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Abstract. The scrambling index of an n× n primitive Boolean matrix A is the smallest
positive integer k such that Ak(AT)k = J , where A

T denotes the transpose of A and J

denotes the n×n all ones matrix. For an m×n Boolean matrix M , its Boolean rank b(M)
is the smallest positive integer b such that M = AB for some m× b Boolean matrix A and
b×n Boolean matrix B. In 2009, M.Akelbek, S.Fital, and J. Shen gave an upper bound on
the scrambling index of an n×n primitive matrixM in terms of its Boolean rank b(M), and
they also characterized all primitive matrices that achieve the upper bound. In this paper,
we characterize primitive Boolean matrices that achieve the second largest scrambling index
in terms of their Boolean rank.
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1. Introduction

A matrix over the binary Boolean algebra {0, 1} is called a Boolean matrix. In

this work, we sometimes use just the term matrix to mean Boolean matrix. For an

m× n matrix A, we will denote its (i, j)-entry by Aij , its ith row by Ai., and its jth

column by A.j . For m × n matrices A and B, we say that B is dominated by A if

Bij 6 Aij for each i and j, and denote this by B 6 A. We denote the m×n all ones

matrix by Jm,n (and by Jn if m = n), the all ones n-vector by jn, the n× n identity

matrix by In and its ith column by ei(n). The subscripts m and n will be omitted

whenever their values are clear from the context. Let A be an m × n matrix. For

index sets α ⊆ {1, 2, . . . ,m}, β ⊆ {1, 2, . . . , n}, we denote the submatrix that lies in

the rows of A indexed by α and the columns indexed by β as A(α, β).

The research has been supported by NNSF of China (No. 11071227), and Shanxi Schol-
arship Council of China (No. 2012-070).
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Let D = (V,E) be a digraph on n vertices. Loops are permitted, but multiple

arcs are not. A u → v walk in D is a sequence of vertices u, u1, . . . , up = v and

a sequence of arcs (u, u1), (u1, u2), . . . , (up−1, v), where the vertices and the arcs are

not necessarily distinct. The length of a walk W is the number of arcs in W . The

length of a shortest cycle in D is called the girth of D. The notation u
k

−→ v is used

to indicate that there is a u → v walk of length k.

For an n × n matrix A = (aij), the digraph D(A) is the digraph with vertex set

V (D(A)) = {1, 2, . . . , n}, and (i, j) is an arc of D(A) if and only if aij 6= 0. Then,

for a positive integer r > 1, the (i, j)th entry of the matrix Ar is positive if and only

if i
r

−→ j in the digraph D(A).

A digraph D is called primitive if for some positive integer k, there is a walk of

length exactly k from each vertex u to each vertex v (possibly u again). Equivalently,

a square matrix A of order n is called primitive if there exists a positive integer r

such that Ar > 0.

The scrambling index of a primitive digraph D, denoted by k(D), is the smallest

positive integer k such that for every pair of vertices u and v, there exists some vertex

w such that u
k

−→ w and v
k

−→ w in D. An analogous definition for scrambling index

can be given for primitive matrices. The scrambling index of a primitive matrix A,

denoted by k(A), is the smallest positive integer k such that any two rows of Ak

have at least one positive element in a coincident position. The scrambling index

of a primitive matrix A can also be equivalently defined as the smallest positive

integer k such that Ak(AT)k = J , where AT denotes the transpose of A. If A is the

adjacency matrix of a primitive digraph D, then k(D) = k(A).

For an m × n Boolean matrix M , its Boolean rank b(M) is defined to be the

smallest positive integer b such that for some m × b Boolean matrix A and b × n

Boolean matrix B, M = AB. The Boolean rank of the zero matrix is defined to be

zero. M = AB is called a Boolean rank factorization of M .

For additional terminology and notation we follow [3].

Let D1 and D2 be primitive digraphs of order n in Figure 1.1 and Figure 1.2,

respectively.

Let

W2 =

[
1 1

1 0

]
, Wn =




0 1 0 . . . 0 0

0 0 1 0 . . . 0
...
...
. . .

. . . . . .
...

0 0 . . . 0 1 0

1 0 . . . . . . 0 1

1 0 . . . . . . 0 0




,
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Figure 1.1 The digraph D1 (Wielandt
digraph, n > 3).

n− 2

n− 1

n1

2

3

Figure 1.2 The digraph D2 (n > 4).

where n > 3, and

Hn =




0 1 0 . . . 0 0

0 0 1 0 . . . 0
...
...
. . .

. . . . . .
...

0 0 . . . 0 1 0

1 0 0 . . . 0 1

1 1 0 . . . 0 0




,

where n > 4. Then D(Wn) = D1 for n > 3, and D(Hn) = D2 for n > 4.

In [1], M.Akelbek, and S.Kirkland obtained an upper bound on the scrambling in-

dex of an n×n primitive matrixM in terms of its order n, and they also characterized

all primitive matrices that achieve the upper bound.

Lemma 1.1 ([1]). Let A be a primitive matrix of order n > 2. Then

k(A) 6
⌈(n− 1)2 + 1

2

⌉
.

Equality holds if and only if there is a permutation matrix P such that PAPT is

equal to W2 or J2 when n = 2 and Wn when n > 3.

