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Abstract. Let G be a graph, and λ the smallest integer for which G has a nowhere-
zero λ-flow, i.e., an integer λ for which G admits a nowhere-zero λ-flow, but it does not
admit a (λ − 1)-flow. We denote the minimum flow number of G by Λ(G). In this paper
we show that if G and H are two arbitrary graphs and G has no isolated vertex, then
Λ(G ∨ H) 6 3 except two cases: (i) One of the graphs G and H is K2 and the other is
1-regular. (ii) H = K1 and G is a graph with at least one isolated vertex or a component
whose every block is an odd cycle. Among other results, we prove that for every two graphs
G and H with at least 4 vertices, Λ(G ∨H) 6 3.
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1. Introduction

Throughout this paper all graphs are simple with no multiple edges. Let G be

a graph. We denote the vertex set and the edge set of G by V (G) and E(G),

respectively. Let v ∈ V (G). We denote the neighbors of v in G by NG(v). Let

S ⊆ V (G). For every v ∈ V (G), define NS(v) = NG(v) ∩ S. The complement of

a graph G is denoted by G. The degree of the vertex v in G is denoted by dG(v)

(for abbreviation d(v)). For every positive integer k, a k-regular graph is a graph in

which each vertex has degree k. For every integer r, rG denotes the disjoint union of

r copies of G. An even graph is a graph in which all degrees are even (an odd graph

is similarly defined). A block of G is a maximal connected subgraph having no cut

vertex. A leaf block of a connected graph G is a block of G containing exactly one cut

vertex of G. A bracelet graph is a connected graph whose each block is an odd cycle.

A broken bracelet graph is a graph one of whose the components is a bracelet graph

or an isolated vertex. The complete graph and the cycle of order n is denoted by Kn
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and Cn, respectively. Let D denote the graph which is the union of K1 and K2. For

positive integers m1, . . . ,mk (k > 2), let Km1,...,mk
denote the complete k-partite

graph with part sizes m1, . . . ,mk. The join of two graphs G and H , G ∨H , is the

graph obtained from G ∪ H by joining each vertex of G to each vertex of H . Let

(D, f) be an ordered pair, where D is an orientation of E(G) and let f : E(G) → Z

be an integer-valued function called a flow. For a vertex v ∈ V (G), let E+
G(v) and

E−
G(v) denote the sets of all edges of G with tails at v and heads at v, respectively.

Let λ be a positive integer. A λ-flow of a graph G is a flow f such that |f(e)| < λ

for every e ∈ E(G) and for every v ∈ V (G),

∑

e∈E+(v)

f(e) =
∑

e∈E−(v)

f(e).

A nowhere-zero λ-flow (abbreviated as a λ-NZF) of a graph G is an ordered pair

(D, f) such that for every edge e ∈ E(G), f(e) ∈ {1, . . . , λ− 1}. Let G be a graph,

and λ the smallest integer for which G has a λ-NZF, i.e., an integer λ for which G

admits a λ-NZF, but it does not admit a (λ− 1)-NZF. We denote the minimum flow

number of G by Λ(G). Let A be an abelian additive group. An A-NZF is a flow with

values in A \ {0}. The boundary of f is a function ∂f : V (G) → A defined by

∂f(v) =
∑

e∈E+(v)

f(e)−
∑

e∈E−(v)

f(e).

The concept of a nowhere-zero λ-flow was introduced by Tutte [8] as a generaliza-

tion for face coloring problems in planar graphs. The Four-Color Theorem says that

every planar graph is 4-colorable. The Four-Color Theorem is equivalent to saying

that every bridgeless planar graph has a 4-NZF. However, in [7], Tutte formulated

his famous 5-flow conjecture which is still open:

Conjecture. Every bridgeless graph admits a 5-NZF.

Jaeger [1] proved that every bridgeless graph has an 8-NZF, and Seymour [4]

improved Jaeger’s result by showing that every bridgeless graph has a 6-NZF. Tutte

conjectured that every 4-edge connected graph admits a 3-NZF. Jaeger [2] proved

that every 4-edge connected graph has a 4-NZF. In [3], the authors showed that if

every edge of a graph G is contained in a cycle of length at most 4, then G admits

a 4-NZF. In this paper, we determine the exact minimum flow number of G ∨H for

all graphs G and H .

Tutte [7] proved the following interesting result.
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Theorem 1. A multigraph admits a λ-NZF if and only if it admits a Zλ-NZF.

The following theorem characterizes all graphs which admit a 2-NZF, see [9],

page 308.

Theorem 2. A graph has a 2-NZF if and only if it is an even graph.

