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The Cayley graph and the growth of Steiner loops

P. Plaumann, L. Sabinina, I. Stuhl

Abstract. We study properties of Steiner loops which are of fundamental im-
portance to develop a combinatorial theory of loops along the lines given by
Combinatorial Group Theory. In a summary we describe our findings.
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In this note we define a Steiner loop as a loop that is satisfying the relations

(1) xy = yx, (xy)y = x

(see e.g. [10, Theorem V.1.1 and Definition V.1.9]). The variety of all diassociative
loops of exponent 2 is precisely the variety of all Steiner loops. These loops are
in a one-to-one correspondence with Steiner triple systems (see [5, p. 310]).

A Steiner triple system is an incidence structure consisting of points and blocks
such that every two distinct points are contained in precisely one block, and
any block consists of precisely three points. Due to this well-known connection
between Steiner loops and Steiner triple systems the number of elements of a finite
Steiner loop is congruent 2mod 6 or 4mod 6 (see [2]).

Steiner loops form a variety S which even is a Schreier variety (see e.g., [3],
[8]). Denote by M1 the variety of all magmas with a neutral element. One can
identify the elements of S with elements of M1 satisfying the relations (1).

Consider a free magma M = M(X) ∈ M1 with a countable base X . The
elements of M are defined recursively by their length. Put

M(0) = 1,

M(i) = {w ∈ M | ∃r, s ∈ N, wL ∈ M(r), wR ∈ M(s) : r + s = i, w = wLwR}.

We call wL the left part of w and wR the right part of w. Inductively, we define

T0 = M(0),

Ti+1 = {w ∈ M | ∃(x ∈ X, v ∈ Ti) : w = xv}

and call the elements of T =
⋃

i∈N
Ti right normed words . Denote them by

ρ(u1, u2, . . . , ui). Note, that the elements of T are in a one-to-one correspondence
with the elements of the free monoid over X .
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For a finitely generated free magma with a neutral element one has the following

Proposition 1. Let X = {x1, x2, . . . , xd} be such that 3 ≤ d < ∞ and let

M = M(X) be a free magma over X . Then for n > 0 the following statements

hold:

(i) |M(n)| = ∑n

i=0
|M(i)||M(n− i)|,

(ii) |Tn+1(M)| = d · |Tn(M)|.
In particular, the sequences (|M(n)|)n∈N and (|Tn(M)|)n∈N both have exponential

growth.

Proof: The recursion formulas (i) and (ii) follow immediately from our defi-
nitions. Putting γk = 1

dk |M(k)| it follows from (i) that the sequence
(

γn
)

n∈N

satisfies the well-known recursion formula for the Catalan numbers. But this
sequence has exponential growth 4n/

√
πn3 (see [4, p. 39]). Hence the sequence

(|M(n)|)n∈N has exponential growth, too. The fact that the sequence in (ii) has
exponential growth is trivial. �

We denote the free Steiner loop of finite rank d by Sd. For an arbitrary Steiner
loop S and a finite subset E ⊆ S one can define the Cayley graph Cay(S,E)
without using in detail the construction given for loops by G. Sabidoussi [11]. We
shall prove the following

Theorem 1. For d ≥ 3 the Cayley graph of the free Steiner loop Sd with respect

to a basis is not connected.

The approach we use to prove Theorem 1 will help us to prove

Theorem 2. For d ≥ 3 the free Steiner loop Sd has exponential growth.

Now we begin to prove Theorem 1. The multiplication group Mult(Sd) and
the inner mapping group J (Sd) of a finitely generated free Steiner loop Sd are
determined in [6, Proposition 2] and for some finite Steiner loops in [12]. First one
notes, that for every Steiner loop S the groupMult(S) is generated by the set {Lv |
v ∈ S} of (left) translations, where Lv : S → S is the mapping defined by Lv(x) =
vx. Due to the relations which are valid in Steiner loops the inner mapping group
J (S) (see [1, p. 61]) is generated by the mappings ℓu,v = LuvLuLv ∈ Mult(S).
For elements u 6= v of a free Steiner loop Sd the inner mappings ℓu,v have infinite
order. We denote by L(Sd) the set of cyclic subgroups of J (Sd) generated by the
elements ℓu,v for u 6= v ∈ Sd.