In [2], M.Akelbek, S. Fital, and J. Shen gave an upper bound on the scrambling

index of an n× n primitive matrix M in terms of its Boolean rank b(M), and they

characterized all primitive matrices that achieve the upper bound, too.

Lemma 1.2 ([2]). Let M be an n × n (n > 2) primitive matrix with Boolean

rank b(M) = b. Then

k(M) 6
⌈ (b− 1)2 + 1

2

⌉
+ 1.
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Lemma 1.3 ([2]). Suppose M is an n× n Boolean matrix with 3 6 b = b(M) 6

n− 1. Then M is primitive and k(M) = ⌈((b− 1)2 + 1)/2⌉+ 1 if and only if M has

a Boolean rank factorizationM = AB, where A and B have the following properties:

(i) BA = Wb,

(ii) some row of A is eT⌊b/2⌋(b), some row of A is e
T
b (b), and

(iii) no column of B is eb−1(b) + eb(b).

In this paper, we characterize primitive Boolean matricesM with 5 6 b = b(M) 6

n− 1 that achieve the second largest scrambling index in terms of its Boolean rank

b = b(M). The main result is the following theorem.

Theorem 1.4. Suppose M is an n × n primitive Boolean matrix with 5 6 b =

b(M) 6 n − 1. Then k(M) = h = ⌈ 1
2 ((b− 1)2 + 1)⌉ if and only if M has a Boolean

rank factorization M = AB, where A and B satisfy one of the following conditions:

(i) BA = Wb, some row of A is e
T
⌊b/2⌋(b) and some row of A is e

T
b (b), some column

of B is eb−1(b) + eb(b).

(ii) BA = Wb, some row of A is e
T
1 (b) and some row of A is e

T
⌊b/2⌋+1(b), either

eT⌊b/2⌋(b) or e
T
b (b) is not a row of A, no column of B is eb−1(b) + eb(b).

(iii) BA = Hb, some row of A is e
T
1 (b) and some row of A is e

T
⌊b/2⌋+1(b), no column

of B is eb−1(b) + eb(b).

2. Proof of the main result

Let X ⊆ V (D). Denote by Rt(X) the set of all vertices which can be reached

by a walk of length t in digraph D starting from some vertex in X , and abbreviate

Rt({x}) as Rt(x).

Lemma 2.1 ([5]). Let A be a primitive matrix of order n > 5. Then

k(A) =
⌈(n− 1)2 + 1

2

⌉
− 1

if and only if there is a permutation matrix P such that PAPT is equal to Hn.

Lemma 2.2 ([4]). Let M be an n × n primitive Boolean matrix, and M = AB

be a Boolean rank factorization of M . Then neither A nor B has a zero line.
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Lemma 2.3 ([2]). Suppose that A and B are n×m and m×n Boolean matrices

respectively, and that neither A nor B has a zero line. Then

(a) AB is primitive if and only if BA is primitive.

(b) If AB and BA are primitive, then |k(AB) − k(BA)| 6 1.

For brevity, in the remainder of this paper, we let h = ⌈ 1
2 ((b − 1)2 + 1)⌉.

Lemma 2.4. Let b > 4 be odd. Then

(1) Wh−2
b ({1, 12 (b− 1), 1

2 (b+ 1), b}, {b− 1, b}) =

[ 1 0

1 1

0 1

0 0

]
.

(2) The zero entries of (Wb)
h−2(WT

b )h−2 occur only in the (b, 1
2 (b−1)), (12 (b−1), b),

(1, 12 (b + 1)), and (12 (b + 1), 1) positions.

(3) Hh−2
b ({1, 1

2 (b+ 1)}, {b− 1, b}) =
[
1 0

0 1

]
, Hh−2

b ({1, 12 (b + 1)}, {1, b}) =
[
0 0

1 1

]
.

(4) The zero entries of (Hb)
h−2(HT

b )
h−2 occur only in the (1, 1

2 (b + 1)) and

(12 (b+ 1), 1) positions.

P r o o f. Let l = h− 2 = ⌈ 1
2 ((b − 1)2 + 1)⌉ − 2 = 1

2 ((b − 1)2)− 1.

For the primitive digraph D1 of order b, it is not difficult to verify that

⊲ Rl(b) = {b− 2, b− 3, . . . , 1
2 (b − 1)},

⊲ Rl(i) = {i− 1, i− 2, . . . , i− 1
2 (b − 1)− 1} for 1

2 (b+ 3) 6 i 6 b− 1,

⊲ Rl(
1
2 (b + 1)) = { 1

2 (b − 1), 12 (b − 3), . . . , 1, b},

⊲ Rl(
1
2 (b − 1)) = { 1

2 (b − 3), 12 (b − 5), . . . , 1, b, b− 1},

⊲ Rl(i) = {i− 1, i− 2, . . . , 1, b, b− 1, . . . , 1
2 (b − 1) + i} for 2 6 i 6 1

2 (b − 1), and

⊲ Rl(1) = {b− 1, b− 2, . . . , 1
2 (b+ 1)}.

(1) Note that b − 1 ∈ Rl(1), b 6∈ Rl(1). So W
l
b({1}, {b− 1, b}) = [1 0]. Similarly,

we have W l
b({

1
2 (b − 1)}, {b − 1, b}) = [1 1], W l

b({
1
2 (b + 1)}, {b − 1, b}) = [0 1], and

W l
b({b}, {b− 1, b}) = [0 0]. Therefore, result (1) holds.

