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Abstract. A subgroup H of a finite group G is weakly-supplemented in G if there exists
a proper subgroup K of G such that G = HK. In the paper it is proved that a finite
group G is p-nilpotent provided p is the smallest prime number dividing the order of G and
every minimal subgroup of P ∩G′ is weakly-supplemented in NG(P ), where P is a Sylow p-
subgroup of G. As applications, some interesting results with weakly-supplemented minimal
subgroups of P ∩G′ are obtained.
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1. Introduction

It is well known that a subgroup H of a finite group G is complemented in G if

there exists a subgroup K of G such that G = HK and H ∩K = 1. Such a subgroup

K of G is called a complement to H in G. The existence of complements for certain

subgroups of a finite group provides useful structural information. For instance, in

[5], Hall proved that a finite group is solvable if and only if every Sylow subgroup of

G is complemented. New criteria for the solvability of finite groups were obtained by

Arad and Ward in [1]. They proved that a finite group is solvable if and only if every

Sylow 2-subgroup and every Sylow 3-subgroup are complemented. In particular,

Hall in [6] proved that a finite G is supersolvable with elementary abelian Sylow
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subgroups if and only if every subgroup of G is complemented in G. In a recent

paper, Ballester-Bolinches and Xiuyun Guo [3] studied finite groups for which every

minimal subgroup is complemented. They proved that such groups are just the finite

supersolvable groups with elementary abelian Sylow subgroups. In this paper, we

go on to investigate the p-nilpotency and supersolvability of finite groups by using

weakly-supplemented subgroups in [8]. As applications, some interesting results with

weakly-supplemented minimal subgroups of P ∩G′ are obtained.

For notation and conventions we refer to the book [10]. Unless otherwise stated,

G will always be a finite group.

2. Basic definitions and preliminary results

In this section, we give one definition and some results that are needed in this

paper.

Definition 2.1 ([8]). Let G be a finite group. A subgroup H of a finite group

G is weakly-supplemented in G if there exists a proper subgroup K of G such that

G = HK. Such a subgroup K of G is called a weak supplement to H in G.

It is clear that a weakly-supplemented subgroup cannot be contained in the Frattini

subgroup.

Lemma 2.2 ([8]). Let G be a group and N a normal subgroup of G.

(1) If H 6 K 6 G and H is weakly-supplemented in G, then H is weakly-

supplemented in K.

(2) If N is contained in H andH is weakly-supplemented in G, then H/N is weakly-

supplemented in G/N .

(3) Let π be a set of primes. Let N a π′-subgroup and A be a π-subgroup of G. If

A is weakly-supplemented in G, then AN/N is weakly-supplemented in G/N .

Recall a group G is inner-supersolvable if G is not supersolvable but every proper

subgroup of G is supersolvable. A group G is inner-p-nilpotent if G is not p-nilpotent

but every proper subgroup of G is p-nilpotent. By the main result of [4], we have

the following lemma.

Lemma 2.3. Suppose that G is an inner-supersolvable group. Then there exists

a normal P ∈ Sylp(G) such that P/Φ(P ) is a minimal normal subgroup of G/Φ(P ).

Lemma 2.4 ([7] IV, 5.4, page 434). Suppose G is a group which is not p-nilpotent

but whose all proper subgroups are p-nilpotent. Then G is a group which is not

nilpotent but whose all proper subgroups are nilpotent.
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Lemma 2.5. Every minimal subgroup of G is weakly-supplemented in G if and

only if G is a supersolvable group and all Sylow subgroups of G are elementary

abelian.

P r o o f. Assume that the lemma is false and G is a minimal counterexample. We

know that the hypothesis of the lemma is inherited by subgroups by Lemma 2.2 (1).

By the choice of G, we know that G is an inner-supersolvable group. Then by

Lemma 2.3 there exists a normal P ∈ Sylp(G) such that P/Φ(P ) is a chief factor

of G and Φ(P ) 6 Φ(G). By the hypothesis of the lemma we know that Φ(G) = 1,

Thus Φ(P ) = 1, so P is elementary abelian and it is a minimal normal subgroup

of G. If N is a subgroup of order p of P then by the hypothesis of the lemma we

know that N is weakly-supplemented in G. Let K be a weak supplement of N in G,

then K < G and G = NK = PK. As P ∩K E G, by the minimality of P we have

P ∩K = 1, thus P = N .

