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SWEEDLER’S HOPF ALGEBRAS
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Abstract. We continue the study started recently by Agore, Bontea and Militaru in
“Classifying bicrossed products of Hopf algebras” (2014), by describing and classifying all
Hopf algebras E that factorize through two Sweedler’s Hopf algebras. Equivalently, we
classify all bicrossed products H4 ⊲⊳ H4. There are three steps in our approach. First,
we explicitly describe the set of all matched pairs (H4,H4, ⊲, ⊳) by proving that, with the
exception of the trivial pair, this set is parameterized by the ground field k. Then, for any
λ ∈ k, we describe by generators and relations the associated bicrossed product, H16,λ.
This is a 16-dimensional, pointed, unimodular and non-semisimple Hopf algebra. A Hopf
algebra E factorizes through H4 and H4 if and only if E ∼= H4 ⊗H4 or E ∼= H16,λ. In the
last step we classify these quantum groups by proving that there are only three isomorphism
classes represented by: H4 ⊗ H4, H16,0 and H16,1

∼= D(H4), the Drinfel’d double of H4.
The automorphism group of these objects is also computed: in particular, we prove that
AutHopf(D(H4)) is isomorphic to a semidirect product of groups, k

×
⋊ Z2.
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Introduction

Let A and H be two given Hopf algebras. The factorization problem for Hopf

algebras consists in classifying up to an isomorphism all Hopf algebras that factorize

through A and H , i.e., all Hopf algebras E containing A and H as Hopf subalgebras

such that the multiplication map A⊗H → E, a⊗ h 7→ ah is bijective. The problem

can be put in more general terms but we restrict ourselves to the case of Hopf

algebras. For a detailed account on the subject the reader may consult [1].

The research has been supported by grant no. 88/05.10.2011 of the Romanian National
Authority for Scientific Research, CNCS-UEFISCDI.
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An important step in dealing with the factorization problem was made by Majid

in [10], Proposition 3.12, who generalized to Hopf algebras the construction of the

bicrossed product for groups introduced by Takeuchi in [16]. Although in [10] the

construction is known under the name of double cross product, we will follow [9] and

call it, just like in the case of groups, the bicrossed product construction. A bicrossed

product of two Hopf algebras A and H is a new Hopf algebra A ⊲⊳ H associated with

a matched pair (A,H, ⊲, ⊳) of Hopf algebras. It is proved in [10], Proposition 3.12,

that a Hopf algebra E factorizes through A and H if and only if E is isomorphic

to some bicrossed product of A and H . Thus, the factorization problem can be

stated in a computational manner: for two Hopf algebras A and H describe the set

of all matched pairs (A,H, ⊲, ⊳) and classify up to an isomorphism all the bicrossed

products A ⊲⊳ H . This way of approaching the problem was recently proposed in

[1] with promising results regarding new examples of quantum groups. For example,

in [1], Section 4, all bicrossed products H4 ⊲⊳ k[Cn] are described by generators and

relations and are classified. They are quantum groups at roots of unity H4n,ω which

are classified by the arithmetic of the ring Zn. In this paper we continue the study

began in [1] by classifying all Hopf algebras that factorize through two Sweedler’s

Hopf algebras.

The paper is organized as follows. In Section 1 we set the notation and recall the

bicrossed product construction of two Hopf algebras. In Section 2, the main section

of this paper, we classify all Hopf algebras that factorize through two Sweedler’s Hopf

algebras. For this, we first compute all the matched pairs (H4, H4, ⊲, ⊳): except the

trivial one, these are parameterized by the ground field k, which is an arbitrary field

of characteristic 6= 2. We then describe by generators and relations the associated

bicrossed products H4 ⊲⊳ H4. These are: H4 ⊗H4 and H16,λ, where, for any λ ∈ k,

H16,λ is the 16-dimensional quantum group generated by g, x, G, X subject to the

relations

g2 = G2 = 1, x2 = X2 = 0, gx = −xg, GX = −XG,

gG = Gg, gX = −Xg, xG = −Gx, xX +Xx = λ (1−Gg)

with the coalgebra structure given such that g and G are group-likes, x is (1, g)-

primitive and X is (1, G)-primitive. We then prove that there are only three isomor-

phism classes of Hopf algebras that factorize through two Sweedler’s Hopf algebras:

H4 ⊗H4, H16,0 and H16,1
∼= D(H4), the Drinfel’d double of H4. Finally, we prove

that there exist the following isomorphisms of groups:

AutHopf(D(H4)) ∼= k×⋊Z2, AutHopf(H16,0) ∼= (k××k×)⋊Z2
∼= AutHopf(H4⊗H4).