In [6] it is shown that for d > 2 the multiplication group Mult(Sd) of the free
Steiner loop Sd is the free product of cyclic groups of order 2

Mult(Sd) = ⋆v∈Sd
Cv,

where Cv =
〈

Lv

〉

. Furthermore, it is shown there that the inner mapping group
J (Sd) is the free product of the set L(Sd) of subloops.
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For a given loop Q and a subset E ⊆ Q we consider the subgroup

MultE(Q) =
〈

La | a ∈ E
〉

of the group Mult(Q).
In [11] the construction of the Cayley graph Cay(Q,E) of a quasigroup Q with

respect to a finite subset E ⊆ Q was introduced (see also [9]). Considering an
arbitrary loop for this purpose the following properties of E are needed

(C1)∀x ∈ Q : x /∈ xE, (C2)∀x ∈ Q, u ∈ E : x ∈ x(uE).

A subset satisfying (C1) and (C2) is called a Cayley set . Dealing with an (IP)–
loop these conditions are equivalent to

(C1)∗ 1 /∈ E, (C2)∗E = E−1.

Note, that for a Steiner loop the condition (C2)∗ is satisfied for every subset.
Hence every finite subset not containing the identity of a Steiner loop is a Cayley
set.

For a Steiner loop S with a Cayley set E one defines the Cayley graph Cay(S,E)
as the graph with the vertex set VS,E = S calling u, v ∈ VS,E adjacent if there is
x ∈ E such that v = xu. For u ∈ VS,E we denote the connected component of u
in Cay(S,E) by CS,E(u).

Immediately from the definitions follows

Proposition 2. For a Steiner loop S with a finite Cayley set E which generates

S and for a ∈ S the component of a in Cay(S,E) is the orbit MultE(S)(a).

For the associator of elements u, v, w of a Steiner loop one has

(2) (u, v, w) = (uv)w · u(vw) = w(uv) · u(vw).

Proposition 3. For a free Steiner loop Sd with a basis B the set CSd,B(1) consists
of the elements of S which are an irreducible right normed word over B. In

particular, for d > 2 not every element of Sd belongs to CSd,B(1).

Proof: The vertices in CSd,B(1) are of the form Lan
. . . La2

La1
1 for a finite se-

quence a1, a2, . . . , an in B. If a, b, c are 3 different elements of B then (ab)(bc)
and (a, b, c) do not belong to CSd,B(1). �

Proposition 3 proves Theorem 1. Furthermore, Propositions 2 and 3 can be
used to treat algorithmic questions in Steiner loops which are known to have
positive answers in this category by Evans [3]:

(a) Determine a normal form of the elements in Sd.
(b) Give an algorithm deciding the word problem for Sd.

If a Cayley set satisfies the condition

(C3)∀x, y ∈ Q : (xy)E = x(yE),
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it is called quasi–associative. In [9, Proposition 8], it is shown that for a quasi–
associative Cayley set E of a loop Q the graph Cay(Q,E) is vertex transitive.

Proposition 4. In a free Steiner loop Sd, d > 2, there is no finite quasi-associative
Cayley set.

Proof: In an arbitrary loop S the condition (C3) is equivalent to

(C3)∗ ∀x, y ∈ S : ℓx,yE = E.

Above we had seen that for d > 2 and 1 6= u ∈ Sd the orbit J (Sd)u is infinite. �

Proof of Theorem 2: To discuss the growth of a Steiner loop S with respect to
a finite generating set B = {b1, . . . , bd} we recall that S is a magma with a neutral
element satisfying the relations XY = Y X, X(XY ) = Y . For a free magma
Md with a neutral element over the basis {x1, . . . , xd} one has an epimorphism
ψ : Md ։ S such that ψ(xi) = bi for 1 ≤ i ≤ d. For s ∈ S define

(3) λ(s) = λS,B(s) = min
i
{i | ∃w ∈ M(i) : s = ψ(w)}.

and

(4) a(n) = aS,B(n) = |{s ∈ S | λ(s) = n}|.

It follows from Proposition 1(i) that aS,B(n) ≤ dnγn for all n ∈ N where γn
are the Catalan numbers.

Conversely, denote by Md a free magma with a neutral element over the ba-
sis X = {x1, x2, . . . , xd}. Let Sd be a free Steiner loop with a basis B =
{b1, b2, . . . , bd} and let ψ : Md ։ Sd be the epimorphism given by ψ(xi) = bi
for all 1 ≤ i ≤ d.

