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Abstract

We extend, in this paper, some known results on the boundedness of
solutions of certain second order nonlinear scalar differential equations to
system of second order nonlinear differential equations.
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1 Introduction

Let R denote the real line−∞ < t < ∞, and let Rn denote the real n−dimensional
Euclidean space equipped with the usual Euclidean norm which will be repre-
sented throughout the sequel by ‖.‖. We shall consider here differential equa-
tions of the form

Ẍ + F (X, Ẋ)Ẋ +H(X) = P (t,X, Ẋ) (1.1)

in which X : R → R
n, H : Rn → R

n, P : R×R
n ×R

n → R
n, F is an n× n con-

tinuous symmetric positive definite matrix function for the argument displayed
explicitly, and the dots as usual indicate differentiation with respect to t. The
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equation is the vector version for the system of real second-order differential
equations

ẍi +
n∑

k=1

fik(x1, . . . , xn, ẋ1, . . . , ẋn)ẋk + hi(x1, . . . , xn)

= pi(t, x1, . . . , xn, ẋ1, . . . , ẋn), (i = 1, 2, . . . , n).

It is also assumed that H and P are continuous for the argument displayed
explicitly. Moreover, the existence and uniqueness of the solutions of (1.1) will
be assumed (see Picard–Lindelof theorem in [10]).
Our study of (1.1) here is concerned primarily with the problems of the

boundedness of solutions of (1.1). For over four decades, many authors have
dealt with extension of results obtained for scalar differential equations ([11])
to vector differential equations. See, for example, [1–4, 6–9, 12, 15, 16] and the
references cited therein for third and higher order cases.
However, only few results on second order scalar differential equations have

been extended to second order vector equations. The special case in which
F (X, Ẋ) is an n × n matrix A in (1.1), and (1.1) is an n vector and matrix
equations have been studied [5, 14]. In [5], for example, the author dealt with
the boundedness problem in connection with his study of convergence properties
of solutions, while in [14] the asymptotic stability, boundedness and existence
of solutions was discussed. The conditions obtained in each of these previous
investigations are generalization in some form or the other, of the conditions:
a > 0 and b > 0 for the scalar equation

ẍ+ aẋ+ bx = p(t),

with a, b constants, which conditions ensure the ultimate boundedness of all
solutions if p is bounded and the existence of periodic solutions if p is periodic
in t. Our motivation comes from [13]. With respect to our observations in
the literature, no work based on [13] was found. Consequently, our present
investigations are related to [13], and we shall provide extensions of some of the
results obtained to n-dimensional equations of the form (1.1).

2 Notations

We shall use the notation as given in [1]. Throughout this paper, δ’s, Δ’s andD’s
with or without suffices will denote positive constants whose magnitudes depend
on an n × n matrix function F (X, Ẋ) and vector functions H(X), P (t,X, Ẋ).
The δ’s, Δ’s and D’s with numerical or alphabetical suffixes shall retain fixed
magnitudes, while those without suffixes are not necessarily the same at each
occurrence. It should also be noted that α0, α1, ξ0, β, γ are positive constants
as defined later.
Also, we shall denote the scalar product 〈X,Y 〉 of any vectors X,Y in R

n,
with respective components (x1, x2, . . . , xn) and (y1, y2, . . . , yn) by

∑n
i=1 xiyi.

In particular, 〈X,X〉 = ‖X‖2. Finally, by sgnX, we mean (sgnx1, sgnx2, . . . ,
sgn xn) and ‖ sgnX‖ =

√
n > 0.
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3 Main results

Before stating our main results, we give a well-known algebraic result which will
be required in the proofs.

Lemma 1 Let A be a real symmetric positive definite n× n-matrix. Then for
any X ∈ R

n

δa‖X‖2 ≤ 〈AX,X〉 ≤ Δa‖X‖2,
where δa and Δa are, respectively, the least and greatest eigenvalues of the ma-
trix A.

Proof See [7], [12], [16]. �

Our main theorems are the following.

