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Abstract

In this paper we firstly define a tangential Lichnerowicz cohomology on
foliated manifolds. Next, we define tangential locally conformal symplectic
forms on a foliated manifold and we formulate and prove some results
concerning their stability.
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1 Introduction and preliminaries

1.1 Introduction

The locally conformal symplectic (l.c.s.) structures were introduced by Lee [11]
and Vaisman [24]. The fundamental properties of these structures have been
studied extensively by Vaisman, Banyaga, de Leon, Bande, Kotschick and many
others, see for instance [1, 2, 3, 12, 24] and the references given there for a more
thorough discussion.
An important tool in the study of locally conformal symplectic structures is

the Lichnerowicz cohomology, also known in literature as Morse-Novikov coho-
mology, which is a cohomology defined for a smooth manifold M and a closed
1-form θ. It is defined by twisting the usual differential of the de Rham com-
plex Ω•(M) ofM ; namely, the Lichnerowicz cohomology is the cohomology of a
complex (Ω•(M), dθ), where dθ is defined by dθϕ = dϕ−θ∧ϕ. This cohomology
*This paper is supported by the Sectorial Operational Program Human Resources Develop-

ment (SOP HRD), financed from the European Social Fund and by the Romanian Government
under the Project number POSDRU/159/1.5/S/134378.
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was originally defined by Lichnerowicz and Novikov in the context of Poisson
geometry and Hamiltonian mechanics, respectively. Lichnerowicz cohomology
is naturally defined for a l.c.s. manifold with its canonical closed 1-form called
the Lee form, [1, 2].
The aim of the present paper is to study the stability of tangential locally

conformal symplectic forms giving a tangential analogue of some Moser’s type
stability results for locally conformal symplectic structures [1, 3]. We also notice
that in the tangential (leafwise) symplectic setting Moser stability may be found
for instance in [5, 9, 20]. In this sense, in the preliminary section, following
[14, 15], we make a short review on the tangential de Rham theory of foliated
manifolds. In the second section we define a tangential Lichnerowicz cohomology
of foliated manifolds and in a similar manner to [23], we present a tangentially
version of a de Rham theorem for tangential Lichnerowicz cohomology. In the
last section, we define tangential locally conformal symplectic forms on foliated
manifolds and following some arguments from [3] and [5] we formulate and prove
some results concerning the stability of tangential locally conformal symplectic
forms. The methods used here are similarly to those used by [1, 3, 5] and are
closely related to those used in tangential geometry and cohomology of foliations
[14, 15, 17].

1.2 Preliminaries

Let M be a smooth manifold of dimension n = p + q endowed with a regular
foliation F of codimension q. Denote the space of smooth differential r-forms
on M by Ωr(M). We define as in [14], for each r ≥ 0,

Ir(F) = {ϕ ∈ Ωr(M) : ϕ|F = 0},

where ϕ|F = 0 means that for any x ∈M , ϕ(x)(v1, . . . , vr) = 0 for all v1, . . . , vr
in TxF . Clearly, Ir(F) is a linear subspace of Ωr(M) and I0(F) = Ω0(M) =
C∞(M). Moreover, I(F) = ⊕r≥0I

r(F) is a graded ideal of the de Rham com-
plex Ω•(M). Let Ωr(F) = Ωr(M)/Ir(F) and q : Ωr(M) → Ωr(F) denote the
quotient map. The exterior differential operator d : Ωr(M) → Ωr+1(M) induces
a morphism dF : Ωr(F) → Ωr+1(F) by dF (qϕ) = q(dϕ), since d maps Ir(F)
into Ir+1(F).
It can be easily checked that d2F = 0 so that (Ω•(F), dF ) is a co-chain

complex called the tangential or foliated de Rham complex of (M,F).
Let TF denote the subbundle of TM consisting of all vectors which are

tangent to the leaves of the foliation and let T ∗F denote the dual of this bundle.
Then it may be noted that Ωr(F) is isomorphic to the space of sections of the
vector bundle ΛrT ∗F . With this identification we observe that q is induced by
the quotient map T ∗M → T ∗F . The commutation relation dF (qϕ) = q(dϕ)
says that the quotient map q is a chain map between de Rham complex and
tangential de Rham complex. The cohomology of the complex (Ω•(F), dF ) is
called the tangential de Rham cohomology of (M,F) and is denoted byH•(F) =
Ker dF/Im dF . It follows directly from the above description of the tangential
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de Rham complex that the tangential cohomology groups vanish in dimensions
r > dimF . For foliated manifolds with single leaf the tangential de Rham
complex is the same as the ordinary de Rham complex. Hence the tangential
de Rham cohomology is the same as the ordinary de Rham cohomology. If the
foliation is by points, the tangential cohomology is 0 in positive degrees.
A form ϕ ∈ Ωr(F) if it can be written locally as