(2) Note that we have Rl(i) ∩ Rl(j) 6= ∅ except Rl(b) ∩ Rl(
1
2 (b − 1)) = ∅ and

Rl(1) ∩ Rl(
1
2 (b + 1)) = ∅. So in W l

b every pair of rows intersect with each other

except rows b and 1
2 (b−1), 1 and 1

2 (b+1). Thus the only zero entries of (Wb)
l(WT

b )l

are in the (b, 1
2 (b − 1)), (12 (b− 1), b), (1, 12 (b + 1)), and (12 (b + 1), 1) positions.

For the primitive digraph D2 of order b, it is not difficult to verify that

⊲ Rl(1) = {b− 1, b− 2, . . . , b− 1
2 (b − 1)},

⊲ Rl(i) = {i− 1, i− 2, . . . , i− 1
2 (b − 1)− 1} for 1

2 (b+ 3) 6 i 6 b,

⊲ Rl(
1
2 (b + 1)) = { 1

2 (b − 1), 12 (b − 3), . . . , 1, b}, and

⊲ Rl(i) = {i− 1, i− 2, . . . , 1, b, b− 1, . . . , 1
2 (b − 1) + i} for 2 6 i 6 1

2 (b − 1).

(3) Note that b− 1 ∈ Rl(1), b 6∈ Rl(1). So H
l
b({1}, {b− 1, b}) = [1 0]. Similarly, we

have H l
b({

1
2 (b + 1)}, {b − 1, b}) = [0 1], H l

b({1}, {1, b}) = [0 0], and H l
b({

1
2 (b + 1)},

{1, b}) = [1 1]. Therefore, result (3) holds.
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(4) Note that we have Rl(i)∩Rl(j) 6= ∅ except Rl(1)∩Rl(
1
2 (b+1)) = ∅. So in H l

b

every pair of rows intersect with each other except rows 1 and 1
2 (b + 1). Thus the

only zero entries of (Hb)
l(HT

b )
l are in the (1, 1

2 (b+1)) and (12 (b+1), 1) positions. �

Lemma 2.5. Let b > 4 be even. Then

(1) Wh−2
b ({1, 12b,

1
2b+ 1, b}, {b− 1, b}) =

[ 0 1

0 0

1 0

1 1

]
.

(2) the zero entries of (Wb)
h−2(WT

b )h−2 occur only in the (b, 12b), (
1
2b, b), (1,

1
2b+1),

and (12b+ 1, 1) positions.

(3) Hh−2
b ({1, 1

2b+ 1}, {b− 1, b}) =
[
0 1

1 0

]
, Hh−2

b ({1, 12b+ 1}, {1, b}) =
[
1 1

0 0

]
.

(4) the zero entries of (Hb)
h−2(HT

b )
h−2 occur only in the (1, 12b+1) and (12b+1, 1)

positions.

P r o o f. Let l = h− 2 = ⌈ 1
2 ((b − 1)2 + 1)⌉ − 2 = 1

2 (b− 2)b− 1.

For the primitive digraph D1 of order b, it is not difficult to verify that

⊲ Rl(b) = {b− 1, b, 1, 2, . . . , 1
2b− 2},

⊲ Rl(i) = {i− 1, i, . . . , b− 1, b, 1, 2, . . . , i− 1
2b− 1} for 1

2b+ 2 6 i 6 b− 1,

⊲ Rl(
1
2b + 1) = { 1

2b,
1
2b+ 1, . . . , b− 1},

⊲ Rl(i) = {i− 1, i, . . . , i+ 1
2b− 2} for 2 6 i 6 1

2b, and

⊲ Rl(1) = {b, 1, 2, . . . , 12b − 1}.

(1) Note that b − 1 6∈ Rl(1), b ∈ Rl(1). So W
l
b({1}, {b− 1, b}) = [0 1]. Similarly,

we have W l
b({

1
2b}, {b − 1, b}) = [0 0], W l

b({
1
2b + 1}, {b− 1, b}) = [1 0], and W l

b({b},

{b− 1, b}) = [1 1]. Therefore, result (1) holds.

(2) Note that in W l
b every pair of rows intersect with each other except rows b and

1
2b, 1 and

1
2b+1. Thus the only zero entries of (Wb)

l(WT
b )l are in the (b, 1

2b), (
1
2b, b),

(1, 1
2b+ 1), and (12b+ 1, 1) positions.

For the primitive digraph D2 of order b, it is not difficult to verify that

⊲ Rl(1) = {b, 1, 2, . . . , 12b − 1},

⊲ Rl(i) = {i− 1, i, . . . , i+ 1
2b− 2} for 2 6 i 6 1

2b,

⊲ Rl(
1
2b + 1) = { 1

2b,
1
2b+ 1, . . . , b− 1},

⊲ Rl(i) = {i− 1, i, . . . , b− 1, b, 1, 2, . . . , i− 1
2b− 1} for 1

2b+ 2 6 i 6 b− 1, and

⊲ Rl(b) = {b− 1, b, 1, 2, . . . , 1
2b− 1}.