In this paper, we show that if G is a connected graph of order n > 2 which is not

a bracelet graph, then Λ(K1∨G) 6 3. Also, if G is a graph of order at least 2 and it is

not a union of one isolated vertex and a 1-regular graph, then Λ(K2∨G) 6 3. If r > 3

a positive integer, then we show that Λ(Kr ∨G) 6 3, unless G ∈ {K1, D}. Let r > 4

be an integer. We prove that for every graph G of order at least 4, Λ(Kr ∨G) 6 3.

Also it is shown that for every two arbitrary graphs G and H of order at least 4,

Λ(G∨H) 6 3. Moreover, we prove that if G and H are two graphs such that G has

no isolated vertex, then Λ(G ∨H) 6 3, with the following two exceptions:

(i) One of the graphs G and H is K2 and the other is 1-regular.

(ii) H = K1 and G is a broken bracelet graph.

2. Minimum NZF for Kr ∨G

Let G be a graph. In this section, we will determine the minimum flow number

of Kr ∨ G for every positive integer r. The next interesting result was proved by

Thomassen and Toft [6].

Theorem 3. Let G be a 2-connected graph of minimum degree at least 4. Then

G contains an induced cycle C such that G \ V (C) is connected and G \ E(C) is

2-connected.

The following theorem shows that if every edge of a graph is contained in a small

cycle, then the minimum flow number does not exceed 4.

Theorem 4 ([3]). If every edge of a graph is contained in a cycle of length at

most 4, then the graph admits a 4-NZF.

Now, we have the following corollary.

Corollary 1. Let G and H be two graphs. Then Λ(G ∨ H) 6 4, if one of the

following holds:

(i) |V (G)| = 1 and H has no isolated vertices.

(ii) |V (G)| > 2 and |V (H)| > 2.
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Corollary 2. Let G be a bracelet graph. Then Λ(K1 ∨G) = 4.

P r o o f. By Corollary 1, Part (i), Λ(K1 ∨G) 6 4 . By Theorem 1, it suffices to

prove that G has no Z3-NZF. We prove the corollary by induction on n = |V (G)|.

Consider a leaf block of G and suppose that this block is C2k+1. Let V (C2k+1) =

{v0, . . . , v2k}, where v0 is a cut vertex of G. By contradiction assume that K1 ∨ G

admits a Z3-NZF. With no loss of generality, assume that 3 edges incident with v1
are outgoing with value 1 (note that in every Z3-NZF of a graph one can reverse

the orientation of all edges with value 2 and change them to 1). Thus 3 edges

incident with v2 are incoming edges with value 1. By repeating this method, we

conclude that 3 edges incident with v2k are incoming edges with value 1. Let H =

K1 ∨ (G \ {v1, . . . , v2k}). Then H admits a Z3-NZF, which contradicts the induction

hypothesis. Note that by a similar method one can see that, Λ(K1 ∨ C2r+1) > 3 for

every positive integer r. So by induction the proof is complete. �

The next lemma plays a key role in the proofs.

Lemma 1. Assume that G is a connected even graph of order n and size m and

S ⊆ V (G), where |S| is even. Then G admits an orientation in which every edge has

value 1 and ∂f(v) = 2 for every v ∈ S1 and ∂f(v) = −2 for every v ∈ S2, where

S1, S2 ⊂ S and |Si| = |S|/2 for i = 1, 2. Moreover, for any v ∈ V (G) \ S, ∂f(v) = 0.

P r o o f. Let V (G) = {v1, . . . , vn}. With no loss of generality suppose that

V (S) = {v1, . . . , v2k}. If S = ∅, then by Theorem 2, we are done. Thus as-

sume that S 6= ∅. Since G is even, G has an Eulerian circuit with value 1, say

C : v1, vi1 , vi2 , . . . , vim−1 , v1. Let j1 be the smallest index for which 1 < ij1 6 2k.

Orient the trail v1, vi1 , vi2 , . . . , vij1 is such a way that we obtain a directed trail from

v1 to vij1 . Let j1 < j2 be the smallest index for which ij2 6 2k and ij2 /∈ {1, ij1}.

Now, orient the trail vij1 , vi1+j1
. . . , vij2 in such a way that we obtain a directed trail

from vij2 to vij1 . Continue this procedure 2k − 3 times. Finally, orient the edges of

the trail vij2k−1
, vi1+j2k−1

, . . . , v1 in such a way that we obtain a directed trail from

v1 to vij2k−1
. Now, let

S1 = {v1, vij2 , vij4 , . . . , vij2k−2
}, S2 = {vij1 , vij3 , . . . , vij2k−1

}.