ϕ =
∑

ϕu1...ur
(xu, xa)dxu1 ∧ . . . dxur , (1.1)

where (xu, xa), u = 1, . . . , p, a = p+1, . . . , p+q = dimM are local coordinates in
a chart adapted to the foliation and the leaves of the foliation are characterized
by xa = const. The coordinates 1-forms dxu are differentials along the leaves.
The tangential differential dF is defined as one does classically for an r-form
with (xa) playing the role of parameters.
Let us denote ϕF = qϕ for every ϕ ∈ Ω•(M).

Definition 1.1 An r-form ϕ onM is said to be tangentially closed if dFϕF = 0,
that is, if ϕ restricts to a closed form on each leaf of the foliation. Similarly, an
r-form ϕ on M is said to be tangentially exact if there exists an (r− 1)-form ψ
on M such that ϕF = dFψF which implies that ϕ restricts to an exact form on
each leaf of the foliation.

Definition 1.2 A vector field X on a foliated manifold (M,F) is said to be a
foliated vector field if X mapsM into TF . The space of all foliated vector fields
on (M,F) will be denoted by X (F). Equivalently, a vector field Y ∈ X (M) is
said to be foliated if, for every X ∈ Γ(TF) we have [X,Y ] ∈ Γ(TF).

A smooth map f : (M,F) → (M
′
,F ′

) between two foliated manifolds is
called foliation preserving if f send a leaf of F into a leaf of F ′

. Such a map f
induces a chain map f∗ : Ω•(F ′

) → Ω•(F) and hence a morphism f• : H•(F ′
) →

H•(F) in the cohomology level.
It is easy to see that the exterior product ∧ in Ω•(M) descends to Ω•(F).

Also, it is easily checked that iXq(ω) = q (iXω) and f∗q(ω) = q (f∗ω) are
correct definitions if X is tangent to F and f is a foliation preserving map. For
X tangent to F we may have also the Lie derivative LXq(ω) = iXdFq(ω) +
dF iXq(ω). For basic properties of tangential de Rham cohomology, see for
instance Ch. III from [15].

2 Tangential Lichnerowicz cohomology

Let (M,F) be a foliated manifold and θ ∈ Ω1(M) be a tangentially closed
1-form. Denote by dθF : Ωr(F) → Ωr+1(F) the map dθF = dF − θF∧.
Since dFθF = 0, we easily obtain that

(
dθF

)2
= 0. The differential complex(

Ω•(F), dθF
)
is called the tangential Lichnerowicz complex of (M,F). The

cohomology of this complex is called the tangential Lichnerowicz cohomology of
(M,F) and is denoted by H•

θ (F).
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This is a tangential (foliated) version of the classical Lichnerowicz cohomol-
ogy (also referred in the literature as Morse-Novikov cohomology), motivated by
Lichnerowicz’s work [13] or Lichnerowicz-Jacobi cohomology on Jacobi and lo-
cally conformal symplectic manifolds, see [1, 2, 12]. We also notice that Vaisman
in [23] studied it under the name of “adapted cohomology” on locally conformal
Kähler (l.c.K.) manifolds.
We notice that, locally, the tangential Lichnerowicz cohomology complex

becames the tangential de Rham complex after a change ϕF �→ efϕF with
f a smooth function on (M,F) which satisfies dFf = θF , namely dθF is the
unique differential in Ω•(F) which makes the multiplication by the smooth
function ef an isomorphism of cochain tangential complexes ef : (Ω•(F), dθF ) →
(Ω•(F), dF ).

Proposition 2.1 The tangential Lichnerowicz cohomology depends only on the
tangential cohomology class of θ. In fact, we have the following isomorphism
Hr

θ−df (F) ≈ Hr
θ (F).

Proof Since dθF (e
fϕF) = efdθ−df

F ϕF it results that the map [ϕF ] �→ [efϕF ]
is an isomorphism between Hr

θ−df (F) and Hr
θ (F). � Using the definition of

dθF we easily obtain

dθF (ϕF ∧ ψF ) = dFϕF ∧ ψF + (−1)degϕϕF ∧ dθFψF .