(3) Note that b− 1 6∈ Rl(1), b ∈ Rl(1). So H
l
b({1}, {b− 1, b}) = [0 1]. Similarly, we

haveH l
b({

1
2b+1}, {b−1, b}) = [1 0], H l

b({1}, {1, b}) = [1 1], andH l
b({

1
2b+1}, {1, b}) =

[0 0]. Therefore, result (3) holds.

(4) Note that in H l
b every pair of rows intersect with each other except rows 1 and

1
2b+1. Thus the only zero entries of (Hb)

l(HT
b )

l are in the (1, 1
2b+1), and (12b+1, 1)

positions. �
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Lemma 2.6 ([2]). For b > 3, Wh−1
b ({⌊ 1

2b⌋, b}, {b− 1, b}) is either
[
1 0

0 1

]
or
[
0 1

1 0

]
.

Lemma 2.7 ([2]). If b > 3, then the zero entries of (Wb)
h−1(WT

b )h−1 occur only

in the (b, ⌊ 1
2b⌋) and (⌊ 1

2b⌋, b) positions.

Suppose that M is an n×n Boolean matrix with 1 6 b = b(M) 6 n. If b = n > 3,

then by Lemma 1.1, k(M) = ⌈ 1
2 ((n − 1)2 + 1)⌉ if and only if there is an n × n

permutation matrix P such that PMPT = Wn. If b = 1, since the only n×n primitive

Boolean matrix with Boolean rank 1 is Jn, then k(M) = ⌈ 1
2 ((b− 1)2+1)⌉ = 1 if and

only if A = Jn. Thus we may assume that 2 6 b 6 n− 1. In this paper, we consider

5 6 b 6 n− 1.

Lemma 2.8. Let M be an n× n primitive Boolean matrix with 5 6 b = b(M) 6

n− 1. Suppose M has a Boolean rank factorization M = AB, where A and B have

the following properties:

(1) BA = Wb,

(2) some row of A is eT⌊b/2⌋(b) and some row of A is e
T
b (b), and

(3) some column of B is eb−1(b) + eb(b).

Then M is primitive and k(M) = h.

P r o o f. By Lemma 2.2 and Lemma 2.3 (a), neither A nor B has a zero line and

the matrix M is primitive since Wb is primitive. By Lemma 1.3, k(M) 6 h.

Since BA = Wb and A has no zero row, each column ofB is dominated by a column

of Wb. Thus each column of B is in the set S1 = {e1(b), e2(b), . . . , eb(b), u}, where

u = eb−1(b) + eb(b). Therefore, BBT 6 Ib + uuT. Also, since some column of B is

eb−1(b) + eb(b), BBT > Ib + uuT. Hence BBT = Ib + uuT. Thus

Mh−1(MT)h−1 = (AB)h−1((AB)T)h−1

= A(BA)h−2BBT((BA)T)h−2AT

= A(Wb)
h−2BBT(WT

b )h−2AT

= A(Wb)
h−2(Ib + uuT)(WT

b )h−2AT

= A[(Wb)
h−2(WT

b )h−2 + (Wh−2
b u)(Wh−2

b u)T]AT

= AZAT.

If b is odd, by Lemma 2.4, the zero entries of Wh−2
b (WT

b )h−2 occur only in the

(b, 1
2 (b− 1)), (12 (b − 1), b), (1, 1

2 (b+ 1)), and (12 (b+ 1), 1) positions. Note that

Wh−2
b

({
1,

b− 1

2
,
b+ 1

2
, b
}
, {b− 1, b}

)
=




1 0

1 1

0 1

0 0


 .
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So

(Wh−2
b u)

({
1,

b− 1

2
,
b+ 1

2
, b
})

=




1

1

1

0


 .

Hence, the entries of Z = (Wb)
h−2(WT

b )h−2+(Wh−2
b u)(Wh−2

b u)T in the (b, 1
2 (b−1))

and (12 (b− 1), b) positions are zero. Since some row of A is eT(b−1)/2(b) and some row

of A is eTb (b), without loss of generality, suppose row p of A is eT(b−1)/2(b) and row q

of A is eTb (b). Then (Mh−1(MT)h−1)pq = (AZAT)pq = 0. Hence k(M) > h− 1 and

we get k(M) = h.

If b is even, by Lemma 2.5, the zero entries of Wh−2
b (WT

b )h−2 occur only in the

(b, 1
2b), (

1
2b, b), (1,

1
2b+ 1), and (12b+ 1, 1) positions. Note that

Wh−2
b

({
1,

b

2
,
b

2
+ 1, b

}
, {b− 1, b}

)
=




0 1

0 0

1 0

1 1


 .

So

Wh−2
b u

({
1,

b

2
,
b

2
+ 1, b

})
=




1

0

1

1


 .

Therefore, the entries of Z = (Wb)
h−2(WT

b )h−2 + (Wh−2
b u)(Wh−2

b u)T in the (12b, b)

and (b, 1
2b) positions are zero. Since some row of A is e

T
b/2(b) and some row of A

is eTb (b), without loss of generality, suppose row p of A is eTb/2(b) and row q of A is

eTb (b). Then (Mh−1(MT)h−1)pq = (AZAT)pq = 0. Hence k(M) > h− 1 and we get

k(M) = h. �

Lemma 2.9. Let M be an n× n primitive Boolean matrix with 5 6 b = b(M) 6

n− 1. Suppose M has a Boolean rank factorization M = AB, where A and B have

the following properties:

(1) BA = Wb,

(2) some row of A is eT1 (b), some row of A is e
T
⌊b/2⌋+1(b), either e

T
⌊b/2⌋(b) or e

T
b (b) is

not a row of A, and

(3) no column of B is eb−1(b) + eb(b).