Since the tensor product of two pointed coalgebras is pointed [14], Lemma 5.1.10,

it follows that the bicrossed product of two pointed Hopf algebras is pointed. In
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particular, H4 ⊗ H4 and H16,λ, for λ ∈ k are pointed Hopf algebras of dimension

16. The classification of such Hopf algebras, over an algebraically closed field of

characteristic zero, was considered in [6] and, without the pointedness assumption,

in [8]. With the notation of [6], Theorem 5.2, we have H4⊗H4 = H(3), H16,0 = H(4)

and H16,1 = H(5). Thus, the Hopf algebras we obtain here have already appeared in

literature.

The classification of pointed Hopf algebras has been the subject of intense study in

the past years ([3], [6], [4], [5]) and many classification results are known, especially

when the coradical is commutative. The most impressive result of this type was

obtained by Andruskiewitsch and Schneider in [5] where the classification of all finite-

dimensional pointed Hopf algebras with commutative coradical, whose dimension

is not divisible by primes 6 7, is given. Therefore, if one hopes to obtain really

new examples of Hopf algebras by considering the factorization problem then one

has better chances of succeeding if he considers pointed Hopf algebras with non-

commutative coradical or non-pointed Hopf algebras.

Finally, we point out that the dual problem of classifying all the extensions of H4

by H4 was solved by García and Vay in [8], Lemma 2.8, where it is shown that all

such extensions are isomorphic to the tensor product H4 ⊗ H4. Their proof uses

the cocycle bicrossproduct construction of [12] and [2] as a tool, but, instead of

computing all the cocycle bicrossproducts of H4 and H4, they build their argument

on the fact that an extension of a Hopf algebra A by another Hopf algebra B is a B-

cleft extension of A, which allows them to use the description and the classification

of the H4-cleft extensions of an algebra A from [13] and [7]. The link between the

factorization problem and the extension problem was observed by Majid, who shows

in [11], Proposition 7.2.4, that the set of matched pairs (A,H, ⊲, ⊳) is in bijection with

the set of bicrossproduct data (A∗, H, α, β) giving rise to cocycle bicrossproducts with

trivial cocycles. Since H∗

4 ≃ H4 one sees that the above correspondence breaks down

at the level of the isomorphism classes of the associated Hopf algebra products, which

is not so surprising considering that the two kinds of products are different objects.

1. Preliminaries

We work over an arbitrary field k of characteristic 6= 2. All algebras, coalgebras,

Hopf algebras are over k and ⊗ = ⊗k. We shall use the standard notation from Hopf

algebras theory: in particular, for a coalgebra C, we use the Σ-notation: ∆(c) =

c(1) ⊗ c(2) for any c ∈ C (summation understood). Let A and H be two Hopf

algebras. A is called a left H-module coalgebra if there exists ⊲ : H ⊗ A → A,

a morphism of coalgebras such that (A, ⊲) is also a left H-module. Similarly, H is

called a right A-module coalgebra if there exists ⊳ : H ⊗ A → H , a morphism of

coalgebras such that (H, ⊳) is a right A-module. The actions ⊲ : H ⊗ A → A and
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⊳ : H ⊗A→ H are called trivial if h ⊲ a = εH(h)a and h ⊳ a = εA(a)h, respectively,

for all a ∈ A and h ∈ H .

A matched pair of Hopf algebras ([10], [9]) is a quadruple (A,H, ⊲, ⊳), where A

and H are Hopf algebras, ⊲ : H ⊗ A → A and ⊳ : H ⊗ A → H are coalgebra maps

such that (A, ⊲) is a left H-module coalgebra, (H, ⊳) is a right A-module coalgebra

and the following compatibility conditions hold:

h ⊲ 1A = εH(h)1A, 1H ⊳ a = εA(a)1H ,(1)

h ⊲ (ab) = (h(1) ⊲ a(1))((h(2) ⊳ a(2)) ⊲ b),(2)