Consider the quotient group G/P . It is easy to see that G/P satisfies the hypoth-

esis of the lemma. By the choice of G we know that G/P is a supersolvable group,

so G is supersolvable, a contradiction.

In the following, we prove that all Sylow subgroups of G are elementary abelian.

Assume that P is a Sylow p-subgroup of G. By Lemma 2.2 (1) we know that P

satisfies the hypothesis of the lemma, so Φ(P ) = 1 and P is elementary abelian.

Conversely, let p be the largest prime dividing |G| and let P be a Sylow p-subgroup

of G. Assume that Q is a p′-Hall subgroup of G and N 6 P is a minimal normal

subgroup of G. As G is supersolvable, we have that |N | = p. Consider the p′-group

Q acts on the p-group P by conjugation, then N is a Q-invariant subgroup. As P

is abelian and by the Theorem of Maschke, there exists a Q-invariant subgroup P1

such that P = P1 ×N , thus P1 E G and P1Q 6 G.

Next we consider the quotient group G/N . It is easy to see that G/N satis-

fies the hypothesis of the lemma and so any minimal subgroup of G/N is weakly-

supplemented in G/N . Suppose that T is a minimal subgroup of G.

(1) If N = T , then P1Q is a weak supplement of T in G;

(2) if N 6= T , we consider two cases: if TN = G, then N is a weak supplement of

T in G; if TN < G, then TN/N is a minimal normal subgroup of G/N and TN/N

is weakly-supplemented in G/N , so T is weakly-supplemented in G. �

Lemma 2.6. Let N be a minimal normal subgroup of G. If every minimal

subgroup of N is weakly-supplemented in G, then N is cyclic of prime order.

P r o o f. By Lemma 2.5, N is supersolvable and so it is an elementary abelian

p-group for some prime p. Let 〈z〉 be a minimal subgroup of N and let H be a weak

supplement to 〈z〉 in G. Since N = 〈z〉(N ∩H) and N ∩H ⊲ H, we have N ∩H ⊲ G.
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Thus by the minimality of N we have N ∩ H = 1, and therefore N is cyclic of

order p. �

3. Main results

In this section, we concentrate on the structure of a finite group under the as-

sumption that some minimal subgroups of P ∩G′ are weakly-supplemented.

First we prove the following result about p-nilpotency.

Theorem 3.1. Let G be a group and p a prime number dividing the order of G.

If every minimal subgroup of P ∩ G′ is weakly-supplemented in NG(P ) and NG(P )

is p-nilpotent, then G is p-nilpotent, where P is a Sylow p-subgroup of G.

P r o o f. Assume that the theorem is not true and let G be a counterexample of

the smallest order. Then we have the following fact:

(∗) P ∩G′ 6 Z(NG(P )), where Z(NG(P )) is the center of NG(P ).

In fact, by the hypothesis of the theorem that every minimal subgroup of P ∩ G′

is weakly-supplemented in NG(P ), we know that P ∩ G′ is an elementary abelian

group. If P ∩G′=1, then there is nothing to be proved. Now, since P ∩G′ ⊲ P, we

may assume that N1 is a minimal normal subgroup of P ∩G′ and |N1| = p. Also by

our hypothesis and Lemma 2.2 (1), there is a subgroup K of P such that P = N1K

and K < P . Since N1∩K E K, it follows that N1∩K E P. By the minimality of N1

we have that N1∩K = 1. Noticing that (P ∩G′)∩K is still a normal subgroup of P ,

therefore, by using similar arguments, we can prove that P ∩G′ = N1×N2× . . .×Ns

and Ni 6 Z(P ). This shows that P ∩ G′ 6 Z(P ). By the hypothesis that NG(P ) is

p-nilpotent, we have P ∩G′ 6 Z(NG(P )). This establishes (∗).