Then M is primitive and k(M) = h.

P r o o f. By Lemma 2.2 and Lemma 2.3 (a), neither A nor B has a zero line and

the matrix M is primitive since Wb is primitive. By Lemma 1.3, k(M) 6 h.
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Since BA = Wb and A has no zero row, each column of B is dominated by

a column of Wb. Note that no column of B is u. Hence each column of B is in the

set {e1(b), e2(b), . . . , eb(b)}. Therefore, BBT 6 Ib. Also, since the matrix B has no

zero row, BBT > Ib. Hence BBT = Ib. Thus

Mh−1(MT)h−1 = (AB)h−1((AB)T)h−1

= A(BA)h−2BBT((BA)T)h−2AT

= A(Wb)
h−2Ib(W

T
b )h−2AT

= A(Wb)
h−2(WT

b )h−2AT

= AZAT,

where, by Lemmas 2.4 and 2.5, Z = (Wb)
h−2(WT

b )h−2 is the b × b matrix which

has zero entries only in the (b, ⌊ 1
2b⌋), (⌊

1
2b⌋, b), (1, ⌊

1
2b⌋ + 1), and (⌊ 1

2b⌋ + 1, 1) po-

sitions. Since some row of A is eT1 (b) and some row of A is e
T
⌊b/2⌋+1(b), without

loss of generality, suppose row p of A is eT1 (b) and row q of A is eT⌊b/2⌋+1(b). Then

(Mh−1(MT)h−1)pq = (AZAT)pq = 0. Hence k(M) > h− 1 and we get k(M) = h.

�

Lemma 2.10. LetM be an n×n primitive Boolean matrix with 5 6 b = b(M) 6

n− 1. Suppose M has a Boolean rank factorization M = AB, where A and B have

the following properties:

(1) BA = Hb,

(2) some row of A is eT1 (b) and some row of A is e
T
⌊b/2⌋+1(b), and

(3) no column of B is eb−1(b) + eb(b).

Then M is primitive and k(M) = h.

P r o o f. By Lemma 2.2 and Lemma 2.3 (a), neither A nor B has a zero line and

the matrix M is primitive since Wb is primitive. By Lemma 1.3, k(M) 6 h.

Since BA = Hb and A has no zero row, each column of B is dominated by a column

of Hb. Note that no column of B is eb−1(b)+eb(b). Hence each column of B is in the

set {e1(b), e2(b), . . . , eb(b), v}, where v = e1(b) + eb(b). Therefore, BBT 6 Ib + vvT.

Thus

Mh−1(MT)h−1 = (AB)h−1((AB)T)h−1

= A(BA)h−2BBT((BA)T)h−2AT

6 A(Hb)
h−2(Ib + vvT)(HT

b )
h−2AT

= A[(Hb)
h−2(HT

b )
h−2 + (Hh−2

b v)(Hh−2
b v)T]AT

= AZAT.
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If b is odd, by Lemma 2.4, (Hb)
h−2(HT

b )
h−2 is the b × b matrix which has zero

entries only in the (1, 1
2 (b+ 1)) and (12 (b+ 1), 1) positions. Note that

Hh−2
b

({
1,

b+ 1

2

}
, {1, b}

)
=

[
0 0

1 1

]
, (Hh−2

b v)
({

1,
b+ 1

2

})
=

[
0

1

]
.

So the entries of Z = (Hb)
h−2(HT

b )
h−2 + (Hh−2

b v)(Hh−2
b v)T in the (1, 12 (b+ 1)) and

(12 (b + 1), 1) positions are zero. Since some row of A is eT1 (b) and some row of A is

eT(b+1)/2(b), without loss of generality, suppose row p of A is eT1 (b) and row q of A is

eT(b+1)/2(b). Then (Mh−1(MT)h−1)pq = (AZAT)pq = 0. Hence k(M) > h − 1 and

we get k(M) = h.

If b is even, by Lemma 2.5, Z = (Hb)
h−2(HT

b )
h−2 is the b × b matrix which has

zero entries only in the (1, 1
2b+ 1) and (12b + 1, 1) positions. Note that

Hh−2
b

({
1,

b

2
+ 1
}
, {1, b}

)
=

[
1 1

0 0

]
, (Hh−2

b v)
({

1,
b

2
+ 1
})

=

[
1

0

]
.

So the entries of Z = (Hb)
h−2(HT

b )
h−2 + (Hh−2

b v)(Hh−2
b v)T in the (12b + 1, 1) and

(1, 1
2b + 1) positions are zero. Since some row of A is eT1 (b) and some row of A is

eTb/2+1(b), without loss of generality, suppose row p of A is eT1 (b) and row q of A is

eTb/2+1(b). Then (Mh−1(MT)h−1)pq = (AZAT)pq = 0. Hence k(M) > h− 1 and we

get k(M) = h. �

Lemma 2.11. LetM be an n×n primitive Boolean matrix with 5 6 b = b(M) 6

n − 1. If k(M) = h = ⌈ 1
2 ((b − 1)2 + 1)⌉, then M has a Boolean rank factorization

M = AB, such that A and B satisfy one of the following conditions:

(i) BA = Wb, some row of A is e
T
⌊b/2⌋(b) and some row of A is e

T
b (b), some column

of B is eb−1(b) + eb(b).