Also, if θ1 and θ2 are two tangential closed 1-forms on (M,F) then

dθ1+θ2
F (ϕF ∧ ψF ) = dθ1F ϕF ∧ ψF + (−1)degϕϕF ∧ dθ2F ψF ,

which says that the wedge product induces the map

∧ : Hr1
θ1
(F)×Hr2

θ2
(F) → Hr1+r2

θ1+θ2
(F).

Corollary 2.1 The wedge product induces the following homomorphism

∧ : Hr
θ (F)×Hr

−θ(F) → H2r(F).

Now, using an argument inspired from [23] we shall prove that the tangential
cohomology spaces Hr

θ (F) can also be obtained as the cohomology spaces of
(M,F) with the coefficients in the sheaf of germs of dθF -closed smooth functions.
Namely, let us denote by Φθ

F (M) the sheaf of germs of smooth functions on
(M,F) which are such dθFf = dFf − fθF = 0.
Firstly, we notice that dθF satisfies a Poincaré type lemma for tangential

forms. Indeed, let ϕ be a local form on (M,F), such that dθFϕF = 0. Since
dFθF = 0 by Poincaré lemma for the operator dF (see for instance Proposition
3.6 from [15] for tangential case or [22] for leafwise case), we may suppose

θF = −dFf/f, (2.1)

where f is a nonzero smooth function. Then, dθFϕF = 0 means dF (fϕF ) = 0,
whence ϕF = dθF (ψF/f) for some local form ψ on (M,F). This is exactly the
requested result.
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Now, if we denote by Ω̃r(F) the sheaf of germs of tangential r-forms on
(M,F), we see that

0 −→ Φθ
F (M)

i−→ Ω̃0(F)
dθ
F−→ Ω̃1(F)

dθ
F−→ . . . (2.2)

is a fine resolution of Φθ
F (M), which leads to the following tangential de Rham

type theorem:

Theorem 2.1 For every foliated manifold (M,F) and every tangentially closed
1-form θ, one has the isomorphisms

Hr(F ,Φθ
F (M)) ≈ Hr

θ (F).

In the end of this section we notice that some other basic properties as:
relative cohomology, F-homotopy invariance, Mayer-Vietoris sequence can be
formulated in the context of tangential Lichnerowicz cohomology.

3 Tangential locally conformal symplectic forms and their
stability

In this section we firstly define tangential locally conformal symplectic forms on
a regular foliated manifold (M,F) and next, following some arguments from [3]
and [5] we formulate and prove some results concerning the stability of tangential
locally conformal symplectic forms.

Definition 3.1 ([5, 9]). A tangentially closed 2-form ω on (M,F) is said to be
a tangential or foliated symplectic form if ω is non-degenerate on each leaf of
F . The foliated manifold (M,F) together with a tangential symplectic form ω
is then called a foliated symplectic manifold.

Definition 3.2 A tangential locally conformal symplectic structure (briefly,
tangential l.c.s. structure) on a foliated manifold (M,F) is a 2-form ω, non-
degenerate on each leaf of F , which is locally conformal to a tangential sym-
plectic form.

In other words, (M,F , ω) is a tangential l.c.s. structure if there exists an
open covering {Ui} of M and a smooth positive function fi on Ui such that
fiω|Ui

is a tangential symplectic structure on Ui. Equivalently, there exists on
(M,F) a tangentially closed 1-form θ, called Lee form, such that ω satisfies the
integrability condition

dFωF = θF ∧ ωF . (3.1)

Indeed, by dFθF = 0 and Poincaré lemma for the operator dF , there is an open
cover {Ui}i∈I of M and a family {σi}i∈I of C∞ functions σi : Ui → R so that
θF = dFσi on Ui. Then ωi = e−σiω|Ui

is a tangential symplectic structure
on Ui.
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Example 3.1 Let (M1, ω1, θ1) and (M2, ω2, θ2) two l.c.s. manifolds of dimen-
sions n1 and n2, respectively. Then the product manifold M =M1×M2 carries
two complementary foliations F1 and F2 by copies of M1 and M2, respectively.
If we consider ω = pr∗1ω1 + pr∗2ω2 and θ = pr∗1θ1 + pr∗2θ2, where pr1 : M → M1

and pr2 :M →M2, then (ω, θ) is a tangential l.c.s. structure onM with respect
to both foliations F1 and F2, respectively.