Since G is not p-nilpotent, G has a subgroupH such thatH is an inner-p-nilpotent

group. By Lemma 2.4 and according to a result due to Schmidt [10, Theorem 9.1.9,

Exercise 9.1.11], H has a normal Sylow p-subgroup Hp such that H = HpHq for

a Sylow q-subgroup Hq in H(q 6= p). Moreover, Hp = [Hp, Hq]. Hence, it follows that

Hp 6 H ′ 6 G′. On the other hand, without loss of generality, we may assume that

Hp is contained in P . Hence Hp 6 P ∩G′.

Let A = NG(Hp). Since Hp 6 P ∩ G′ and P ∩ G′ 6 Z(NG(P )), we have that

Hp is centralized by NG(P ). In particular, P 6 CG(Hp). As CG(Hp) ⊲ NG(Hp) =

A and P ∈ Sylp(CG(Hp)), we have, by the Frattini argument, A = NG(Hp) =

CG(Hp)NA(P ). Since Hp 6 Z(NG(P )) and NA(P ) 6 NG(P ), we have NA(P ) 6

CG(Hp). It follows that NG(Hp) = CG(Hp) and therefore H = Hp × Hq, which is

a contradiction. This proves the theorem. �
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The assumption that NG(P ) is p-nilpotent in Theorem 3.1 cannot be removed. In

fact, if we let G = A5, the alternating group of degree 5, then it is easy to see that

NG(P ) is a subgroup of order 10 for every Sylow 5-subgroup P of G. Hence every

minimal subgroup of order 5 in P is weakly-supplemented in NG(P ) for the Sylow

5-subgroup P of G. However, G = A5 is simple. Nonetheless, if we assume that p is

the smallest prime number dividing the order of G, the assumption that NG(P ) is

p-nilpotent in Theorem 3.1 can be removed.

Theorem 3.2. Let G be a group and p the smallest prime number dividing the

order of G. If every minimal subgroup of P ∩G′ is weakly-supplemented in NG(P ),

then G is p-nilpotent, where P is a Sylow p-subgroup of G.

P r o o f. If NG(P ) = G, then, by applying the well known Schur-Zassenhaus

Theorem, there exists a Hall p′-subgroup K of G such that G = PK. For any prime

q ∈ π(K) and Q ∈ Sylq(K), it is easy to show that the group G1 = PQ satisfies the

hypothesis of our theorem. Hence, if G1 < G, then by induction on the order of G

we know that G1 is p-nilpotent. Consequently, K is a normal p-complement of G.

So we may assume that K is a q-group for some prime q. Now, the solvability of G

implies that G′ < G. Let T/G′ be a Sylow q-group of G/G′. Then P ∩G′ is a Sylow

p-subgroup of T and every minimal subgroup of P ∩ G′ is weakly-supplemented in

T by Lemma 2.2 (1). If P ∩ G′=1, then T is a normal p-complement of G. On the

other hand, if P ∩ G′ 6= 1, then we claim that T has a normal p-complement N . In

fact, let 〈a〉 be a subgroup of order p in P ∩G′, then there is a subgroup K of T such

that T = 〈a〉K and K < T. We can get that 〈a〉 ∩K = 1. Indeed, if 〈a〉 ∩K 6= 1,

then 〈a〉 6 K, it follows that T = 〈a〉K = K, a contradiction, so 〈a〉 ∩K = 1. Since

[T : K] = p and p is the smallest prime number dividing the order of T , we know

that K is a normal subgroup of T . Obviously every subgroup of K with order p

must be a minimal subgroup of T . Then, by Lemma 2.2 (1), every subgroup of K

with order p is weakly-supplemented in K. Using induction, we deduce that K has

a normal p-complement N . It is clear that N is a normal p-complement in T . Since

T/G′ ⊲ G/G′, it is easy to see that N is a normal p-complement of G.

Thus, we conclude that NG(P ) < G. As NG(P ) satisfies the hypothesis of the

theorem, by induction we can assume that NG(P ) is p-nilpotent. Now applying

Theorem 3.1, we have that G is p-nilpotent and therefore the proof is complete. �

Corollary 3.3. Let G be a group. If every minimal subgroup of P ∩G′ is weakly-

supplemented in NG(P ) for every Sylow subgroup P of G, then G has a Sylow tower

of supersolvable type.