(gh) ⊳ a = (g ⊳ (h(1) ⊲ a(1)))(h(2) ⊳ a(2)),(3)

h(1) ⊳ a(1) ⊗ h(2) ⊲ a(2) = h(2) ⊳ a(2) ⊗ h(1) ⊲ a(1)(4)

for all a, b ∈ A, g, h ∈ H . If (A,H, ⊲, ⊳) is a matched pair of Hopf algebras then the

associated bicrossed product A ⊲⊳ H of A with H is the vector space A⊗H endowed

with the tensor product coalgebra structure and the multiplication

(5) (a ⊲⊳ g) · (b ⊲⊳ h) := a(g(1) ⊲ b(1)) ⊲⊳ (g(2) ⊳ b(2))h

for all a, b ∈ A, g, h ∈ H , where we use ⊲⊳ for ⊗. A ⊲⊳ H is a Hopf algebra with the

antipode given by the formula

(6) S(a ⊲⊳ h) := (1A ⊲⊳ SH(h)) · (SA(a) ⊲⊳ 1H)

for all a ∈ A and h ∈ H [11], Theorem 7.2.2, [9], Theorem IX 2.3.

The basic example of a bicrossed product is the famous Drinfel’d double of a finite

dimensional Hopf algebra H : D(H) = (H∗)cop ⊲⊳ H , the bicrossed product associ-

ated with a given canonical matched pair [9], Theorem IX.3.5. For other examples

of bicrossed products we refer to [1], [9], [11].

We recall that a Hopf algebra E factorizes through two Hopf algebras A and H if

there exist injective Hopf algebra maps i : A→ E and j : H → E such that the map

A⊗H → E, a⊗ h 7→ i(a)j(h)

is bijective. The next fundamental result is due to Majid [10], Proposition 3.12:

A Hopf algebra E factorizes through two given Hopf algebras A and H if and only

if there exists a matched pair of Hopf algebras (A,H, ⊲, ⊳) such that E ∼= A ⊲⊳ H .

In light of this result, the factorization problem for Hopf algebras was restated [1] in

a computational manner: for two given Hopf algebras, A and H , describe the set of

all matched pairs (A,H, ⊲, ⊳) and classify up to isomorphisms all bicrossed products

A ⊲⊳ H .

422



2. The bicrossed products of two Sweedler’s Hopf algebras

In this section we are going to classify all bicrossed products H4 ⊲⊳ H4. Recall

that Sweedler’s 4-dimensional Hopf algebra, H4, is generated by two elements, g and

x, subject to the relations g2 = 1, x2 = 0 and xg = −gx. The coalgebra structure

and the antipode are given by:

∆(g) = g ⊗ g, ε(g) = 1, S(g) = g,

∆(x) = x⊗ 1 + g ⊗ x, ε(x) = 0, S(x) = −gx.

In order to avoid confusion we will denote by H4 a copy of H4, and by G and X the

generators of H4. Thus, G
2 = 1, X2 = 0, GX = −XG, G is a group-like element

and X is an (1, G)-primitive element.

Recall that, for a Hopf algebra H , G(H) = {g ∈ H ; ∆(g) = g⊗g, ε(g) = 1} is the

set of group-like elements of H and, for g, h ∈ G(H), Pg,h(H) = {x ∈ H ; ∆(x) =

x ⊗ g + h ⊗ x} is the set of (g, h)-primitive elements of H . For the Sweedler Hopf

algebra we have

G(H4) = {1, g}, P1,1(H4) = Pg,g(H4) = {0}, P1,g(H4) = k(1 − g)⊕ kx

The next theorem describes the set of all matched pairs (A = H4, H = H4, ⊲, ⊳).

Theorem 2.1. Let k be a field of characteristic 6= 2. Then (H4, H4, ⊲, ⊳) is

a matched pair of Hopf algebras if and only if both (⊲, ⊳) are the trivial actions

or the pair (⊲, ⊳) is given by

⊲ 1 G X GX

1 1 G X GX

g 1 G −X −GX
x 0 0 λ− λG λ− λG

gx 0 0 λ− λG λ− λG

⊳ 1 G X GX

1 1 1 0 0
g g g 0 0
x x −x λ− λ g −λ+ λ g

gx gx −gx −λ+ λ g λ− λ g

for some λ ∈ k.

