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The upper triangular algebra loop of degree 4

K.W. Johnson, M. Munywoki, Jonathan D.H. Smith

Abstract. A natural loop structure is defined on the set U4 of unimodular upper-
triangular matrices over a given field. Inner mappings of the loop are computed.
It is shown that the loop is non-associative and nilpotent, of class 3. A de-
tailed listing of the loop conjugacy classes is presented. In particular, one of the
loop conjugacy classes is shown to be properly contained in a superclass of the

corresponding algebra group.
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1. Introduction

1.1 Quasigroup schemes. Quasigroups may be defined combinatorially or
equationally. Combinatorially, a quasigroup (Q, ·) is a set Q equipped with a
binary multiplication operation denoted by · or simple juxtaposition of the two
arguments, in which specification of any two of x, y, z in the equation x · y = z
determines the third uniquely. A loop is a quasigroup Q with an identity element
1 such that 1 · x = x = x · 1 for all x in Q.

Equationally, a quasigroup (Q, ·, /, \) is a set Q equipped with three binary
operations of multiplication, right division / and left division \, satisfying the
identities:

(SL) x · (x\z) = z ; (SR) z = (z/x) · x ;
(IL) x\(x · z) = z ; (IR) z = (z · x)/x .

In writing complex quasigroup words, it is often helpful to use the convention
whereby juxtaposition binds stronger than ·, /, or \, so that associativity, for
example, takes the bracketless form x · yz = xy · z.

For each element x of a quasigroup Q, consider the right multiplication

R(x) : Q → Q; y 7→ y · x

and left multiplication

L(x) : Q → Q; y 7→ x · y .

The right and left multiplications are elements of the group Q! of bijections from
the set Q to itself. For example, the identity (SL) says that each L(x) surjects,
while (IL) gives the injectivity of L(x). The multiplication group MltQ of a
quasigroup Q is the subgroup of Q! generated by {R(q), L(q) | q ∈ Q}. If Q is
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finite, the diagonal action of MltQ on Q2 is multiplicity-free, so the orbitals of
MltQ, the orbits of this action, form an association scheme on Q [7, Ch. 6], which
may conveniently be described here as a quasigroup scheme.

1.2 Loop conjugacy classes. Throughout this paragraph, consider a loop
(Q, ·, 1). The inner multiplication group InnQ is the stabilizer MltQ1 in MltQ
of the identity element 1. For example, if Q is a group, then InnQ is the inner
automorphism group of Q, although for a general loop Q, elements of InnQ are
not necessarily automorphisms of Q.

For elements q, r of Q, define the conjugation

(1.1) T (q) = R(q)L(q)−1 ,

the right inner mapping

(1.2) R(q, r) = R(q)R(r)R(qr)−1 ,

and the left inner mapping

(1.3) L(q, r) = L(q)L(r)L(rq)−1

in MltQ1. Collectively, (1.1)–(1.3) are known as inner mappings . Note that
MltQ1 is generated by the subset

{T (q), R(q, r), L(q, r) | q, r ∈ Q}

of MltQ [4, Lemma IV.1.2], [7, §2.8].
The orbits of InnQ on Q are defined as the (loop) conjugacy classes of Q [4,

p. 63]. If Q is a group, the loop conjugacy classes of Q are just the usual group
conjugacy classes. In a loop Q, the orbitals of MltQ are directly related to the
loop conjugacy classes. Indeed, if O is an orbital of MltQ, then

1O = {q ∈ Q | (1, q) ∈ O}

is a loop conjugacy class. Conversely, if C is a loop conjugacy class, then

\−1(C) = {(x, y) ∈ Q2 | x\y ∈ C}

is an orbital of MltQ [7, §6.1].