P r o o f. We use induction on |G|. Let q be the smallest prime dividing |G| and

let Q be a Sylow q-subgroup of G. Then, by our hypothesis, every minimal subgroup
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of Q ∩G′ is weakly-supplemented in NG(Q). By applying Theorem 3.2, we see that

G has a normal q-complement K. It is clear that every Sylow subgroup P of K

must be a Sylow subgroup of G with NK(P ) 6 NG(P ) and K ′ ∩ P 6 G′ ∩ P. Now,

by our hypotheses and Lemma 2.2 (1), we see that K also satisfies the hypotheses

of our corollary. Thus, by using induction, we know that K has a Sylow tower of

supersolvable type and so does G. The proof is now completed. �

As an application of Theorem 3.1, we prove

Theorem 3.4. Let R be a formation containing F , the class of supersolvable

groups. Let H be a normal subgroup of a group G such that G/H ∈ R. If for every

Sylow subgroup P of H , every minimal subgroup of P ∩G′ is weakly-supplemented

in NG(P ), then G is in R.

P r o o f. Suppose that the theorem is false and let G be a minimal counterex-

ample. By Lemma 2.2 (1) and Corollary 3.3, the normal subgroup H of G has

a Sylow tower of supersolvable type. Let p be the largest prime number in π(H)

and P ∈ Sylp(H). Then P must be a normal subgroup of G. Now let G = G/P and

H = H/P. Clearly, G/H ≃ G/H ∈ R. Observe that NG(Q̄) = NG(Q)P/P for every

Sylow q-subgroup Q̄ = QP/P of H, where Q ∈ Sylq(H)(q 6= p), and (G)′ = G′P/P .

We know that for every element x̄ of order q in Q̄ ∩ (G)′, x̄ = xP for some element

x ∈ Q∩G′. Thus, by our hypothesis, there exists a subgroup K of NG(Q) such that

NG(Q) = 〈x〉K and K < NG(Q). It is clear that NG(Q̄) = 〈x〉K. If 〈x〉 ∩KP 6= 1,

then 〈x〉 6 KP and therefore NG(Q)P = KP, which is contrary to K < NG(Q).

Hence 〈x〉∩KP = 1, and so 〈x〉∩K = 1. Now we have proved that G/P satisfies the

hypothesis of the theorem. Therefore, by the minimality of G, we have G/P ∈ R.

Since G/G′ is abelian andF is contained in R, we have G/G′ ∈ F . It follows that

G/(G′ ∩ P ) ∈ R and, by our hypothesis, we know that every minimal subgroup of

G′∩P is weakly-supplemented in G since P is normal in G and therefore G′∩P is an

elementary abelian subgroup. Now, let N be a minimal normal subgroup of G such

that N 6 G′ ∩ P. By Lemma 2.6 we know that N is a cyclic group of order p. We

now denote by bars the images in G = G/N. Then G has a normal subgroup G′ ∩ P

such that G/G′ ∩ P belongs to R. Obviously, (G)′ ∩G′ ∩ P = (G′ ∩ P )/N. We now

proceed to prove that every minimal subgroup of (G′∩P )/N is weakly-supplemented

in G. For this purpose, let 〈x〉 be a minimal subgroup of G′ ∩ P . Since G′ ∩ P is an

elementary abelian group, we know that there is an element x ∈ G′ ∩ P with order

p such that 〈x〉 = 〈x〉N/N. Since 〈x〉 is minimal in G, so by the hypothesis there

exists a subgroup K of G such that G = 〈x〉K and 〈x〉 ∩K = 1. If N 6 K, then it

is clear that G = 〈x〉K and 〈x〉 ∩K = 1. If N � K, then G = NK. It follows that

|(〈x〉N)∩K| = p. Denote (〈x〉N)∩K = A. Then A is a minimal subgroup of G′ ∩P
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and A 6 K. By Lemma 2.2 (1), there is a subgroup K1 of K such that K = AK1

and K1 < K. It is clear that AN = 〈x〉N and therefore G = 〈x〉K1 and K1 < G.

Hence, G satisfies the hypothesis of the theorem. By minimality of G, we have that

G = G/N ∈ R.