Then ψ maps Tk(Md) onto Tk(Sd) for all k ∈ N. By construction all elements
of T(Sd) have a unique presentation ρ(c1, c2, . . . , cn) as a right normed word such
that ∀1 ≤ i ≤ n : ci ∈ B and ∀1 ≤ i ≤ n − 1 : ci 6= ci+1. It follows from
Proposition 1 (ii) that

|T0(Sd)| = 1, |T1(Sd)| = d,
|Tk(Sd)| = d(d− 1)k−1 for k ≥ 2.

Thus we obtain

d(d− 1)k−1 = |Tk(Sd)| < aSd,B(k) ≤ dkγk

for all k ≥ 3: Sd has exponential growth. �

Of course, the growth function
(

aS,B(n)
)

n∈N
depends on the generating set B.

But the usual equivalence relation for sequences of numbers (see [7, Proposi-
tion 1.4]) yields the result that all growth functions of a loop belong to the same
equivalence class.
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Summary. The variety of Steiner loops shows that growth functions can be well
treated for loops. However, so far we have no convincing examples showing how
the growth of a loop L is connected with algebraic properties of L. One obstacle
for this task lies in the fact that many tools used in groups for this purpose are not
available for loops. Deeper questions like the existence of loops of intermediate
growth remain open even for Steiner loops. We have to admit that the only finitely
generated Steiner loops that we know are finite or have exponential growth. The
following question stays open.

Open question: Are there Steiner loops with polynomial growth of arbitrary

degree?

Acknowledgments. Mathematically our thanks go to A. Grishkov for many dis-
cussions and a lot of useful informations. Without him we could not have written
this note. L. Sabinina thanks for support to 2011-2013 UCMEXUS-CONACYT
Collaborative Grant CN-11-567, 2012-2013 FAPESP Grant processo 2012/11068-2
and 2012-2013 CONACYT Grant for Sabbatical year at the Institute of Math-
ematics and Statistics of the University of Sao Paulo, Brazil. I. Stuhl has been
supported by FAPESP Grant - process No 11/51845-5. They both express their
gratitude to IMS, University of São Paulo, Brazil, for the warm hospitality.

References

[1] Bruck R., Survey on Binary Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete,
Neue Folge, Heft 20, Reihe: Gruppentheorie, Springer, Berlin-Göttingen-Heidelberg, 1958.

[2] Colbourn C.J., Dinitz J.H. (Eds.), Steiner Triple Systems, Section 4.5 in CRC Handbook
of Combinatorial Designs, CRC Press, Boca Raton, FL, 1996, pp. 14–15 and 70.

[3] Evans T., Varieties of loops and quasigroups, in Quasigroups and Loops: Theory and
Applications, ed. O. Chein, H.O. Pflugfelder, J.D.H. Smith, Heldermann, Berlin, 1990,
pp. 1–26.

[4] Flagolet P., Sedgewick R., Analytic Combinatorics, Cambridge University Press, Cam-
bridge, 2009.

[5] Ganter B., Pfüller U., A remark on commutative di-associative loops, Algebra Universalis

21 (1985), 310–311.
[6] Grishkov A., Rasskazova D., Rasskazova M., Stuhl I., Free Steiner triple systems and their

automorphism groups, J. Algebra Appl., to appear.
[7] Mann A., How Groups Grow , Cambridge University Press, Cambridge, 2012.
[8] Markovski S., Sokolova A., Free Steiner loops, Glasnik Matematicki 36 (2001), 85–93.
[9] Mwambene E., Representing vertex-transitive graphs on groupoids, Quaest. Math. 29

(2006), 279–284.
[10] Pflugfelder H.O., Quasigroups and Loops: Introduction, Heldermann, Berlin, 1990.
[11] Sabidussi G., Vertex-transitive graphs, Monatsh. Math. 68 (1964), 426–438.
[12] Strambach K., Stuhl I., Translation groups of Steiner loops, Discrete Math. 309 (2009),

4225–4227.

Escuela de Ciencias, Universidad Autónoma Benito Juárez de Oaxaca, Av.
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E-mail: liudmila@uaem.mx

Institute of Mathematics and Statistics, University of São Paulo, R. do
Matao 1010, São Paulo, SP, 05508-090, Brazil
and

University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary

E-mail: izabella@ime.usp.br

(Received November 14, 2013)


		webmaster@dml.cz
	2015-03-22T19:36:02+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