(ii) BA = Wb, some row of A is e
T
1 (b) and some row of A is e

T
⌊b/2⌋+1(b), either

eT⌊b/2⌋(b) or e
T
b (b) is not a row of A, no column of B is eb−1(b) + eb(b).

(iii) BA = Hb, some row of A is e
T
1 (b) and some row of A is e

T
⌊b/2⌋+1(b), no column

of B is eb−1(b) + eb(b).

P r o o f. Let M be primitive with k(M) = h, and M = ÃB̃ be a Boolean rank

factorization of M . By Lemma 2.3, B̃Ã is primitive and h − 1 6 k(B̃Ã) 6 h + 1.

Since B̃Ã is a b × b matrix, by Lemma 1.1, k(B̃Ã) 6 h. So there are two cases:

k(B̃Ã) = h or k(B̃Ã) = h− 1.

Case 1. k(B̃Ã) = h.

By Lemma 1.1, there is a permutation matrix P such that PB̃ÃPT = Wb. Let

B = PB̃ and A = ÃPT. Then BA = Wb and AB = ÃPTPB̃ = ÃB̃ = M .
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Note that M is primitive, we have
b∑

i=1

A.i = jn =
b∑

i=1

BT
i. . Since k(M) = h, the

matrix Mh−1 must have two rows that do not intersect. Without loss of generality,

suppose rows p and q of Mh−1 do not intersect, that is, the inner product of Mh−1
p.

and Mh−1
q. is zero. So entries in the (p, q) and (q, p) positions of Mh−1(MT)h−1 are

zero. Since the matrix B has no zero row, we have BBT > Ib. Thus

Mh−1(MT)h−1 = (AB)h−1((AB)T)h−1

= A(BA)h−2BBT((BA)T)h−2AT

= A(Wb)
h−2BBT(WT

b )h−2AT

> A(Wb)
h−2Ib(W

T
b )h−2AT

= A(Wb)
h−2(WT

b )h−2AT

= AZAT,

where Z = (Wb)
h−2(WT

b )h−2 is the b × b matrix which has zero entries only in the

(⌊ 1
2b⌋, b), (b, ⌊

1
2b⌋) (1, ⌊

1
2b⌋+ 1), and (⌊ 1

2b⌋+ 1, 1) positions. So

AZAT = (A.1, A.2, . . . , A.b)ZAT

=

[
b∑

i=1
i6=⌊b/2⌋+1

A.i

∣∣∣∣∣Jn,⌊b/2⌋−2

∣∣∣∣∣

b−1∑

i=1

A.i

∣∣∣∣∣

b∑

i=2

A.i

∣∣∣∣∣Jn,n−⌊b/2⌋−2

∣∣∣∣∣

b∑

i=1
i6=⌊b/2⌋

A.i

]
AT

=

(
b∑

i=1
i6=⌊b/2⌋+1

A.i

)
(A.1)

T + jn

(⌊b/2⌋−1∑

i=2

A.i

)T

+

(b−1∑

i=1

A.i

)
(A.⌊b/2⌋)

T

+

( b∑

i=2

A.i

)
(A.⌊b/2⌋+1)

T + jn

( b−1∑

i=⌊b/2⌋+2

A.i

)T

+

(
b∑

i=1
i6=⌊b/2⌋

A.i

)
(A.b)

T.

Since AZAT is dominated by Mh−1(MT)h−1 and Mh−1 (MT)h−1 has zero entries

in the (p, q) and (q, p) positions, the entries (AZAT)pq and (AZAT)qp are also zero.

Thus

(
b∑

i=1
i6=⌊b/2⌋+1

Api

)
Aq1 +

⌊b/2⌋−1∑

i=2

Aqi +

(b−1∑

i=1

Api

)
Aq(⌊b/2⌋) +

( b∑

i=2

Api

)
Aq(⌊b/2⌋+1)

+

b−1∑

i=⌊b/2⌋+2

Aqi +

(
b∑

i=1
i6=⌊b/2⌋

Api

)
Aqb = 0,
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and

(
b∑

i=1
i6=⌊b/2⌋+1

Aqi

)
Ap1 +

⌊b/2⌋−1∑

i=2

Api +

(b−1∑

i=1

Aqi

)
Ap(⌊b/2⌋) +

( b∑

i=2

Aqi

)
Ap(⌊b/2⌋+1)

+

b−1∑

i=⌊b/2⌋+2

Api +

(
b∑

i=1
i6=⌊b/2⌋

Aqi

)
Apb = 0.