Now by the hypothesis there is a proper subgroup M of G such that G = NM ,

hence N ∩ M = 1. For if not, then N 6 M , G = NM = M , which is contrary to

M < G. It follows that G′ = N(G′ ∩M) and G′ ∩M ⊲ M. Since N is a cyclic group

of order p, Aut(N) is a cyclic group of order p− 1. Also, since G/CG(N) 6 Aut(N),

we have G′ 6 CG(N). Hence G′ ∩ M is normal in G. If G′ ∩ M 6= 1, let N1 be

a minimal subgroup ofG with N1 6 G′∩M. Consider the quotient groupG/N1. Since

(G/N1)/(NN1/N1) ≃ G/NN1 ≃ (G/N)/(NN1/N) ∈ R and noticing that every

minimal subgroup of (G/N1)
′ ∩ (NN1/N1) = NN1/N1 is weakly-supplemented in

G/N1, by the minimality of G we have that G/N1 ∈ R. Hence G = G/(N ∩N1) ∈ R

by the definition of formation. Therefore we may assume that G′ ∩ M = 1. Then

G′ = N and G/N is abelian. It follows that G is supersolvable and therefore G ∈ R

since F ⊆ R, which is a contradiction. The proof of the theorem is now completed.

�

Remark 3.5. Theorem 3.4 is true for any formation containing the class of

supersolvable groups. But if the formation R does not contain F (the class of

supersolvable groups), Theorem 3.4 is not true. For example, if we let N be the

saturated formation of all nilpotent groups, then the symmetric group of degree three

is a counterexample.

We can choose the normal subgroup H of G in Theorem 3.4 to get some results

of special interest. For example, if we choose H = G′ in Theorem 3.4, we have the

following results:

Corollary 3.6. Let G be a group. If for every Sylow subgroup P of G′, every

minimal subgroup of P is weakly-supplemented in NG(P ), then G is supersolvable.

If G is assumed to be a solvable group, then the number of weakly-supplemented

minimal subgroups in Theorem 3.4 can be further reduced. In fact, we have the

following theorem.

Theorem 3.7. Let R be a formation containing F , the class of supersolvable

groups. Let H be a normal subgroup of a solvable group G such that G/H ∈ R.

If every minimal subgroup of the Fitting subgroup F (G′ ∩H) of G′ ∩H is weakly-

supplemented in G, then G belongs to R.

Remark 3.8. Since F (G′∩H) = G′∩F (H) = (G′∩P1)×(G′∩P2)×. . .×(G′∩Pk),

we know that every minimal subgroup of F (G′∩H) in Theorem 3.7 is still a minimal
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subgroup of some G′ ∩ Pi, where Pi is the Sylow pi-subgroup of F (H) for some

prime pi.

P r o o f of Theorem 3.7. Assume that the theorem is false and let G be a coun-

terexample of the smallest order. Since G/G′ is abelian, we have that G/G′ ∈ R

since F ⊆ R and so G/(H ∩G′) ∈ R. Hence, we can prove our theorem by replacing

G′ ∩H by H and assume that H 6 G′.

We first prove that Φ(G) = 1. If Φ(G) 6= 1, then there is a prime number q dividing

the order of Φ(G) and Q ∈ Sylq(Φ(G)). Since Q is a characteristic subgroup of Φ(G)

and Φ(G) ⊲ G, we know that Q is a normal subgroup of G. Observe that (G/Q)′ =

G′Q/Q, so we still have HQ/Q 6 (G/Q)′. Clearly, (G/Q)/(HQ/Q) ≃ G/HQ ∈ R.

By [7, Satz 3.5, page 270], F (HQ/Q) = F (HQ)/Q and therefore by [2, Lemma 3.1],

we have that F (HQ) = F (H)Q. It follows that F (HQ/Q) = F (H)Q/Q. Thus, for

any minimal subgroup Ā of F (HQ/Q) we can find a minimal subgroup A 6 F (H)

such that Ā = AQ/Q. By the hypothesis of the theorem, there exists a subgroup

K of G such that G = AK and K < G. The minimality of A implies that K has

a prime index in G and so K is a maximal subgroup of G. It follows that Q 6 K

and therefore (K/Q) ∩ (AQ/Q) = 1. It is clear that G/Q = (AQ/Q) · K/Q. Thus,

we have shown that G/Q ∈ R. If Q ∩H 6= 1, then let A be a minimal subgroup of

Q ∩ H. By the hypothesis, since Q ∩ H 6 F (H), there is a subgroup K of G such

that G = AK and K < G. But the fact that A 6 Q∩H 6 Φ(G) implies that G = K,

a contradiction. So Q ∩ H = 1. Hence G ≃ G/H ∩ Q ∈ R, a contradiction. Thus

Φ(G) = 1.