Theorem 1 Let all the basic assumptions imposed on F,H and P hold, and
that F (0, 0) = 0, H(0) = 0. Suppose further that for any arbitrary X ∈ R

n,

(i) JH(X) is symmetric and positive definite;

(ii) the eigenvalues λi(F (X, Ẋ)) of F (X, Ẋ) satisfy

0 < δf ≤ λi(F (X, Ẋ)) ≤ Δf , (3.1)

where δf ,Δf are respectively, the least and greatest eigenvalues of matrix
F (X, Ẋ);

(iii)
lim

‖X‖→∞
{α〈H(X), sgnX〉 − 2γΔf} > 2γβ, (3.2)

where α = sgn(〈H(X), sgnX〉), and γ =
√
n, β are positive constants.

(iv) the finite constants δf and β are such that

δf − β > 0; (3.3)

(v) the function H(X) satisfies either

〈H(X), sgnX〉 → +∞ as ‖X‖ → ∞ (3.4)

or
〈H(X), sgnX〉 → −∞ as ‖X‖ → ∞ (3.5)

and

(vi) for all t,X and Ẋ,
‖P (t,X, Ẋ)‖ ≤ β. (3.6)

Then, there exists a constant D, 0 < D < ∞, whose magnitude de-
pends only on the constant β, δf ,Δf as well as on F (X, Ẋ), JH(X) and
P (t,X, Ẋ) such that every solution X(t) of (1.1) ultimately satisfies

‖X(t)‖ ≤ D, ‖Ẋ(t)‖ ≤ D. (3.7)
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Suppose we relax the restriction on P (t,X, Ẋ) in (3.6) so that we have

Theorem 2 In addition to the conditions (i), (ii), (iv) and (v) of Theorem 1,
suppose

(i)
lim

‖X‖→∞
{α〈H(X), sgnX〉 − 2γΔf} > 2γβ∗, (3.8)

where
β∗ = max

{γ

8
(Δf + β)2(δf − β)−1, β

}
(3.9)

(ii) for all t,X and Ẋ
‖P (t,X, Ẋ)‖ ≤ β‖Ẋ‖. (3.10)

Then, there exists a constant D, 0 < D < ∞, whose magnitude depends
only on the constants β, δf , Δf as well as on F (X, Ẋ), JH(X) and
P (t,X, Ẋ) such that every solution X(t) of (1.1) ultimately satisfies (3.7).

4 Some preliminaries

The following result will be basic to the proofs of Theorems 1 and 2.

Lemma 2 Let H(0) = 0 and assume that the matrices A and JH(X) are
symmetric and commute for all X ∈ R

n. Then

〈H(X), AX〉 =
∫ 1

0

XTAJH(σX)X dσ. (4.1)

Proof See [7], [12], [16]. �

Lemma 3 Let H(0) = 0 and assume that JH(X) is symmetric for arbitrary
X ∈ R

n. Then

d

dt

∫ 1

0

〈H(σX), X〉 dσ = 〈H(X), Ẋ〉 for all X ∈ R
n (4.2)

Proof See [7], [12], [16]. �

5 Proof of Theorem 1

Let us replace system of differential equations of form (1.1) in the equivalent
system form

Ẋ = Y, Ẏ = −F (X,Y )Y −H(X) + P (t,X, Y ) (5.1)

for which a typical solution will be (X(t), Y (t)). Define the continuous function
V = V (X,Y ) adapted from [13], with suitable modification by

V = V1 + V2, (5.2)
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where

2V1 = 〈Y, Y 〉+
∫ 1

0

〈H(σX), X〉 dσ (5.3)

V2 =

{
α〈Y, sgnX〉 if ‖Y ‖ ≤ ‖X‖;
〈X, sgnY 〉 if ‖X‖ ≤ ‖Y ‖.

(5.4)

We shall show that V (X,Y ) satisfies

V (X,Y ) → +∞ as ‖X‖2 + ‖Y ‖2 → +∞ (5.5)

and that, for any solution (X(t), Y (t)) of (5.1) the derivative of V = V (X,Y )
exists and satisfies

V̇ ≤ −D0 if ‖X‖2 + ‖Y ‖2 ≥ D1 (5.6)

for some finite constants D0 > 0, D1 > 0. As will be clear from Yoshizawa-type
technique employed in [9, 17], the two results (5.5) and (5.6) together imply
ultimately that

‖X‖2 + ‖Y ‖2 ≤ D

and hence (3.7).
To verify (5.5), note from (5.4) that |V2| ≤ δ‖Y ‖ where δ is a positive

constant.
Also, by Lemma 1 with A ≡ In and Lemma 2, we have that∫ 1

0

〈H(σX), X〉 dσ =

∫ 1

0

∫ 1

0

σXTJH(τσX)Xdτ dσ ≥ δh‖X‖2

since JH(X) is positive definite.
Therefore V satisfies

2V ≥ 2δh‖X‖2 + ‖Y ‖2 − δ‖Y ‖ ≥ δ1(‖X‖2 + ‖Y ‖2)− δ‖Y ‖,

where δ1 = min{1, 2δh}. The right hand side here tends to +∞ as

‖X‖2 + ‖Y ‖2 → +∞.

