. Hence we have the following theorem:

Theorem 4.1 If the Z tensor in A(PZS)n is of Codazzi type, then the manifold
reduces to a quasi Einstein manifold.

5 Conformally flat A(PZS)n (n > 3)

In this section we assume that the manifold A(PZS)n is conformally flat. Then
divC = 0 where C denotes the Weyl’s conformal curvature tensor and ‘div’
denotes divergence. Hence we have [19]

(∇XS)(Y,W )− (∇WS)(X,Y ) =
1

2(n− 1)
[g(Y,W )dr(X)− g(X,Y )dr(W )].

(5.1)
Using (2.6) and (2.7) in (5.1) we get

B(X)Z(Y,W )−B(W )Z(X,Y )− (Xφ)g(Y,W ) + (Wφ)g(X,Y )

=
1

2(n− 1)
[B(X)g(Y,W ){2r + 2(n− 1)φ} − 2(n− 1)(Xφ)g(Y,W )

− 2B̄(X)g(Y,W )−B(W )g(X,Y ){2r + 2(n− 1)φ}
+ 2(n− 1)(Wφ)g(X,Y ) + 2B̄(W )g(X,Y )]. (5.2)

Now putting Y = Q in (5.2) we get

B(X)B̄(W ) = B̄(X)B(W ). (5.3)
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Again putting X = Q in (5.3) we get

B(Q)B̄(W ) = B̄(Q)B(W ).

or,

B̄(W ) =
B̄(Q)

B(Q)
B(W ).

or,
B̄(W ) = sB(W ), (5.4)

where

s =
B̄(Q)

B(Q)
, (5.5)

and s is a scalar. Now using (5.4) in (2.7) we get

dr(X) = {2r + 2(n− 1)φ}B(X)− 2sB(X)− 2(n− 1)(Xφ).

or,
dr(X) = 2{r − s+ (n− 1)φ}B(X)− 2(n− 1)(Xφ). (5.6)

Since B �= 0, putting X = Q in (5.2) and using (5.4) we get

B(Q)Z(Y,W )−B(W )Z(Q, Y )

=
1

2(n− 1)
[{2r + 2(n− 1)φ}B(Q)g(Y,W )− 2sB(Q)g(Y,W )

− {2r + 2(n− 1)φ}B(Y )B(W ) + 2sB(W )B(Y )]. (5.7)

Using (1.6), (5.4) in (5.7) we get

B(Q)S(Y,W ) + φB(Q)g(Y,W )− sB(W )B(Y )− φB(Y )B(W )

=
1

n− 1
[{r + (n− 1)φ− s}B(Q)g(Y,W )− {r + (n− 1)φ− s}B(Y )B(W )].

or,

B(Q)S(Y,W ) =

{
r + (n− 1)φ− s

n− 1
− φ

}
B(Q)g(Y,W )

+

{
(s+ φ)− r + (n− 1)φ− s

n− 1

}
B(Y )B(W ).

or,

S(Y,W ) =

(
r − s

n− 1

)
g(Y,W ) +

(
ns− r

n− 1

)
B(Y )B(W )

B(Q)
.

or,
S(Y,W ) = ag(Y,W ) + bT (Y )T (W ), (5.8)

where a = r−s
n−1 , b = ns−r

n−1 are scalars and T (X) = B(X)√
B(Q) . A Riemannian

manifold is said to be a quasi-Einstein manifold if its Ricci tensor is of the form
(5.8). Hence we have the following theorem:
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Theorem 5.1 A confomally flat A(PZS)n (n > 3) is a quasi-Einstein mani-
fold.

Now from (5.8) we have

S(Y,W ) =

(
r − s

n− 1

)
g(Y,W ) +

(
ns− r

n− 1

)
B(Y )B(W )

B(Q)
. (5.9)

Putting W = Q in (5.9) we get

S(Y,Q) = sB(Y ) = sg(Y,Q), (5.10)

Thus we can state the following:

Corollary 5.1 The vector field Q corresponding to the 1-form B is an eigen
vector of the Ricci tensor S corresponding to the eigen value s.