Then Aqi = 0 and Api = 0 for i = 2, . . . , ⌊ 1
2b⌋ − 1, ⌊ 1

2b⌋+ 2, . . . , b − 1. Substituting

these back, we have

(Ap1 +Ap(⌊b/2⌋) +Apb)Aq1 + (Ap1 +Ap(⌊b/2⌋) +Ap(⌊b/2⌋+1))Aq(⌊b/2⌋)

+ (Ap(⌊b/2⌋) +Ap(⌊b/2⌋+1) +Apb)Aq(⌊b/2⌋+1) + (Ap1 +Ap(⌊b/2⌋+1) +Apb)Aqb = 0.

If Aq(⌊b/2⌋) 6= 0, then Ap1 = Ap(⌊b/2⌋) = Ap(⌊b/2⌋+1) = 0. Since A has no zero

rows, Apb 6= 0 and then Aq1 = Aq(⌊b/2⌋+1) = Aqb = 0. Therefore, some row of A

is eTb (b) and some row of A is e
T
⌊b/2⌋(b). In this case, by Lemma 1.3, we know that

if no column of B is eb−1(b) + eb(b), then k(M) = h + 1. So some column of B is

eb−1(b) + eb(b). This concludes (i).

If Aq1 6= 0, then Ap1 = Ap(⌊b/2⌋) = Apb = 0. Since A has no zero rows,

Ap(⌊b/2⌋+1) 6= 0 and then Aq(⌊b/2⌋) = Aq(⌊b/2⌋+1) = Aqb = 0. Therefore, some

row of A is eT1 (b) and some row of A is e
T
⌊b/2⌋+1(b). If both eT⌊b/2⌋(b) and eTb (b) are

rows of A, then we go to (i). If either eT⌊b/2⌋(b) or e
T
b (b) is not a row of A, we claim

that B cannot have a column u = eb−1(b) + eb(b). To the contrary, suppose that

some column of B is u. Since B has no zero row, BBT > Ib + uuT. Thus

Mh−1(MT)h−1 = (AB)h−1((AB)T)h−1

= A(BA)h−2BBT((BA)T)h−2AT

= A(Wb)
h−2BBT(WT

b )h−2AT

> A(Wb)
h−2(Ib + uuT)(WT

b )h−2AT

= A[(Wb)
h−2(WT

b )h−2 + (Wh−2
b u)(Wh−2

b u)T]AT.

If b is odd, by Lemma 2.4, the zero entries of Wh−2
b (WT

b )h−2 occur only in the

(b, 1
2 (b− 1)), (12 (b − 1), b), (1, 1

2 (b+ 1)), and (12 (b+ 1), 1) positions. Note that

Wh−2
b

({
1,

b− 1

2
,
b+ 1

2
, b
}
, {b− 1, b}

)
=




1 0

1 1

0 1

0 0


 .
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So

(Wh−2
b u)

({
1,

b− 1

2
,
b+ 1

2
, b
})

=




1

1

1

0


 .

Therefore, the zero entries of (Wb)
h−2(WT

b )h−2 + (Wh−2
b u)(Wh−2

b u)T occur only in

the (b, 12 (b− 1)) and (12 (b − 1), b) positions. If neither eTb (b) nor e
T
(b−1)/2(b) is a row

of A, then A[(Wb)
h−2(WT

b )h−2 + (Wh−2
b u)(Wh−2

b u)T] = Jn×b and A[(Wb)
h−2 ×

(WT
b )h−2 + (Wh−2

b u)(Wh−2
b u)T]AT = Jn. If e

T
b (b) is a row of A, without loss of

generality, suppose row p of A is eTb (b), then the zero entry of A[(Wb)
h−2(WT

b )h−2 +

(Wh−2
b u)(Wh−2

b u)T] occurs only in the (p, 12 (b − 1)) position. Since eT(b−1)/2(b) is

not a row of A, then A[(Wb)
h−2(WT

b )h−2 + (Wh−2
b u)(Wh−2

b u)T]AT = Jn. Simi-

larly, if eT(b−1)/2(b) is a row of A, and eTb (b) is not a row of A, we can show that

A[(Wb)
h−2(WT

b )h−2 + (Wh−2
b u)(Wh−2

b u)T]AT = Jn. Therefore,

Mh−1(MT)h−1
> A[(Wb)

h−2(WT
b )h−2 + (Wh−2

b u)(Wh−2
b u)T]AT = Jn,

which contradicts k(M) = h.

If b is even, by Lemma 2.5, the zero entries of Wh−2
b (WT

b )h−2 occur only in the

(b, 1
2b), (

1
2b, b), (1,

1
2b+ 1), and (12b+ 1, 1) positions. Note that

Wh−2
b

({
1,

b

2
,
b

2
+ 1, b

}
, {b− 1, b}

)
=




0 1

0 0

1 0

1 1


 .

So

Wh−2
b u

({
1,

b

2
,
b

2
+ 1, b

})
=




1

0

1

1


 .

Therefore, the zero entries of (Wb)
h−2(WT

b )h−2 + (Wh−2
b u)(Wh−2

b u)t occur only in

the (12b, b) and (b, 1
2b) positions. Note that either e

T
b/2(b) or e

T
b (b) is not a row of A.

We can show that A[(Wb)
h−2(WT

b )h−2 + (Wh−2
b u)(Wh−2

b u)T]AT = Jn. Therefore,

Mh−1(MT)h−1 > A[(Wb)
h−2(WT

b )h−2 + (Wh−2
b u)(Wh−2

b u)T]AT = Jn,

which contradicts k(M) = h. This proves (ii).