1.3 Fusion schemes. Let Γ = {C1 = Q̂, C2, . . . , Cr} be the set of relations of

an association scheme (Q,Γ) on a finite set Q of size n, with Q̂ = {(q, q) | q ∈ Q}
as the diagonal or equality relation. The complex linear span of the linearly
independent set {A1 = In, A2, . . . , Ar} of respective incidence matrices of the
relations C1, C2, . . . , Cr forms a commutative subalgebra V (Q,Γ) of the algebra
Cn

n of complex n×n matrices. A scheme (Q,∆) is said to be a fusion of a scheme
(Q,Γ) if each relation Di from ∆ is a union Di =

⋃
1≤j≤ki

Cij of relations Cij



The algebra loop of degree 4 459

from Γ. Fusion schemes were studied over two decades ago [6] in connection with
the specification of character tables of quasigroup isotopes (cf. [7, p. 5]).

1.4 Algebra groups. In the terminology of Diaconis and Isaacs [5], an algebra

group is defined as a group of the form 1 +N , where N is a (finite-dimensional)
nilpotent algebra over a finite field F . An initial example studied by André took
N as an algebra of n× n strictly upper-triangular matrices, obtaining the group
Un = 1 + N of “unimodular” upper-triangular matrices [2]. Reprising many
results from the quasigroup and association scheme theory of [6] using keywords
such as “superclass,” “supercharacter,” etc., Diaconis and Isaacs studied schemes
obtained by fusing the quasigroup schemes of algebra groups. More recently,
supercharacters over the entire sequence of algebra groups Un have been shown to
form Hopf algebras related to algebras of symmetric functions in non-commuting
variables [1]. A natural question concerns the extent to which these fused group
schemes of algebra groups may be obtained directly as the quasigroup schemes of
algebra loops , natural loop structures on the set 1 +N .

1.5 Algebra loops. The goal of the current paper is to study the smallest non-
trivial example of an algebra group, U4, from the standpoint of quasigroup theory.
In §2, the algebra loop structure on U4 is defined, as the so-called (upper triangu-

lar) algebra loop of degree 4. The inner mappings of the loop are computed, and it
is confirmed that the loop is neither commutative nor associative. In §3, the loop
is shown to be nilpotent of class 3, and its ascending central series is identified
(Theorem 3.2). Furthermore, the conjugacy classes of the loop are classified in
detail (see Table 1 for a summary). Most significantly, it transpires that certain
loop classes are properly contained in superclasses (Remark 3.7), so that the loop
character theory of the algebra loop, i.e. the character theory of the quasigroup
scheme of the loop, represents an intermediate stage between the group characters
and the supercharacters.

Readers are referred to [7] and [8] for quasigroup-theoretic and general algebraic
concepts and conventions that are not otherwise explicitly clarified here.

2. The algebra loop U4

2.1 The loop multiplication. Consider matrices

x =




1 x12 x13 x14

0 1 x23 x24

0 0 1 x34

0 0 0 1




and

y =




1 y12 y13 y14
0 1 y23 y24
0 0 1 y34
0 0 0 1
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with entries xij , yij from a field F . Then the quasigroup product is




1 x12 x13 x14

0 1 x23 x24

0 0 1 x34

0 0 0 1


 ·




1 y12 y13 y14
0 1 y23 y24
0 0 1 y34
0 0 0 1


(2.1)

=




1 x12 + y12 x13 + y13 + x12y23 [x · y]14
0 1 x23 + y23 x24 + y24 + x23y34
0 0 1 x34 + y34
0 0 0 1




with

(2.2) [x · y]14 = x14 + y14 + x12y24 + x13y34 + x12x23y34 + x12y23y34

as the last entry in the top row of the product. The summands in (2.2) correspond
to paths of respective lengths 1, 2, 3 from 1 to 4 in the chain 1 < 2 < 3 < 4, with
labels chosen from x over the former part of the path, and y over the latter part.
The other entries in the product have a similar (but simpler) structure. Note that
the product (2.1) has the matrix I4 as its identity element.

2.2 The right division. With matrices x and y as above, consider the right
division z = y/x, namely a solution

z =




1 z12 z13 z14
0 1 z23 z24
0 0 1 z34
0 0 0 1




to the equation z · x = y.