Let us suppose that the associated vector field Q corresponding to the 1-form
B is a unit vector field. Therefore,

T (X) = B(X), (5.11)

since B(Q) = 1. In a conformally flat Riemannian manifold the curvature tensor
R̃ of type (0,4) satisfies the condition [19]

R̃(X,Y, U,W ) =
1

(n− 2)
[S(Y, U)g(X,W )

− S(X,U)g(Y,W ) + S(X,W )g(Y, U)− S(Y,W )g(X,U)]

− r

(n− 1)(n− 2)
[g(Y, U)g(X,W )− g(X,U)g(Y,W )], (5.12)

where R̃(X,Y, U,W ) = g(R(X,Y )U,W ), R is the Riemannian curvature tensor
of type (1,3), and r is the scalar curvature. Now using (5.8) and (5.11) in (5.12)
we get

R̃(X,Y, U,W ) =
1

n− 2
[ag(Y, U)g(X,W ) + bB(Y )B(U)g(X,W )

− ag(X,U)g(Y,W )− bB(X)B(U)g(Y,W ) + ag(X,W )g(Y, U)

+ bB(X)B(W )g(Y, U)− ag(Y,W )g(X,U)− bB(Y )B(W )g(X,U)]

− r

(n− 1)(n− 2)
[g(Y, U)g(X,W )− g(X,U)g(Y,W )].

or,

R̃(X,Y, U,W ) =

[
2a

(n− 2)
− r

(n− 1)(n− 2)

]
[g(Y, U)g(X,W )

− g(X,U)g(Y,W )] +

[
b

n− 2

]
[g(X,W )B(Y )B(U) + g(Y, U)B(X)B(W )

− g(X,U)B(Y )B(W )− g(Y,W )B(X)B(U)].
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or,

R̃(X,Y, U,W ) = p[g(Y, U)g(X,W )− g(X,U)g(Y,W )]

+ q[g(X,W )B(Y )B(U) + g(Y, U)B(X)B(W )

− g(X,U)B(Y )B(W )− g(Y,W )B(X)B(U)],

where p = r−2s
(n−1)(n−2) , q = ns−r

(n−1)(n−2) . This implies that the manifold is of
quasi-constant curvature. Thus we can state the following theorem:

Theorem 5.2 A conformally flat A(PZS)n (n > 3) is a manifold of quasi-
constant curvature provided the vector field metrically equivalent to the 1-form
B is a unit vector field.

Now, let us suppose that in a manifold of quasi-constant curvature

F (X,Y ) =
√
pg(X,Y ) +

q√
p
H(X)H(Y ). (5.13)

It is obvious that
F (X,Y ) = F (Y,X). (5.14)

Thus F is a symmetric tensor of type (0,2). Now (2.9) can be written as

R̃(X,Y, U,W ) = F (Y, U)F (X,W )− F (X,U)F (Y,W ).

Thus a manifold of quasi-constant curvature is a ψ(F )n. Hence a ψ(F )n contains
a manifold of quasi-constant curvature as a subclass. So we have the following:

Proposition 5.1 A manifold of quasi-constant curvature is a ψ(F )n.

From this Proposition 5.1 and Theorem 5.2 we can conclude that

Corollary 5.2 A conformally flat A(PZS)n (n > 3) is a ψ(F )n.

6 Sufficient condition for an A(PZS)n to be a quasi
Einstein manifold

In an A(PZS)n the Z tensor satisfies

(∇UZ)(X,Y ) = [A(U)+B(U)]Z(X,Y )+B(X)Z(U, Y )+B(Y )Z(U,X). (6.1)

In a Riemannian manifold a vector field P defined by g(X,P ) = A(X) for all
vector field X is said to be a concircular vector field [35] if

(∇XA)(Y ) = αg(X,Y ) + ω(X)A(Y ), (6.2)

where α is a non-zero scalar and ω is a closed 1-form. If P is a unit one then
the equation (6.2) can be written as

(∇XA)(Y ) = α[g(X,Y )−A(X)A(Y )]. (6.3)
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We suppose that in an A(PZS)n the vector field P is a unit concircular vector
field defined by (6.3) where α is a non-zero scalar. Applying Ricci identity to
(6.3) we obtain