We prove this result in three steps. The first is Lemma 2.2 where we describe the

set of all right H4-module coalgebra structures ⊳ on H4 satisfying the normalizing

condition 1 ⊳ h = ε(h)1 for all h ∈ H4. There will be four such families of actions,

⊳j, j = 1, 2, 3, 4, parameterized by scalars a, b, c, d ∈ k.

The second step is Lemma 2.3 where we describe the set of all left H4-module

coalgebra structures ⊲ on H4 satisfying the normalizing condition h ⊲ 1 = ε(h)1

for all h ∈ H4. There will also be four families of such actions, ⊲
i, i = 1, 2, 3, 4

parameterized by scalars s, t, u, v ∈ k.
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The final step consists of a detailed analysis of the sixteen possibilities of choice

for the pair of actions (⊲i, ⊳j), for all i, j = 1, 2, 3, 4. This will show that the only

ones that verify the axioms (2)–(4) of a matched pair are (⊲1, ⊳1), i.e., the pair of

trivial actions, and (⊲4, ⊳4), in which case the actions take the form described in the

statement.

We begin with

Lemma 2.2. If ⊳ : H4 ⊗H4 → H4 is a right H4-module coalgebra structure such

that 1 ⊳ h = ε(h)1 for all h ∈ H4, then ⊳ has one of the following forms:

⊳1 1 G X GX

1 1 1 0 0
g g g 0 0
x x x 0 0
gx gx gx 0 0

⊳2 1 G X GX

1 1 1 0 0
g g g 0 0
x x x 0 0
gx gx c− cg − gx d− dg −d+ dg

⊳3 1 G X GX

1 1 1 0 0
g g g 0 0
x x a− ag − x b− bg −b+ bg

gx gx gx 0 0

⊳4 1 G X GX

1 1 1 0 0
g g g 0 0
x x a− ag − x b− bg −b+ bg

gx gx c− cg − gx d− dg −d+ dg

where a, b, c, d ∈ k.

P r o o f. Let ⊳ : H4 ⊗ H4 → H4 be a right H4-module coalgebra structure such

that 1 ⊳h = ε(h)1 for all h ∈ H4. Then 1 ⊳G = 1, 1 ⊳X = 0, and 1 ⊳ (GX) = 0. Also,

g ⊳G ∈ G(H4). We have g ⊳G 6= 1, for otherwise 1 = 1 ⊳G = (g ⊳G) ⊳G = g ⊳ 1 = g.

Therefore g ⊳ G = g. Since g ⊳ X ∈ Pg,g(H4), we deduce that g ⊳ X = 0. Similarly,

g ⊳ (GX) = 0. Observe that the actions of X and GX on g are compatible with the

relations X2 = 0 and GX = −XG.

We next show that

⊳ 1 G X GX

x x x 0 0
or

⊳ 1 G X GX

x x a− ag − x b− bg −b+ bg

for some a, b ∈ k.

We have x ⊳G ∈ P1,g(H4), hence x ⊳G = a− ag + bx for some a, b ∈ k. Since the

action of G is compatible with G2 = 1, we have

x = x ⊳ 1 = (x ⊳ G) ⊳ G = (a− ag + bx) ⊳ G = a+ ba− (a+ ba)g + b2x.

Thus, b2 = 1 and a(1 + b) = 0. If b = −1 then there are no restrictions on a.

Otherwise, b = 1 and a = 0. This shows that x ⊳ G = x or x ⊳ G = a− ag − x, with

a ∈ k.
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We also have x⊳X ∈ P1,g(H4), hence x⊳X = b− bg+ cx for some b, c ∈ k. Using

that X2 = 0, we have

0 = x ⊳ 0 = (x ⊳ X) ⊳ X = (b− bg + cx) ⊳ X = cb− cbg + c2x

Thus, c = 0 and x ⊳ X = b − bg.

If x ⊳ G = x then x ⊳ (GX) = x ⊳ X and, if x ⊳ G = a− ag − x then x ⊳ (GX) =

(a − ag − x) ⊳ X = −x ⊳ X . Observe that, in both cases, ε(x ⊳ (GX)) = 0, and

∆(x ⊳ (GX)) = x(1) ⊳ (GX)(1) ⊗ x(2) ⊳ (GX)(2).

It remains to see when x ⊳ (GX) = x ⊳ (−XG). If x ⊳ G = x, then

x ⊳ (XG) = (b− bg) ⊳ G = b− bg = x ⊳ X = x ⊳ (GX).