Lemma 2.1. There is a unique solution z = yR(x)−1 to z · x = y.

Proof: The entries zij , for 1 ≤ i < j ≤ 4, are obtained by recursion on the
length j − i of the path from i to j in the chain 1 < 2 < 3 < 4.

Paths of length 1:

z12 = (y12 − x12) , z23 = (y23 − x23) , z34 = (y34 − x34) .

Paths of length 2:

z13 + x13 + z12x23 = y13 , so

z13 = y13 − x13 − z12x23 = (y13 − x13)− (y12 − x12)x23 .

Similarly, z24 = (y24 − x24)− (y23 − x23)x34 .
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The path of length 3:

z14 + x14 + z12x24 + z13x34 + z12z23x34 + z12x23x34 = y14 , so

z14 = y14 − x14 − z12x24 − z13x34 − z12z23x34 − z12x23x34

= y14 − x14 − (y12 − x12)x24 − (y13 − x13 − (y12 − x12)x23)x34

− (y12 − x12)(y23 − x23)x34 − (y12 − x12)x23x34

= (y14 − x14)

+ (y12 − x12)(−x24) + (y13 − x13)(−x34)

+ (y12 − x12)(y23 − x23)(−x34) .

Note that in each case, the coefficient zij is uniquely specified in terms of x
and y. �

2.3 The left division. With matrices x and y as above, consider the left division
z = x\y, namely a solution

z =




1 z12 z13 z14
0 1 z23 z24
0 0 1 z34
0 0 0 1




to the equation x · z = y.

Lemma 2.2. There is a unique solution z = yL(x)−1 to x · z = y.

Proof: The entries zij , for 1 ≤ i < j ≤ 4, are again obtained by recursion on
the length j − i of the path from i to j in the chain 1 < 2 < 3 < 4.

Paths of length 1:

z12 = (y12 − x12) , z23 = (y23 − x23) , z34 = (y34 − x34) .

Paths of length 2:

x13 + z13 + x12z23 = y13 , so

z13 = y13 − x13 − x12z23 = (y13 − x13)− x12(y23 − x23) .

Similarly, z24 = (y24 − x24)− x23(y34 − x34) .
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The path of length 3:

x14 + z14 + x12z24 + x13z34 + x12x23z34 + x12z23z34 = y14 , so

z14 = y14 − x14 − x12z24 − x13z34 − x12x23z34 − x12z23z34

= y14 − x14 − x12(y24 − x24 − x23(y34 − x34))− x13(y34 − x34)

− x12x23(y34 − x34)− x12(y23 − x23)(y34 − x34)

= (y14 − x14)

+ (−x12)(y24 − x24) + (−x13)(y34 − x34)

+ (−x12)(y23 − x23)(y34 − x34) .

Note that in each case, the coefficient zij is once more uniquely specified in terms
of x and y. �

2.4 The algebra loop. Lemmas 2.1 and 2.2 yield the following.

Proposition 2.3. With the product (2.1), the algebra group U4 over a field F
forms a loop.

Definition 2.4. The loop U4 is known as the upper triangular algebra loop of
degree 4.

2.5 Inner mappings. Within the loop U4, the effects of the inner mappings
(1.1)–(1.3) may be computed using the work of §§2.1–2.3. Consider elements
x = [xij ], q = [qij ], r = [rij ] of U4. Then

xT (q) = xR(q)L(q)−1 = q\xq

=




1 x12 x13 +

∣∣∣∣
x12 q12
x23 q23

∣∣∣∣ [xT (q)]14

0 1 x23 x24 +

∣∣∣∣
x23 q23
x34 q34

∣∣∣∣

0 0 1 x34

0 0 0 1




with [xT (q)]14 =

x14 +

∣∣∣∣
x12 q12
x24 q24

∣∣∣∣+
∣∣∣∣
x13 q13
x34 q34

∣∣∣∣+
∣∣∣∣

x12 q12
x23x34 x23q34

∣∣∣∣+
∣∣∣∣
x12 q12

x23q34 q23q34

∣∣∣∣ .