A(R(X,Y )Z) = α2[g(X,Z)A(Y )− g(Y, Z)A(X)]. (6.4)

Putting Y = Z = ei in (6.4), where {ei} is an orthonormal basis of the tangent
space at each point of the manifold and taking summation over i, 1 ≤ i ≤ n, we
get

A(LX) = (n− 1)α2A(X),

where L is the Ricci operator defined by g(LX, Y ) = S(X,Y ), which implies
that

S(X,P ) = (n− 1)α2A(X). (6.5)

Now,
(∇Y S)(X,P ) = ∇Y S(X,P )− S(∇YX,P )− S(X,∇Y P ). (6.6)

Applying (6.5) and (6.3) in (6.6) we get

(∇Y S)(X,P ) = (n− 1)α3[g(X,Y )−A(X)A(Y )]− S(X,∇Y P ). (6.7)

Since (∇Xg)(Y, P ) = 0, we have

(∇YA)(X) = g(X,∇Y P ). (6.8)

Using (6.3) in (6.8) yields

α[g(X,Y )−A(X)A(Y )] = g(X,∇Y P )

which implies
∇Y P = αY − αA(Y )P = α(Y −A(Y )P ).

Hence
S(X,∇Y P ) = α[S(X,Y )−A(Y )S(X,P )]. (6.9)

Applying (6.9) in (6.7) we get

(∇Y S)(X,P ) = (n− 1)α3[g(X,Y )−A(X)A(Y )]

− αS(X,Y ) + αA(Y )S(X,P ). (6.10)

Again using (6.5) in (6.10) we get

(∇Y S)(X,P ) = (n− 1)α3g(X,Y )− αS(X,Y ). (6.11)

Using (1.6) in (6.1) we get

(∇US)(X,Y ) + (Uφ)g(X,Y ) = [A(U) +B(U)]Z(X,Y )

+B(X)Z(U, Y ) +B(Y )Z(U,X). (6.12)
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Putting Y = P and using (6.5) and (6.11) in (6.12) we get

(n− 1)α3g(X,U)− αS(X,U) + (Uφ)A(X)

= [A(U) +B(U)][(n− 1)α2A(X) + φA(X)] +B(X)[(n− 1)α2

+ φ]A(U) +B(P )[S(U,X) + φg(U,X)],

which implies

[α+B(P )]S(U,X) = (n− 1)α3g(U,X)

− [A(U) +B(U)]{φ+ (n− 1)α2}A(X)− φB(P )g(U,X)

− {(n− 1)α2 + φ}A(U)B(X) + (Uφ)A(X). (6.13)

Putting X = P in (6.13) and using (6.5) we get

[α+B(P )](n− 1)α2A(U) = (n− 1)α3A(U)

− [A(U) +B(U)]{φ+ (n− 1)α2}A(P )− φB(P )A(U)

− {(n− 1)α2 + φ}A(U)B(P ) + (Uφ)A(P ). (6.14)

From (6.14) it follows that

B(U) = −[2B(P ) + 1]A(U)− (Uφ)

φ+ (n− 1)α2
. (6.15)

Let us suppose
α+B(P ) �= 0.

Using (6.15) in (6.13) we have

S(U,X) =
(n− 1)α3g(U,X)

α+B(P )
−
[
A(U)− {2B(P ) + 1}A(U)

+
(Uφ)

φ+ (n− 1)α2

]
{(n− 1)α2 + φ}A(X)

α+B(P )
− φB(P )g(U,X)

α+B(P )

− {(n− 1)α2 + φ}A(U)

α+B(P )

[
−{2B(P ) + 1}A(X) +

(Uφ)

(n− 1)α2 + φ

]
+

(Uφ)A(X)

α+B(P )
.

or,

S(U,X) =
(n− 1)α3 − φB(P )

α+B(P )
g(U,X)

+
{(n− 1)α2 + φ}{4B(P ) + 1}

α+B(P )
A(U)A(X)− (Uφ)A(U)

α+ B(P )
.

Now if we assume that φ = constant then the above equation implies that the
manifold under consideration is a quasi Einstein manifold. Thus we are in a
position to state the following:
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Theorem 6.1 If in an A(PZS)n, the basic vector field P is a unit concircular
vector field, then the manifold is a quasi Einstein manifold provided

α+B(P ) �= 0

and φ = constant.