We are now left to show that V̇ exists and satisfies (5.6) thus,

V̇ = V̇1 + V̇2.

Using Lemma 3 and (5.1), we have that

V̇1 = −〈F (X,Y )Y, Y 〉+ 〈Y, P (t,X, Y )〉 (5.7)

and

V̇2 =

⎧⎪⎨
⎪⎩

−α{〈F (X,Y )Y, sgnX〉+ 〈H(X), sgnX〉 − 〈P (t,X, Y ), sgnX〉}
if ‖Y ‖ ≤ ‖X‖;

〈Y, sgnY 〉 if ‖X‖ ≤ ‖Y ‖.
(5.8)
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Thus,

V̇ = −α〈H(X), sgnX〉 − 〈F (X,Y )Y, Y 〉 − α〈F (X,Y )Y, sgnX〉
+ 〈Y + α sgnX,P (t,X, Y )〉, if ‖Y ‖ ≤ ‖X‖ (5.9)

or

V̇ = −〈F (X,Y )Y, Y 〉+ 〈Y, sgnY 〉+ 〈Y, P (t,X, Y )〉, if ‖X‖ ≤ ‖Y ‖. (5.10)

V̇ ≤ −α〈H(X), sgnX〉 − 〈F (X,Y )Y, Y 〉+ |〈F (X,Y )Y, sgnX〉|
+ (‖Y ‖+ γ)‖P (t,X, Y )‖, if ‖Y ‖ ≤ ‖X‖ (5.11)

or

V̇ = −〈F (X,Y )Y, Y 〉+ (‖P (t,X, Y )‖+ γ)‖Y ‖, if ‖X‖ ≤ ‖Y ‖. (5.12)

The condition (3.2) implies the existence of finite constants α0 > 0, D2 > 0
such that

‖X‖ ≥ α0 =⇒ α〈H(X), sgnX〉 − 2γΔf − 2γβ ≥ D2. (5.13)

Let
α1 = max{1, α0, μ}, (5.14)

where
μ = δ−1

f (β + γ).

We assert that, for some finite constants D3 > 0,

V̇ ≤ −D3 if ‖X‖ ≥ α1. (5.15)

Indeed, if ‖Y ‖ ≤ ‖X‖ so that V̇ satisfies (5.11) and, if ‖Y ‖ ≥ 1, then by (3.1)
and (3.6),

V̇ ≤ −α〈H(X), sgnX〉 − ‖Y ‖(δf‖Y ‖ − γΔf ) + β(‖Y ‖+ γ)

≤ −α〈H(X), sgnX〉 − (δf‖Y ‖ − γΔf ) + β(‖Y ‖+ γ)

≤ −α〈H(X), sgnX〉 − (δf − β)‖Y ‖+ γ(β +Δf )

≤ −α〈H(X), sgnX〉+ 2γ(β +Δf ).

Thus,
V̇ ≤ −D2 if ‖X‖ ≥ α1 (5.16)

by (5.13) and (5.14).
Suppose however, that ‖Y ‖ ≤ 1, then

V̇ ≤ −α〈H(X), sgnX〉 − δf‖Y ‖2 + γΔf‖Y ‖+ β(‖Y ‖+ γ)

≤ −α〈H(X), sgnX〉+ γΔf + β(1 + γ)

≤ −α〈H(X), sgnX〉+ 2γ(β +Δf ),
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so that (5.13), (5.16) still hold in this case. We are now left with the case:
‖X‖ ≤ ‖Y ‖ for which V̇ satisfies (5.12). If we note that ‖X‖ ≥ α1 implies that
‖Y ‖ ≥ α1, with α1 fixed by (5.14), we have that

V̇ ≤ −δf‖Y ‖2 + γ‖Y ‖+ β‖Y ‖ = −{δf‖Y ‖ − (γ + β)}‖Y ‖ ≤ −1

for ‖Y ‖ ≥ μ = (γ + β)δ−1
f .