This completes the proof. �

Lemma 2. Let G and H be two graphs such that Λ(G),Λ(H) 6 3. Then

Λ(L) 6 3, where L is the graph shown in Figure 1.
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G He

Figure 1. The graph L.

P r o o f. By Theorem 1, both G and H have a Z3-NZF, say f1 and f2, respec-

tively, in which the orientation of e is the same. Now, define the following Z3-NZF

f for L as follows:

f(x) =











f1(x), x /∈ E(H),

if2(x), x /∈ E(G),

f1(e) + if2(e), x = e,

where i = 1 if f1(e) = f2(e), and i = 2, otherwise. Now, by Theorem 1, we obtain

the result. �

Before we determine the minimum flow number of K1 ∨G for a graph G, we need

the following lemma.

Lemma 3. If G has one of the following properties, then Λ(K1 ∨G) 6 3.

(i) Every component of G has an even number of vertices.

(ii) Every component of G has at least one vertex of odd degree.

P r o o f. Obviously, it is enough to prove the lemma for a connected graph.

(i) Let S = {v ∈ V (G) ; dG(v) is even}. Since G has an even number of odd

vertices, |S| is even. Add a new vertex x and join this vertex to all vertices of odd

degree in G and call the new graph H . If G has no odd vertex, then let H = G. By

Lemma 1, we can find an orientation for H such that S1, S2 ⊂ S, |Si| = |S|/2 for

i = 1, 2, and S1 and S2 have the desired property. Now, join x to all vertices of S to

form K1 ∨G. Orient all edges incident with x and one endpoint in S1 from x to S1

and label them by 2. Do the same for S2 and orient the edges from S2 to x. This

achieves a 3-NZF for K1 ∨G.

(ii) If |V (G)| is even, then by Part (i), we are done. So suppose that |V (G)| is odd.

Now, add a new vertex x to G and join it to all vertices of odd degree in G. Name

this new graph H . Clearly, H is even. Define S = {v ∈ V (G) ; dG(v)is even} ∪ {x}.

By Lemma 1, we can find an orientation for H such that S1, S2 ⊂ S, |Si| = |S|/2

for i = 1, 2, and S1 and S2 have the desired property. Now, join x to v for every

v ∈ S1 \ {x} and orient the edge xv from x to v with value 2. Then join x to every

u ∈ S2 \ {x} and orient the edge ux from u to x with value 2. Now, the proof is

complete. �
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Theorem 5. If G is a connected graph of order n > 2 which is not a bracelet

graph, then Λ(K1 ∨G) 6 3.

P r o o f. We apply induction on |V (G)| + |E(G)|. By Lemma 3, we can assume

that G is an even graph of odd order. We consider two cases:

Case 1. G is 2-connected. We divide the proof of this case into two subcases:

Case 1.1. Assume that for every v ∈ V (G), d(v) > 4. In this case, by Theorem 3

there exists an induced cycle C such that H = G \ E(C) is 2-connected. Since C is

an induced cycle, it is not hard to see that H is not a bracelet graph. Therefore by

induction hypothesis Λ(K1 ∨G) 6 3.

Case 1.2. G has a vertex of degree 2. Since G is an even graph which is not

an odd cycle, G has a vertex of degree at least 4. Let V (G) = {v1, . . . , vn}. Since

G is connected, there are two adjacent vertices v1 and v2 such that d(v1) = 2 and

d(v2) > 4. Consider the following Eulerian circuit of G:

C : v1v2vm1vm2 . . . vm|E(G)|−2
v1.

Since d(v2) > 4, v2 appears at least twice in C. Suppose that t is the smallest index

such that v2 = vmt
. We claim that there exists a sequence j1 < j2 < . . . < jn−2

such that {v3, v4, . . . , vn} = {vmj1
, vmj2

, . . . , vmjn−2
} and S = {vmjk

; jk > t, 1 6

k 6 n − 2} has even cardinality. Since every vertex of G appears at least once

in C, we conclude that there exists a sequence s1 < s2 < . . . < sn−2 such that

{v3, v4, . . . , vn} = {vms1
, vms2

, . . . , vmsn−2
}. Let S′ = {vmsi

; si > t}. If |S′| is even,

then we are done. So, suppose that |S′| is odd. Two closed trails v2vm1vm2 . . . vmt

and vmt
. . . vm|E(G)|−2

v1v2 partition all edges of G. If these two trails have only v2 as

a common vertex, then v2 is a cut vertex and this contradicts the 2-connectedness

of G. Thus there is a vertex u 6= v2 in both trails. Since d(v1) = 2, we have

u 6= v1. Therefore there exist positive integers p and q such that p < t < q and

u = vmp
= vmq

. Assume that u = vmsl
. If sl < t, then we replace sl by q. Otherwise,

we replace sl by p. This relabeling of indices makes |S′| even and the claim is proved.