7 Totally umbilical hypersurface of a conformally flat
A(PZS)n (n > 3)

In this section we consider a hypersurface (M̄n−1, g) of a conformally flatA(PZS)n
(n > 3) and denote the curvature tensor of the hypersurface by R̄. Then for
any vector fields X, Y , U , W tangent to M̄ we have the following equation of
Gauss ([42], p. 68)

g(R(X,Y, U),W ) =

= g(R̄(X,Y, U),W )− g(B(X,W ), B(Y, U)) + g(B(Y,W ), B(X,U)), (7.1)

where R is the curvature tensor of the A(PZS)n and B is the second funda-
mental form of M̄ . If

B(X,Y ) = τg(X,Y ) (7.2)

for any vector fields X, Y tangent to M̄ , where τ is the mean curvature vector
of M̄ , then M̄ is said to be totally umbilical ([42], p. 67). It is known from
Theorem 5.2 that in a conformally flat A(PZS)n (n > 3) the curvature tensor
R satisfies the following condition:

g(R(X,Y, U),W ) = p[g(Y, U)g(X,W )− g(X,U)g(Y,W )]

+ q[g(X,W )T (Y )T (U) + g(Y, U)T (X)T (W )

− g(X,U)T (Y )T (W )− g(Y,W )T (X)T (U)], (7.3)

where p = r−2s
(n−1)(n−2) , q =

ns−r
(n−1)(n−2) and

T (X) =
B(X)√
B(Q)

, B(Q) = 1, (7.4)

B being the associated 1-form and Q being the basic vector field corresponding
to B. If X, Y, U, W are vector fields tangent to M̄ , then using (7.3) we can
express (7.1) as follows:

g(R̄(X,Y, U),W ) = p[g(Y, U)g(X,W )− g(X,U)g(Y,W )]

+ q[g(X,W )T (Y )T (U) + g(Y, U)T (X)T (W )

− g(X,U)T (Y )T (W )− g(Y,W )T (X)T (U)]

+ g(B(X,W ), B(Y, U))− g(B(Y,W ), B(X,U)). (7.5)



On almost pseudo-Z-symmetric manifolds 39

Since by hypothesis M̄ is totally umbilical, (7.2) holds. Hence (7.5) takes the
following form:

g(R̄(X,Y, U),W ) = (p+ |τ |2)[g(Y, U)g(X,W )− g(X,U)g(Y,W )]

+ q[g(X,W )T (Y )T (U) + g(Y, U)T (X)T (W )

− g(X,U)T (Y )T (W )− g(Y,W )T (X)T (U)]. (7.6)

or,

g(R̄(X,Y, U),W ) = l[g(Y, U)g(X,W )− g(X,U)g(Y,W )]

+m[g(X,W )T (Y )T (U) + g(Y, U)T (X)T (W )

− g(X,U)T (Y )T (W )− g(Y,W )T (X)T (U)], (7.7)

where

l = p+ |τ |2 =
r − 2s

(n− 1)(n− 2)
+ |τ |2 and m = q =

ns− r

(n− 1)(n− 2)
(7.8)

and T (X) = B(X) by virtue of (7.4). Since in a conformally flat A(PZS)n
(n > 3), r cannot be zero, it follows from (7.7) that m cannot be zero. Again
T (X) = g(X,Q), where Q is a unit vector field. Comparing (7.7) with (2.8)
we conclude that M̄ is a manifold of quasi constant curvature with associated
scalars l and m given by (7.8) and generator Q. This leads to the following
theorem:

Theorem 7.1 A totally umbilical hypersurface of a conformally flat A(PZS)n
(n > 3) is a manifold of quasi constant curvature.