That is, ‖X‖ ≥ α1 ⇒ V̇ ≤ −1. This together with (5.16) show that (5.15) holds
with D3 = max{1, D2}.
To complete our discussion, suppose, on the contrary, that ‖X‖ ≤ α1 and

assume for a start that ‖Y ‖ ≥ α1. Then ‖Y ‖ ≥ ‖X‖ and so V̇ satisfies

V̇ ≤ −δf‖Y ‖2 + γ‖Y ‖+ β‖Y ‖ ≤ −1 for ‖Y ‖ ≥ μ. (5.17)

The results (5.15) and (5.17) show clearly that

V̇ ≤ −D3 if ‖X‖2 + ‖Y ‖2 ≥ 2α1,

D3 = max{1, D2}. This concludes the proof of (5.6) and, as earlier remarked,
the theorem now follows.

6 Proof of Theorem 2

The procedure here is the same as that used for Theorem 1. The proof of
Theorem 2 is immediate as soon as we show (5.5) and (5.6). The verification of
(5.5) given in §5 carries over with obvious modifications.
To verify (5.6), our starting point will be the estimate (5.11) and (5.12) which

are still valid in this case. In view of (3.8) there are constants α0 > 0, D4 > 0
such that

‖X‖ ≥ α0 =⇒ {α〈H(X), sgnX〉 − 2γΔf − 2γβ∗} ≥ D4. (5.18)

Suppose also that ξ0 > 0 is a constant such that

‖Y ‖ ≥ ξ0 =⇒ −(δf − β)‖Y ‖2 + ‖Y ‖ ≤ −1 (5.19)

and set

α1 = max{1, α0, ξ0}. (5.20)

First, we show that for some constant D5 > 0,

‖X‖ ≥ α1 =⇒ V̇ ≤ −D5. (5.21)

As before we consider the two cases ‖Y ‖ ≤ ‖X‖ and ‖X‖ ≤ ‖Y ‖ separately.
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Let ‖Y ‖ ≤ ‖X‖ and suppose that ‖Y ‖ ≥ 1. Then on using (5.11), we have

V̇ ≤ −α〈H(X), sgnX〉 − δf‖Y ‖2 + γΔf‖Y ‖+ β‖Y ‖(‖Y ‖+ γ)

= −α〈H(X), sgnX〉 − (δf − β)

{
‖Y ‖ − γ(Δf + β)

2(δf − β)

}2

+
γ2(Δf + β)2

4(δf − β)

≤ −α〈H(X), sgnX〉+ γ2(Δf + β)2

4(δf − β)

≤ −α〈H(X), sgnX〉+ 2γΔf +
γ2(Δf + β)2

4(δf − β)
.

If, however, ‖Y ‖ ≤ 1,

V̇ ≤ −α〈H(X), sgnX〉 − δf‖Y ‖2 + γΔf‖Y ‖+ β‖Y ‖(‖Y ‖+ γ)

= −α〈H(X), sgnX〉 − (δf − β)‖Y ‖2 + γ(Δf + β)‖Y ‖
≤ −α〈H(X), sgnX〉+ 2γ(Δf + β).

By (5.18), (3.8) and (5.20) it is clear that in either case (5.21) holds.
Suppose now that ‖X‖ ≤ ‖Y ‖. Then ‖X‖ ≥ α1 implies that ‖Y ‖ ≥ α1 ≥ ξ0

by (5.20). Thus,

V̇ ≤ −(δf − β)‖Y ‖2 + γ‖Y ‖ ≤ −1 for ‖Y ‖ ≥ γ(δf − β)−1.

Suppose on the contrary that ‖X‖ ≤ α1 and assume ‖Y ‖ ≥ α1. Then
‖Y ‖ ≥ ‖X‖ and so we have

V̇ ≤ −{(δf − β)‖Y ‖ − γ}‖Y ‖ ≤ −1 for ‖Y ‖ ≥ γ(δf − β)−1

since ‖Y ‖ ≥ α1. This together with (5.21) show that

V̇ ≤ −D5 if ‖X‖2 + ‖Y ‖2 ≥ 2α1

which verifies (5.6).

Remark 1 For the case n = 1, (that is in R) Theorems 1 and 2 reduce to
Theorems 1 and 2 in [13], with obvious modifications.
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