Case 2. k(B̃Ã) = h− 1.

By Lemma 2.1, there is a permutation matrix P such that PB̃ÃPT = Hb. Let

B = PB̃ and A = ÃPT. Then BA = Hb and AB = ÃPTPB̃ = ÃB̃ = M .
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Since M is primitive, we have
b∑

i=1

A.i = jn =
b∑

i=1

BT
i. . Since k(M) = h, the matrix

Mh−1 must have two rows that do not intersect. Without loss of generality, suppose

rows p and q ofMh−1 do not intersect. Then entries in the (p, q) and (q, p) positions

of Mh−1(MT)h−1 are zero. Since matrix B has no zero row, we have BBT > Ib.

Thus
Mh−1(MT)h−1 = (AB)h−1((AB)T)h−1

= A(BA)h−2BBT((BA)T)h−2AT

= A(Hb)
h−2BBT(HT

b )
h−2AT

> A(Hb)
h−2Ib(H

T
b )

h−2AT

= A(Hb)
h−2(HT

b )
h−2AT

= AZAT,

where Z = (Hb)
h−2(HT

b )
h−2 is the b × b matrix which has zero entries only in the

(1, ⌊ 1
2b⌋+ 1) and (⌊ 1

2b⌋+ 1, 1) positions. So

AZAT =

[∣∣∣∣∣

b∑

i=1
i6=⌊b/2⌋+1

A.i

∣∣∣∣∣Jn,⌊b/2⌋−1

∣∣∣∣∣

b∑

i=2

A.i

∣∣∣∣∣Jn,n−⌊b/2⌋−1

]
AT

=

(
b∑

i=1
i6=⌊b/2⌋+1

A.i

)
(A.1)

T + jn

(⌊b/2⌋∑

i=2

A.i

)T

+

( b∑

i=2

A.i

)
(A.⌊b/2⌋+1)

T + jn

( b∑

i=⌊b/2⌋+2

A.i

)T

.

Since AZAT is dominated by Mh−1(MT)h−1 andMh−1(MT)h−1 has zero entries in

the (p, q) and (q, p) positions, the entries in the (p, q) and (q, p) positions of AZAT

are also zero. Thus
(

b∑

i=1
i6=⌊b/2⌋+1

Api

)
Aq1 +

⌊b/2⌋∑

i=2

Aqi +

( b∑

i=2

Api

)
Aq(⌊b/2⌋+1) +

b∑

i=⌊b/2⌋+2

Aqi = 0,

and
(

b∑

i=1
i6=⌊b/2⌋+1

Aqi

)
Ap1 +

⌊b/2⌋∑

i=2

Api +

( b∑

i=2

Aqi

)
Ap(⌊b/2⌋+1) +

b∑

i=⌊b/2⌋+2

Api = 0.

Then Aqi = 0 and Api = 0 for i = 2, 3, . . . , b and i 6= ⌊ 1
2b⌋ + 1. Substituting these

back, we have

Ap1Aq1 +Ap(⌊b/2⌋+1)Aq(⌊b/2⌋+1) = 0.
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Thus rows Ap. and Aq. are disjoint. Since A has no zero rows, each of these rows

has precisely one nonzero entry. Therefore, some row of A is eT1 (b) and some row of

A is eT⌊b/2⌋+1(b).

We claim B cannot have a column u = eb−1(b) + eb(b). To the contrary, suppose

that some column of B is u. Since B has no zero row, BBT > Ib + uuT. Thus

Mh−1(MT)h−1 = (AB)h−1((AB)T)h−1

= A(BA)h−2BBT((BA)T)h−2AT

= A(Hb)
h−2BBT(HT

b )
h−2AT

> A(Hb)
h−2(Ib + uuT)(HT

b )
h−2AT

= A[(Hb)
h−2(HT

b )
h−2 + (Hh−2

b u)(Hh−2
b u)T]AT.

If b is odd, by Lemma 2.4, the zero entries of Hh−2
b (HT

b )
h−2 occur only in

the (1, 12 (b + 1)) and (12 (b + 1), 1) positions. Note that Hh−2
b ({1, 12 (b + 1)},

{b−1, b}) =
[
1 0

0 1

]
. Then Hh−2

b u > e1(b)+e(b+1)/2(b). Therefore, (Hb)
h−2(HT

b )
h−2+

(Hh−2
b u)(Hh−2

b u)T = Jb. Since A has no zero lines, we have Mh−1(MT)h−1 =

AJbA
T = Jn, which contradicts k(M) = h.

If b is even, by Lemma 2.5, the zero entries of Hh−2
b (HT

b )
h−2 occur only in the

(1, 1
2b+1) and (12b+1, 1) positions. Note that Hh−2

b ({1, 12b+1}, {b− 1, b}) =
[
0 1

1 0

]
.

ThenHh−2
b u > e1(b)+eb/2+1(b). Therefore, (Hb)

h−2(HT
b )

h−2+(Hh−2
b u)(Hh−2

b u)T =

Jb. Since A has no zero lines, we have Mh−1(MT)h−1 = AJbA
T = Jn, which

contradicts k(M) = h. This concludes (iii). �

Combining Lemmas 2.8–2.11, we get the main result.
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