Furthermore, one has

[xR(q, r)]14 = [(xq · r)/qr]14 = x14 + q12x23r34 − x12r23q34

and

[xL(q, r)]14 = [rq\(r · qx)]14 = x14 + r12x23q34 − q12r23x34 ,
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with

[xR(q, r)]ij = [xL(q, r)]ij = xij

for 1 ≤ i < j ≤ 4 and j − i < 3.

2.6 Properties of the algebra loop.

Definition 2.5. For given 1 ≤ l < m ≤ 4, the elementary element Elm of U4 is
defined by

[Elm]ij =

{
1 if i = l and j = m, or if i = j ;

0 otherwise.

Theorem 2.6. Over a given field F , the upper triangular algebra loop U4 of

degree 4 is neither commutative nor associative.

Proof: It was already observed in Proposition 2.3 that U4 forms a loop. Consider
elementary elements x = E23, q = E12, r = E34 of U4. The computations of §2.5
show that

[xT (q)]13 = x13 +

∣∣∣∣
x12 q12
x23 q23

∣∣∣∣ = −1 6= 0 = x13 ,

so the loop is not commutative, and

[xR(q, r)]14 = x14 + q12x23r34 − x12r23q34 = 1 6= 0 = x14 ,

so the loop is not associative. �

3. Nilpotence and conjugacy classes

Consider the upper triangular algebra loop U4 of degree 4 over a given field F .
The goal of this section is to demonstrate that U4 is nilpotent, and to determine
the loop conjugacy class of each element x = [xij ] of U4. These conjugacy classes
are the orbits of the natural action of the inner multiplication group Inn(U4).

3.1 Nilpotence and the center. Recall that the center Z or Z(Q) of a loop
Q is the set

{z ∈ Q | ∀ q, r ∈ Q , zT (q) = zR(q, r) = zL(q, r) = z}

[3], [7, (3.31)]. In other words, the center Z(Q) consists precisely of the set of
elements of Q which lie in singleton conjugacy classes.

Proposition 3.1. The set

(3.1)
{
x = [xij ] ∈ U4

∣∣ xij = 0 if 1 ≤ j − i < 3
}

forms the center of U4.
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Proof: Consider a central element x = [xij ] of U4. If x23 6= 0, one would have

[xR(E12, E34)]14 = x14 + x23 6= x14 ,

which would exclude x from the center, so x23 = 0. Thus for q in U4, one has

[xT (q)]14 = x14 +

∣∣∣∣
x12 q12
x24 q24

∣∣∣∣+
∣∣∣∣
x13 q13
x34 q34

∣∣∣∣+
∣∣∣∣
x12 q12
0 q23q34

∣∣∣∣ .

If x12 6= 0, one would have

[xT (E24)]14 = x14 + x12 6= x14 ,

which would exclude x from the center, so x12 = 0 and

[xT (q)]14 = x14 +

∣∣∣∣
0 q12
x24 q24

∣∣∣∣+
∣∣∣∣
x13 q13
x34 q34

∣∣∣∣ .

If x24 6= 0, one would have

[xT (E12)]14 = x14 − x24 6= x14 ,

which would exclude x from the center, so x24 = 0 and

[xT (q)]14 = x14 +

∣∣∣∣
x13 q13
x34 q34

∣∣∣∣ .

If x13 6= 0, one would have

[xT (E34)]14 = x14 + x13 6= x14 ,

which would exclude x from the center, so x13 = 0 and

[xT (q)]14 = x14 +

∣∣∣∣
0 q13
x34 q34

∣∣∣∣ .