Thus, x ⊳ (GX) = x ⊳ (−XG) implies x ⊳ X = x ⊳ (GX) = 0. If x ⊳ G = a− ag − x,

then

x ⊳ (XG) = (b− bg) ⊳ G = b− bg = x ⊳ X = −x ⊳ (GX).

In this case, the equality x ⊳ (GX) = x ⊳ (−XG) is satisfied without further restric-

tions.

In a similar manner it can be shown that

⊳ 1 G X GX

gx gx gx 0 0
or

⊳ 1 G X GX

gx gx c− cg − gx d− dg −d+ dg

for some c, d ∈ k. �

Analogously to Lemma 2.2 we can prove

Lemma 2.3. If ⊲ : H4 ⊗ H4 → H4 is a left H4-module coalgebra structure such

that h ⊲ 1 = ε(h)1 for all h ∈ H4, then ⊲ has one of the following forms:

⊲1 1 G X GX

1 1 G X GX

g 1 G X GX

x 0 0 0 0
gx 0 0 0 0

⊲2 1 G X GX

1 1 G X GX

g 1 G X u− uG−GX

x 0 0 0 v − vG

gx 0 0 0 v − vG

⊲3 1 G X GX

1 1 G X GX

g 1 G s− sG−X GX

x 0 0 t− tG 0
gx 0 0 t− tG 0

⊲4 1 G X GX

1 1 G X GX

g 1 G s− sG−X u− uG−GX

x 0 0 t− tG v − vG

gx 0 0 t− tG v − vG

where s, t, u, v ∈ k.
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P r o o f. One can check the validity of the statement by employing the same

arguments as those used in the proof of Lemma 2.2. A more elegant and shorter

proof can be deduced from the following elementary remark: if ⊲ : H ⊗ C → C is

a left H-module coalgebra on C then ⊳ : C⊗Hcop → C, c⊳h := S(h)⊲c for all c ∈ C

and h ∈ H is a right Hcop-module coalgebra on C, and the above correspondence is

bijective if the antipode of H is bijective. We apply this observation to H = H4 and

C = H4, which is just a copy of H4, taking into account that the antipode of H4 is

bijective and Hcop
4

∼= H4. In this way, the proof of Lemma 2.3 follows from the one

of Lemma 2.2. �

We are now in a position to complete the proof of Theorem 2.1.

T h e p r o o f of Theorem 2.1. Let (H4, H4, ⊲, ⊳) be a matched pair. Since ⊳ :

H4 ⊗ H4 → H4 is a right H4-module coalgebra structure satisfying 1 ⊳ h = ε(h)1

for all h ∈ H4, we deduce from Lemma 2.2 that ⊳ is one of the ⊳
i’s. Similarly,

⊲ : H4 ⊗ H4 → H4 is a left H4-module coalgebra structure satisfying h ⊲ 1 = ε(h)1

for all h ∈ H4, hence, ⊲ is one of the ⊲
j ’s, by Lemma 2.3. We next show that

(H4, H4, ⊲
j , ⊳i) is a matched pair if and only if (i, j) ∈ {(1, 1), (4, 4)} and, if (i, j) =

(4, 4), then ⊲i and ⊳j are defined as we have claimed.

First, if i = 2, 3 or j = 2, 3 then (H4, H4, ⊲
i, ⊳j) is not a matched pair. Indeed, if

i = 2, 3 then condition (2) is not satisfied for the triple (g,G,X), while if j = 2, 3

then condition (3) is not satisfied for the triple (x, g,G).

Secondly, (H4, H4, ⊲
4, ⊳1) and (H4, H4, ⊲

1, ⊳4) are not matched pairs, since condi-

tion (4) fails to be fulfilled in the former case for the pair (x,GX) and in the latter

case for the pair (gx,X).

We focus now our attention on when (H4, H4, ⊲
4, ⊳4) is a matched pair, and for this

we look at the conditions (2)–(4). It is not hard to see that (4) is trivially fulfilled

for all (h, a) ∈ {1, g, x, gx} × {1, G,X,GX} \ {(x,X), (x,GX), (gx,X), (gx,GX)}.