Next, by applying a result of Deyu Li and Xiuyun Guo in [9, Lemma 2.3], we

deduce that F (G) = M1 × M2 × . . . × Ms × N1 × N2 × . . . × Nt where Mi and

Nj(i = 1, 2, . . . , s, j = 1, 2, . . . , t) are minimal normal subgroups of G, Mi ∩H = 1

and F (H) = N1 × . . .×Nt.

Since every minimal subgroup of Nj is weakly-supplemented in G, by Lemma 2.6

Nj is a cyclic group of prime order (j = 1, 2, . . . , t). Then it follows that G/CG(Nj)

is an abelian group and therefore G′ 6 CG(Nj). Hence H 6 G′ 6 CG(F (H)). The

solvability of G implies that H ∩ CG(F (H)) = CH(F (H)) 6 F (H). It follows that

H = F (H) = CH(F (H)).

Now consider the quotient group G/Nj . Then it is clear that H/Nj 6 (G/Nj)
′ =

G′/Nj and (G/Nj)/(H/Nj) ≃ G/H ∈ R. SinceH = F (H), we have that F (H/Nj) =

H/Nj . Let 〈x〉 be a minimal subgroup of H/Nj. It is easy to prove that there is

a minimal subgroup 〈x〉 of H such that 〈x〉 = 〈x〉Nj/Nj. By the hypothesis there is

a subgroup K of G such that G = 〈x〉K and K < G. Then 〈x〉 ∩K = 1; if not, we

have that 〈x〉 6 K, then G = 〈x〉K = K, a contradiction. If (|〈x〉|, |Nj |) = 1, then

it is clear that Nj 6 K and therefore (〈x〉Nj/Nj)(K/Nj) = G and (〈x〉Nj/Nj) ∩
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(K/Nj) = 1. If (|〈x〉|, |Nj |) 6= 1, by using the arguments similar to those in the proof

of Theorem 3.4, we know that 〈x〉 has a weak supplement in G/Nj . The minimality

of G implies that G/Nj ∈ R. If t 6= 1, then G ≃ G/(N1 ∩N2) ∈ R, a contradiction.

Hence we may assume that H = N1 is a minimal subgroup.

By the hypothesis, there is a subgroup K of G such that G = HK and K < G.

By the above we know that H ∩K = 1. Then F (G) = H(K ∩ F (G)) and K ∩ F (G)

is a normal subgroup of G. So if K ∩ F (G) 6= 1, we may assume that M1 6

K ∩ F (G) and consider the quotient group G/M1. Then it is clear that HM1/M1 6

(G/M1)
′ = G′M1/M1, (G/M1)/(HM1/M1) ≃ G/HM1 ≃ (G/H)/(HM1/H) ∈ R

and the minimal subgroup of HM1/M1 has a weak supplement K/M1 in G/M1.

The minimality of G implies that G/M1 ∈ R and therefore G ≃ G/(H ∩M1) ∈ R,

a contradiction. Hence F (G) = F (H) = N is a minimal subgroup. It follows that

G′ 6 H = N since G′ 6 CG(F (H)) = CG(F (G)) 6 F (G). Now we have that G/N

is an abelian group and therefore G is supersolvable. Hence G ∈ R since F ⊆ R.

The proof of the theorem is complete. �

Similarly to Corollary 3.6, we can choose the normal subgroup H of G in Theo-

rem 3.7 to get some results of special interest. For example, if we choose H = G′ in

Theorem 3.7, we have the following result:

Corollary 3.9. Let G be a solvable group. If every minimal subgroup of the

Fitting subgroup F (G′) of G′ is weakly-supplemented in G, then G is supersolvable.
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