We assume throughout that the dimension of F is at least 4. Then the
tangential 1-form θF , is uniquely determined by ωF because the wedge prod-
uct with a non-degenerate tangential 2-form is injective on tangential 1-forms.
When θF vanishes identically, the form ω is tangential symplectic.
Two tangential l.c.s. forms ω and ω

′
are said to be tangential conformally

equivalent if there exists some positive function f such that ω = fω
′
on F , that

is ωF = fω
′
F . A tangential l.c.s. structure is an equivalence class of tangential

l.c.s. forms for this relation. Note that the tangential de Rham cohomology
class of the tangential Lee form is an invariant of the tangential l.c.s. structure
because a conformal rescaling of ωF changes θF by the addition of an exact
tangential form.
If an tangential l.c.s. structure contains a tangential symplectic representa-

tive, then it is tangential globally conformal symplectic structure. This is the
case if and only if the tangential Lee form is tangentially exact.
In the case when θ is the Lee form of a tangential l.c.s. form ω, equation

(3.1) shows that ωF is dθF -closed and so defines a class in H
2
θ (F), which is a

tangential analogue of Morse–Novikov class of l.c.K. manifolds, see [19]. If we
consider the tangential l.c.s. structure defined by ω, and ω

′
F = fωF , then the

tangential Lee form of ω
′
is just

θ
′
F = θF + dF ln f

and the class [ωF ] ∈ H2
θ (F) is mapped to [ω

′
F ] ∈ H2

θ′ (F) by Proposition 2.1.
In the following we consider families ωt of tangential l.c.s. forms depending

smoothly on a parameter t ∈ [0, 1]. The uniqueness of the tangential Lee form
q(θt) = θt|F implies that this depends smoothly on t as well. Using the tangen-
tial Lichnerowicz operator, by analogy with [3], we obtain the following result
concerning the stability of ωt:

Proposition 3.1 Let ωt be a smooth family of tangential l.c.s. forms on a
foliated manifold (M,F) such that the corresponding Lee forms θt have the same
tangential de Rham cohomology class. Suppose there exists a smooth family of
1-forms ψt such that ωt = dψt − θt ∧ ψt on F . Then there exists a foliation
preserving isotopy φt such that φ∗tωt is tangential conformally equivalent to ω0

for all t, namely φ∗t q(ωt) = ftq(ω0), for some positive functions ft.

Proof Because the Lee forms θt have the same tangential de Rham class,
then there is a smooth family of functions ht such that q(

.

θt) = dFht. Now, one
defines a time-dependent foliated vector field Xt by

iXt
q(ωt) = −q(

.

ψt) + htq(ψt). (3.2)
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Then its flow φt satisfies

d

dt
(φ∗t q(ωt)) = φ∗t

(
q(

.
ωt) + iXt

dFq(ωt) + dF (iXt
q(ωt))

)
= φ∗t ((q(θt)(Xt) + ht)q(ωt)) ,

where we have used q(
.
ωt) = dθtF q(

.

ψt)− q(
.

θt) ∧ q(ψt) and (3.2). Thus

φ∗t q(ωt) = e
∫ t
0
φ∗
s(q(θs)(Xs)+hs)dsq(ω0)

which completes the proof. �

In [5] is proved a stability theorem for foliated symplectic forms using an
extended Poincaré lemma for the operator dF . In order to obtain an analogue
stability theorem for tangential l.c.s. structures, we firstly obtain an analogue
extended Poincaré lemma for the operator dθF .

Proposition 3.2 Let (M,F) be a smooth foliated manifold and let π : E →M

be a vector bundle over M . Let F̃ be the foliation on E defined by F̃ = π−1(F).
Let us denote q̃ : Ω•(E) → Ω•(F̃) and let θ̃ be a tangentially closed 1-form

on (E, F̃). Suppose ϕ̃ is a tangentially dθ̃F̃ -closed r-form on (E, F̃) such that
i∗ϕ̃ = 0 on F , where i : M → E embeds M as the zero section in E. Then
there exists a neighbourhood U of M in E with a (r−1)-form ψ̃ on U such that

dθ̃F̃ q̃(ψ̃) = q̃(ϕ̃) and ψ̃|i(M) = 0.