A straightforward computation shows that the same condition is satisfied by (x,X)

if and only if t = b and a = s = 0, by (gx,GX) if and only if v = −d and c = u = 0,

by (x,GX) if and only if v = b, and by (gx,X) if and only if t = −d. Thus, condition

(4) is fulfilled if and only if a = c = s = u = 0, t = v = b and d = −b. It remains

to see that conditions (2) and (3) are compatible with the relations G2 = g2 = 1,

X2 = x2 = 0, gx = −xg and GX = −XG. Since this is straightforward, the proof is

complete. �

We are able to describe and classify all Hopf algebras that factorize through two

Sweedler’s Hopf algebras.

Theorem 2.4. Let k be a field of characteristic 6= 2. Then:

(1) A Hopf algebra E factorizes through H4 and H4 if and only if E ∼= H4 ⊗ H4

426



or E ∼= H16,λ for some λ ∈ k, where H16,λ is the 16-dimensional Hopf algebra

generated by g, x, G, X subject to the relations

g2 = G2 = 1, x2 = X2 = 0, gx = −xg, GX = −XG,

gG = Gg, gX = −Xg, xG = −Gx, xX +Xx = λ (1−Gg)

with the coalgebra structure given by

∆(g) = g ⊗ g, ∆(x) = x⊗ 1 + g ⊗ x, ∆(G) = G⊗G, ∆(X) = X ⊗ 1 +G⊗X,

ε(g) = ε(G) = 1, ε(x) = ε(X) = 0.

(2) H16,λ is pointed, unimodular, and non-semisimple. Moreover,

P1,g(H16,λ) = k(1− g)⊕ kx, P1,G(H16,λ) = k(1−G)⊕ kX,

P1,gG(H16,λ) = k(1− gG).

(3) Up to an isomorphism of Hopf algebras, there are only three Hopf algebras that

factorize through H4 and H4, namely

(7) H4 ⊗H4, H16,0 and H16,1
∼= D(H4)

where D(H4) is the Drinfel’d double of H4.

P r o o f. (1) The Hopf algebra H16,λ is the explicit description of the bicrossed

product H4 ⊲⊳ H4 associated with the non-trivial matched pair given in Theorem 2.1.

In H4 ⊲⊳ H4 we make the canonical identifications: G = G ⊲⊳ 1, X = X ⊲⊳ 1,

g = 1 ⊲⊳ g, x = 1 ⊲⊳ x. The defining relations of H16,λ follow easily. For instance:

xX = (1 ⊲⊳ x)(X ⊲⊳ 1) = (λ− λG) ⊲⊳ 1−X ⊲⊳ x+G ⊲⊳ (λ − λg)

= λ1 ⊲⊳ 1−X ⊲⊳ x− λG ⊲⊳ g = λ1−Xx− λGg.

(2) H16,λ is pointed because, as a coalgebra, it is the tensor product of two pointed

coalgebras [14], Lemma 5.1.10. The coradical of H16,λ is k[G(H4)]⊗k[G(H4)], hence

G(H16,λ) = {1, g, G, gG} ≃ Z2 × Z2. Since H4 is non-semisimple, so is H16,λ [14],

Corollary 3.2.3. H16,λ is unimodular since (X + GX)(x − gx) is simultaneously

a non-zero left and right integral as can easily be verified. The last part follows by

a routine check.

(3) H16,λ
∼= H16, 1 for λ ∈ k×, since the defining relations forH16,1 can be obtained

from that of H16,λ by replacing X by λ
−1X .

We next prove that H4 ⊗H4, H16,0 and H16,1 are non-isomorphic Hopf algebras.

Observe first that H4⊗H4 is generated as an algebra by the two copies of Sweedler’s
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Hopf algebra, H4 and H4, such that the generators of H4 commute with the gen-

erators of H4. Moreover, the sets of skew-primitive elements of H4 ⊗ H4 have the

same description as in (2). In order to distinguish between the generators of the

Hopf algebras in question, we attach a prime sign, ′, to the elements of H16, 0 and

two such signs to the elements of H16, 1.

Assume ϕ : H4⊗H4 → H16,0 is a Hopf algebra isomorphism. Then ϕ(g) is a group-

like element of H16,0. Since the vector space of (1, g)-primitive elements must have

the same dimension as the vector space of (1, ϕ(g))-elements, we have ϕ(g) ∈ {g′, G′}.