8 An example of an A(PZS)4 which justify Theorem 5.1

Example 8.1 Let (R4, g) be a 4-dimensional Riemannian manifold endowed
with the Riemannian metric g given by

ds2 = gijdx
idxj = (x4)

4
3

[
(dx1)2 + (dx2)2 + (dx3)2

]
+ (dx4)2, (8.1)

where (i, j = 1, 2, 3, 4). Here the only non-vanishing components of the Christof-
fel symbols and the curvature tensors are respectively:

Γ1
14 = Γ2

24 = Γ3
34 =

2

3x4
, Γ4

11 = Γ4
22 = Γ4

33 = −2

3
(x4)

1
3 ,

R1221 = R1331 = R2332 =
4

9
(x4)

2
3 , R1441 = R2442 = R3443 = − 2

9(x4)
2
3

and the components obtained by the symmetry properties. The non-vanishing
components of the Ricci tensors are:

R11 = R22 = R33 =
2

3(x4)
2
3

, R44 = − 2

3(x4)2
,



40 Uday Chand De, Prajjwal Pal

Let us choose an arbitrary scalar function φ as φ = 1
(x4)2 . Hence the non-

vanishing components of the Z tensor and their covariant derivatives are re-
spectively:

Z11 = Z22 = Z33 =
5

3(x4)
2
3

, Z44 =
1

3(x4)2
,

Z11,4 = Z22,4 = Z33,4 = − 10

9(x4)
5
3

, Z44,4 = − 2

3(x4)3
.

It can be easily shown that the scalar curvature r of the resulting manifold
(R4, g) is 4

3(x4)2 , which is non-vanishing and non-constant. We shall now show

that (R4, g) is conformally flat. For this we shall prove that

C1221 = C1331 = C2332 = C1441 = C2442 = C3443 = 0,

as all other components of the conformal curvature tensor are zero automatically.
Now,

C1221 = R1221 −
1

2
[g11R22 + g22R11 − 2g12R12] +

r

(3)(2)
[g11g22 − (g12)

2]

=
4

9
(x4)

2
3 − 1

2

[
(x4)

4
3 .
2

3
(x4)−

2
3 + (x4)

4
3 .
2

3
(x4)−

2
3

]
+

4

(3)(2)3(x4)2
[(x4)

8
3 ]

=
4

9
(x4)

2
3 − 1

2

[
4

3
(x4)

2
3

]
+

2

9
(x4)

2
3

=
2

3
(x4)

2
3 − 2

3
(x4)

2
3 = 0.

By similar calculation it can be shown that

C1221 = C1331 = C2332 = C1441 = C2442 = C3443 = 0.

We shall now show that R4 is an A(PZS)n. Let us choose the associated 1-forms
as follows:

Ai(x) =

{
− 2

3x4 for i=4
0 otherwise,

(8.2)

Bi(x) =

{
1
x4 for i=1
0 otherwise,

(8.3)

at any point x ∈ R
4. Now the equation (1.8) reduces to the equations

Z11,4 = [A4 +B4]Z11 +A1Z41 +A1Z14, (8.4)

Z22,4 = [A4 +B4]Z22 +A2Z42 +A2Z24, (8.5)

Z33,4 = [A4 +B4]Z33 +A3Z43 +A3Z34, (8.6)

Z44,4 = [A4 +B4]Z44 +A4Z44 +A4Z44, (8.7)
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since, for the other cases (1.8) holds trivially. By (8.2) and (8.3) we get the
following relation for the right hand side (R.H.S.) and the left hand side (L.H.S.)
of (8.4)

R.H.S. of (8.4) = [A4 +B4]Z11 +A1Z41 +A1Z14 = [A4 +B4]Z11

=
(
− 2

3x4
+ 0

) 5

3(x4)
2
3

= − 10

9(x4)
5
3

= Z11,4 = L.H.S. of (8.4).

By similar argument it can be shown that (8.5), (8.6), (8.7) are true. So, R4

is an A(PZS)n whose scalar curvature is non-zero and non-constant.
We shall now show that this (R4, g) is a quasi Einstein manifold. Let us

choose the scalar functions a and b (the associated scalars) and the 1-form E as
follows:

a =
4

3(x4)2
, b = − 4

(x4)2
, Ei(x) =

⎧⎨
⎩

(
x4
) 2

3

√
6

for i=1,2,3
1√
2

otherwise,

at any point x ∈ R
4.We can easily check that (R4, g) is a quasi Einstein manifold

which justify Theorem 5.1.
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