Proof Let ϕ̃ as in the hypothesis. As we explained above (in Section 2),

from dθ̃F̃ q̃(ϕ̃) = 0 it follows that dF̃ (f q̃(ϕ̃)) = 0, where locally q̃(θ̃) = −dF̃f/f
and f is a nonzero smooth function on E. Now from i∗ϕ̃ = 0 on F it easily
follows that i∗(fϕ̃) = 0 on F and by Proposition 3.3. from [5] we obtain that
there is a neighbourhood U of M in E with a (r − 1)-form ψ̃

′
on U such that

dF̃ q̃(ψ̃
′
) = f q̃(ϕ̃) and ψ̃

′ |i(M) = 0 or equivalently, dθ̃F̃ (q̃(ψ̃
′
/f)) = q̃(ϕ̃) and

(ψ̃
′
/f)|i(M) = 0. Now, the proposition follows taking ψ̃ = ψ̃

′
/f . �

Proposition 3.3 Let (M,F) be a smooth foliated manifold and let π : E →M

be a vector bundle over M . Let (E, F̃) be the foliation on E defined by F̃ =

π−1(F). Suppose ω̃0 and ω̃1 are two tangential l.c.s. forms on (E, F̃) with the
same tangential Lee 1-form θ̃F̃ , such that ω̃1 = ω̃0 on T F̃ |M . Then there exist
a family of l.c.s. structures ω̃t, t ∈ [0, 1] on open neighbourhood U of M in
E, some positive smooth functions ft on U and a foliation preserving isotopy
φt : U → U , t ∈ [0, 1] such that dφt = id on TE|M and φ∗t ω̃t = ftω̃0 on F̃ , that
is φ∗t q̃(ω̃t) = ftq̃(ω̃0).

Proof It follows from the hypothesis that ω̃1 − ω̃0 is a tangentially dθ̃F̃ -closed

form and ω̃1 − ω̃0 = 0 on T F̃ |M . Therefore, by Proposition 3.2.,

q̃(ω̃1 − ω̃0) = dθ̃F̃ q̃(ψ̃),
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for some ψ̃ ∈ Ω1(E) satisfying ψ̃|i(M) = 0. For 0 ≤ t ≤ 1 we define a family of

tangentially dθ̃F̃ -closed forms ω̃t by

ω̃t = ω̃0 + tdθ̃ψ̃.

Since ω̃1 = ω̃0 on T F̃ |M , each ω̃t restricts to a tangential l.c.s. form on some
neighbourhood U ofM in E. As in the case of tangential symplectic forms [5], a
tangential l.c.s. form ω on (M,F) defines a bundle isomorphism Iω : TF → T ∗F
which is given by the correspondence X �→ iXωF . Thus Iω induces a bijection
X (F) → Ω1(F) which maps a foliated vector field X onto the tangential 1-
form q(iXω). Now, for each t ∈ [0, 1], define a foliated vector field Xt by
Xt = I−1

ω̃t
(−q̃(ψ̃)), so that q̃(iXt

ω̃t) = −q̃(ψ̃). Let φt, t ∈ [0, 1] be the one-
parameter family of diffeomorphisms defined on some open neighbourhood of
M such that φ0 = id|M and dφt/dt = Xt. Since ψ̃ = 0 on T F̃ |M , it follows that
φt|M = id|M . Moreover, since Xt is a foliated vector field, {φt} is a foliation
preserving diffeotopy.
Now, by the same technique as above, one gets

d

dt
(φ∗t q̃(ω̃t)) = φ∗t

(
q̃(

.

ω̃t) + iXt
dF̃ q̃(ω̃t) + dF̃ (iXt

q̃(ω̃t))
)

= φ∗t
(
dθ̃F̃ q̃(ψ̃)− dF̃ q̃(ψ̃) + q̃(θ̃) ∧ q̃(ψ̃) + q̃(θ̃)(Xt)q̃(ω̃t)

)

= φ∗t
(
q̃(θ̃)(Xt)q̃(ω̃t)

)

= φ∗t (q̃(θ̃)(Xt))φ
∗
t (q̃(ω̃t)).

It follows that
φ∗t q̃(ω̃t) = e

∫ t
0
φ∗
s(q̃(θ̃)(Xs))dsq̃(ω̃0),

which completes the proof. �

Finally, as a consequence, we obtain the following tangential stability theo-
rem analogue to the stability result from [1]:

Theorem 3.1 Let M be a closed manifold and let F be a regular foliation on
M . Let {ωt}, t ∈ [0, 1], be a smooth family of tangential l.c.s. forms on (M,F)
having the same tangential Lee form θF such that ωt = ω0 + dθψt on F , where
ψt is a smooth family of 1-forms. Then there exists a smooth foliated diffeotopy
φt : (M,F) → (M,F), φ0 = id, such that φ∗tωt = ftω0 on F , for some positive
functions ft.
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