If ϕ(g) = g′ then ϕ(G) = G′ and ϕ(X) ∈ P1,G′(H16, 0). Let a, b ∈ k be such that

ϕ(X) = a(1 − G′) + bX ′. Taking into account that ϕ(G)ϕ(X)ϕ(G) = −ϕ(X),

we obtain that a = 0, hence ϕ(X) = bX ′. Since g and X commute, we have

g′X ′ = ϕ(g)ϕ(X) = ϕ(X)ϕ(g) = bX ′g′ = −bg′X ′, hence b = 0. Thus ϕ(X) = 0,

a contradiction with the fact that ϕ has a trivial kernel. A similar contradiction is

obtained if ϕ(g) = G′, so we conclude that H4 ⊗H4 and H16,0 are not isomorphic.

Since the same argument works when we consider H4 ⊗ H4 and H16,1, we deduce

that these Hopf algebras are not isomorphic as well.

Suppose now that ϕ : H16,0 → H16,1 is a Hopf algebra isomorphism. Then, as

above, ϕ(g′) ∈ {g′′, G′′}. If ϕ(g′) = g′′ then ϕ(G′) = G′′, ϕ(x′) ∈ P1,g′′(H16,1) and

ϕ(X ′) ∈ P1,G′′(H16,1). Let a, b ∈ k be such that ϕ(x′) = a(1 − g′′) + bx′′. Since

ϕ(g)ϕ(x)ϕ(g) = −ϕ(x) it follows that ϕ(x′) = bx′′. A similar argument shows that

ϕ(X ′) = dX ′′ for some d ∈ k. Using the fact that x′X ′ +X ′x′ = 0, we have

0 = ϕ(x′X ′ +X ′x′) = bd(x′′X ′′ +X ′′x′′) = bd(1− g′′G′′).

Therefore b = 0 or d = 0, with either case leading to a contradiction. If ϕ(g′) = G′′

then we arrive at a similar contradiction so we conclude that H16,0 ≇ H16,1.

Finally, we show that H16,1
∼= D(H4). First, recall that D(H4) factorizes through

(H∗

4 )
cop
and H4. Also, if {1

∗, g∗, x∗, (gx)∗} denotes the dual basis of {1, g, x, gx}

then H∗

4 is generated as an algebra by the group-like element G = 1∗ − g∗ and by

the (G, 1)-primitive element X = x∗ + (gx)∗, with the relations G2 = 1, X2 = 0,

and GX = −XG. Therefore, (H∗

4 )
cop

≃ H4, so D(H4) factorizes through H4 and

H4. In order to see which of the three Hopf algebras from (7) D(H4) is, recall the

Drinfel’d double as a matched pair. If H is a finite dimensional Hopf algebra, then

((H∗)
cop

, H, ⊲, ⊳) is a matched pair, where h⊲h∗ = h∗
(

S−1(h(2))?h(1)
)

and h⊳h∗ =

h∗
(

S−1(h(3))h(1)
)

h(2) for all h ∈ H , h∗ ∈ (H∗)
cop
, and D(H) ≃ (H∗)

cop
⊲⊳ H . In

our case, we have

x ⊳ X = X(S−1(1)x) +X(S−1(1)g)x+X(S−1(x)g)g

= X(x) +X(g)x+X(−x)g

= 1− g

which shows that D(H4) ≃ H4 ⊲⊳1 H4. �
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Remark 2.1. H16,0 is not the dual of D(H4) for otherwise D(H4)
∗ would be

unimodular and so would H4 ([15], Corollary 4).

Remark 2.2. The classification of pointed Hopf algebras of dimension 16 over

an algebraically closed field of characteristic zero was done in [6]. With the notation

of [6], Theorem 5.2, we have H4 ⊗H4 ≃ H(3), H16,0 ≃ H(4) and H16,1 ≃ H(5).

As a consequence of Theorem 2.4 we are able to describe the group of Hopf algebra

automorphisms of the three Hopf algebras from (7). We begin with the Drinfel’d

double, D(H4).

Corollary 2.5. Let k be a field of characteristic 6= 2. Then there exists an

isomorphism of groups

AutHopf(D(H4)) ∼= k∗ ⋊f Z2

where k∗⋊f Z2 is the semidirect product associated with the action as automorphisms

f : Z2 → Aut(k∗), f(1 + 2Z)(α) = α−1 for all α ∈ k∗.