Finally, if x34 6= 0, one would have

[xT (E13)]14 = x14 − x34 6= x14 ,

which would exclude x from the center, so x34 = 0. Thus the center of U4

is contained in the set (3.1). The opposite containment is apparent from the
computations of §2.5. �

Recall the recursive definition Z0(Q) = {1} and Zr+1(Q)/Zr(Q) = Z(Q/Zr(Q))
for the ascending central series

Z0(Q) ≤ Z1(Q) ≤ · · · ≤ Zr(Q) ≤ . . .

of a loop Q. The loop Q is nilpotent (of class at most c) if Zc(Q) = Q.
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Theorem 3.2. The loop U4 is nilpotent, of class 3. Indeed,

(3.2) Z4−k(U4) = {x = [xij ] ∈ U4 | xij = 0 if 1 ≤ j − i < k}

for 1 ≤ k ≤ 4.

Proof: The equation (3.2) certainly holds for k = 4, and Proposition 3.1 implies
that it holds for k = 3. Now consider the quotient U4/Z1(U4). For brevity, cosets
of the center will be denoted simply by any one of their representative elements.
Note that U4/Z1(U4) is associative, since by §2.5 the right and left inner mappings
only affect the (1, 4)-entries of the matrices in U4. Consider cosets x and q, with
qij = 0 if j − i = 1. By §2.5, one has xT (q) = 0. Indeed, xT (q) = x holds for all
cosets x if and only if qij = 0 when j − i = 1. Thus (3.2) is verified for k = 2.
Finally, U4/Z2(U4) is abelian, so Z3(U4) = U4. �

3.2 Zeroes on the superdiagonal.

Proposition 3.3. If the vector (x13, x24) is non-zero, the conjugacy class of

x =




1 0 x13 x14

0 1 0 x24

0 0 1 0
0 0 0 1




is

(3.3)








1 0 x13 a
0 1 0 x24

0 0 1 0
0 0 0 1


 a ∈ F





.

Proof: For q = [qij ] in U4, one has

xT (q) =




1 0 x13 x14 +

∣∣∣∣
x13 x24

q12 q34

∣∣∣∣
0 1 0 x24

0 0 1 0
0 0 0 1




by §2.5. Since the vector (x13, x24) is non-zero, each element a of F may be
realized as

a = x14 +

∣∣∣∣
x13 x24

q12 q34

∣∣∣∣

for a suitable vector (q12, q34). Thus (3.3) is contained in the conjugacy class of x.
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For the converse, set

y =




1 0 x13 a
0 1 0 x24

0 0 1 0
0 0 0 1




with an element a of F . Then for q = [qij ] in U4, one has

yT (q) =




1 0 x13 a+

∣∣∣∣
x13 x24

q12 q34

∣∣∣∣
0 1 0 x24

0 0 1 0
0 0 0 1



,

which is contained in (3.3). Similarly, one has yR(r, s) and yL(r, s) in (3.3) for
r, s in U4, since the right and left inner mappings only affect the entry y14 of the
matrix y. It follows that (3.3) contains the conjugacy class of x, and therefore
coincides with it. �

3.3 The remaining cases.

Proposition 3.4. If x23 is non-zero, the conjugacy class of x is

(3.4)








1 x12 b a
0 1 x23 c
0 0 1 x34

0 0 0 1


 a, b, c ∈ F





.

Proof: For q = [qij ] in U4, one has xT (q) =




1 x12 x13 +

∣∣∣∣
x12 q12
x23 q23

∣∣∣∣ [xT (q)]14

0 1 x23 x24 +

∣∣∣∣
x23 q23
x34 q34

∣∣∣∣

0 0 1 x34

0 0 0 1




by §2.5. Set q23 = 0. For elements b, c of F , choose q12 so that b = x13 − q12x23,
and q34 so that c = x24 + x23q34. Then

xT (q) =




1 x12 b k
0 1 x23 c
0 0 1 x34

0 0 0 1
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for some element k of F . Now for r, s in U4, one has

xT (q)R(r, s) =




1 x12 b k + r12x23s34 − x12s23r34
0 1 x23 c
0 0 1 x34

0 0 0 1




by §2.5. Consider an element a of F . Setting r12 = 1 and r34 = 0, choose s34 so
that a = k + x23s34. Then