P r o o f. We use Theorem 2.4 and the description of H16,1 given in (1). Let

ϕ be a Hopf algebra automorphism of H16,1. Then {ϕ(g), ϕ(G)} = {g,G}. If

(ϕ(g), ϕ(G)) = (g,G) then ϕ(x) ∈ P1,g(H16,1) and ϕ(X) ∈ P1,G(H16,1). Let a,

b, c, d ∈ k be such that ϕ(x) = a(1−g)+ bx and ϕ(X) = c(1−G)+dX . Taking into

account that ϕ(gxg) = −ϕ(x) and ϕ(GXG) = −ϕ(X) we find that a = c = 0. Thus,

ϕ(x) = bx and ϕ(X) = dX . Considering now the relation xX +Xx = 1 − gG and

applying ϕ to both terms of the equation we find that bd = 1. Thus, d = b−1. Since

there are no further restrictions on b imposed by the fact that ϕ is a Hopf algebra

isomorphism, we have obtained, for each b ∈ k×, an element ϕb ∈ Aut(H16,1) given

by

ϕb(g) = g, ϕb(G) = G, ϕb(x) = bx, ϕb(X) = b−1X.

If (ϕ(g), ϕ(G)) = (G, g) then, by a reasoning similar to the one above, we have

ϕ(x) = dX and ϕ(X) = d−1x for some d ∈ k×, and each such ϕ is a Hopf algebra

isomorphism of H16,1 that we denote by ψd.

Summarizing, we have obtained that the set of Hopf algebra automorphisms of

H16,1 is AutHopf(H16,1) = {ϕb ; b ∈ k×}∪ {ψd ; d ∈ k×}, a disjoint union of two sets

indexed by k×. The elements of AutHopf(H16,1) multiply according to the following

rules:

ϕbϕd = ϕbd, ψbψd = ϕb−1d, ψbϕd = ψbd, ϕbψd = ψb−1d

for all b, d ∈ k×. Let k× ⋊f Z2 be the semidirect product associated with f : Z2 →

Aut(k×), f(1 + 2Z)(b) = b−1 for all b ∈ k×. Taking into account that multiplication

in k× ⋊f Z2 is given by (b, m̂) · (d, n̂) = (bf(m̂)(d), m̂ + n̂) for all b, d ∈ k× and m̂,
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n̂ ∈ Z2, it is easy to see that

Γ: k× ⋊f Z2 → AutHopf(H16,1), Γ(b, 0̂) = ϕb, Γ(b, 1̂) = ψb−1

for all b ∈ k×, is an isomorphisms of groups. �

Corollary 2.6. Let k be a field of characteristic 6= 2. Then there exist isomor-

phisms of groups

AutHopf(H16,0) ∼= (k× × k×)⋊g Z2
∼= AutHopf(H4 ⊗H4)

where (k× × k×) ⋊g Z2 is the semidirect product associated with the action as

automorphisms g : Z2 → Aut(k××k×), g(1+2Z)(b, d) = (d, b) for all (b, d) ∈ k××k×.

P r o o f. The method of proof in both cases is the same as the one used in

proving Proposition 2.7. Moreover, both isomorphisms are obtained in exactly the

same way, therefore we will limit ourselves to pointing out the one for H16,0.

The set of Hopf algebra isomorphisms of H16,0 is AutHopf(H16,0) = {ϕb,d ; (b, d) ∈

k× × k×} ∪ {ψb,d ; (b, d) ∈ k× × k×}, where ϕb,d and ψb,d are defined by

ϕb,d(g) = g, ϕb,d(G) = G, ϕb,d(x) = bx, ϕb,d(X) = dX,

ψb,d(g) = G, ψb,d(G) = g, ψb,d(x) = bX, ψb,d(X) = dx.

The elements of AutHopf(H16,0) multiply according to the following rules

ψb,dψc,e = ϕdc,be, ϕb,dϕc,e = ϕbc,de, ψb,dϕc,e = ψbc,de, ϕb,dψc,e = ψdc,be

for all b, d, c, e ∈ k×. Considering the semi-direct product (k××k×)⋊gZ2 associated

with g : Z2 → Aut(k× × k×), g(1 + 2Z)(b, d) = (d, b) for all (b, d) ∈ k× × k×, we

obtain that

Γ: (k× × k×)⋊g Z2 → AutHopf(H16,0), Γ((d, b), 1̂) = ψb,d, Γ((b, d), 0̂) = ϕb,d

for all α, β ∈ k× is an isomorphism of groups. �
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