xT (q)R(r, s) =




1 x12 b a
0 1 x23 c
0 0 1 x34

0 0 0 1


 ,

whence (3.4) is contained in the conjugacy class of x.
For the converse, set

y =




1 x12 b a
0 1 x23 c
0 0 1 x34

0 0 0 1




with elements a, b, c of F . Then for q = [qij ] in U4, one has yT (q) =




1 x12 b+

∣∣∣∣
x12 q12
x23 q23

∣∣∣∣ [yT (q)]14

0 1 x23 c+

∣∣∣∣
x23 q23
x34 q34

∣∣∣∣

0 0 1 x34

0 0 0 1




,

which lies in (3.4). Again, one has yR(r, s) and yL(r, s) in (3.4) for r, s in U4,
since the right and left inner mappings only affect the entry y14 of the matrix y. It
follows that (3.4) contains the conjugacy class of x, and therefore coincides with
it. �

Proposition 3.5. Suppose that x23 = 0, while the vector (x12, x34) is non-zero.
Then the conjugacy class of x is

(3.5)








1 x12 x13 + bx12 a
0 1 0 x24 − bx34

0 0 1 x34

0 0 0 1


 a, b ∈ F





.
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Proof: For q = [qij ] in U4, one has xT (q) =




1 x12 x13 + x12q23 [xT (q)]14
0 1 0 x24 − q23x34

0 0 1 x34

0 0 0 1




with [xT (q)]14 = x14 +

∣∣∣∣
x12 q12
x24 q24

∣∣∣∣ +
∣∣∣∣
x13 q13
x34 q34

∣∣∣∣ + x12q23q34 , by §2.5. Set q23 = b

for a given field element b. Then with q12 = q34 = 0, choose the vector (q13, q24)

so that a = x14 +

∣∣∣∣
x12 q13
x34 q24

∣∣∣∣ for a given field element a. Since

xT (q) =




1 x12 x13 + bx12 a
0 1 0 x24 − bx34

0 0 1 x34

0 0 0 1


 ,

the set (3.5) is contained in the conjugacy class of x.
For the converse, take a typical element

y =




1 x12 x13 + bx12 a
0 1 x23 x24 − bx34

0 0 1 x34

0 0 0 1




of (3.5), with a, b in F . Then yT (q) =




1 x12 x13 + (b+ q23)x12 [yT (q)]14
0 1 x23 x24 − (b+ q23)x34

0 0 1 x34

0 0 0 1



,

for q = [qij ] in U4, again giving an element of (3.5). As before, one has yR(r, s)
and yL(r, s) in (3.5) for r, s in U4, since the right and left inner mappings only
affect the entry y14 of the matrix y. It follows that (3.5) contains the conjugacy
class of x, and therefore coincides with it. �

Corollary 3.6. Suppose that x23 = 0, while the vector (x12, x34) is non-zero.

Then the conjugacy class of x has cardinality |F |2.

Remark 3.7. Corollary 3.6 shows that if F is finite, the size of the loop conjugacy
class of E12 +E34 − 1 is |F |2. On the other hand, the computations at the end of
§3 of [5] show that the superclass of E12 + E34 − 1 has size |F |3. Thus the loop
conjugacy classes in U4 do not necessarily coincide with the superclasses.
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3.4 Summary. Table 1 lists the sizes and number of each kind of loop conjugacy
class in U4. The element types are identified by the pattern of matrix entries
above the diagonal, in conjunction with the reference to the proposition giving
the full description of the type. The symbol ∗ is used as a “wild card” to denote
a (potentially) non-zero field element. As a pattern entry, the symbol F denotes
arbitrary elements of F that appear in the class. The symbol q stands for the
cardinality of the underlying field F .

Type of element Size of class Number of classes Reference

0 0 ∗
0 0

0
1 q Prop. 3.1

0 ∗ F
0 ∗

0
q q2 − 1 Prop. 3.3

∗ F F
∗ 6= 0 F

∗
q3 q2(q − 1) Prop. 3.4

∗ F F
0 F

∗
q2 q(q2 − 1) Prop. 3.5

Table 1. Conjugacy classes of U4.
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