Let r = n−2−|S|. Since n is odd and |S| is even, r 6= 0. Thus jr < t < jr+1. Add

a new vertex x and join it to v1 and v2, then remove the edge v1v2. Clearly, the resul-

tant graph is even. Consider the directed Eulerian circuit v1xv2vm1 . . . vm|E(G)|−2
v1

in which the values of all edges are 1. Now, if r 6= n− 2, define the following n+ 1

trails:

T1 = v1x,

T2 = xv2vm1 . . . vmj1
,

T3 = vmj1
. . . vmj2

,

...
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Tr+1 = vmjr−1
. . . vmjr

,

Tr+2 = vmjr
. . . vmt

,

Tr+3 = vmt
. . . vmjr+1

,

...

Tn = vmjn−3
. . . vmjn−2

,

Tn+1 = vmjn−2
. . . vm|E(G)|−2

v1,

and if r = n − 2, define the trails Ti, 1 6 i 6 r + 2, as before, define Tr+3 =

vmt
. . . vm|E(G)|−2

v1. For i = 1, . . . , (n+ 1)/2, reverse the orientation of all edges of

T2i. Since |S| is even, r is odd. It is not hard to see that ∂f(v1) = 2, ∂f(v2) =

∂f(x) = −2 and there are (n− 1)/2 other vertices whose boundaries are 2 and the

boundaries of other vertices are −2. Join x to all vertices with boundary −2 except

v2 and orient these edges with head at x. Also, join x to all vertices with boundary 2

except v1 and orient them with tail at x. It is straightforward to see that we obtain

a 3-NZF for K1 ∨G.

Case 2: G is not 2-connected. First, assume that G has a leaf block, say B, which

is an odd cycle. Let V (K1) = {x}. Therefore, K1 ∨G is in Figure 2:

B

t

z

y

x

Figure 2. Graph G with an odd cycle as a leaf block.

Let NB(y) = {z, t} and M = ({x}∨B) \ {xy}. Remove y from M and join z to t.

By Lemma 3, Part (i), the resultant graph admits a 3-NZF. Since dM (y) = 2, so

Λ(M) 6 3. Since B is an odd cycle and G is not a bracelet graph, G\ (V (B)\{y}) is

not a bracelet graph. By induction hypothesis, {x}∨ (G\ (V (B)\{y})) has a 3-NZF.

This implies that Λ(K1 ∨G) 6 3.

Now, assume that no leaf block is an odd cycle. Consider a leaf block of G, say B.

By induction hypothesis, Λ({x}∨B) 6 3 and Λ(K1 ∨ (G \ (V (B) \ {y}))) 6 3. Now,

by Lemma 2, Λ(K1 ∨G) 6 3 and the proof is complete. �
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Now, we have an immediate corollary.

Corollary 3. Let G be a graph which is not a broken bracelet graph. Then

Λ(K1 ∨G) 6 3.

Corollary 4. If G is not a 1-regular graph, then Λ(K2 ∨G) 6 3.

P r o o f. We wish to show that if G is not 1-regular, then K1 ∨ G cannot be

a bracelet graph. By contradiction, suppose that all blocks of K1∨G are odd cycles.

Clearly, for each graph H , K1 ∨ H has at most one cut vertex. Therefore, K1 ∨ G

can only be in Figure 3:

Figure 3. The graph K1 ∨G.

Since each vertex other than the cut vertex has degree 2, G should be 1-regular,

which is a contradiction. So by Theorem 5, Λ(K1 ∨ (K1 ∨G) = K2 ∨G) 6 3. �

Remark 1. Let H = nK2 for some positive integer n, and G = K2 ∨ H . We

show that Λ(G) = 4. To see this, by Corollary 1, Part (ii), we have Λ(G) 6 4. By

contradiction assume that Λ(G) = 3. By Theorem 1, G has a Z3-NZF. We can assume

that the value of each edge is 1, because by reversing the orientation of any edge

labeled by 2 and changing 2 to 1, we achieve a Z3-NZF with value 1. If v ∈ V (H)

and dG(v) = 3, then clearly all edges incident with v are outgoing or incoming.

This yields that the value of the edge xy should be zero, where V (K2) = {x, y},

a contradiction. Therefore Λ(G) = 4.

Theorem 6. If G is a graph of order at least 2 and G is not a union of one

isolated vertex and a 1-regular graph, then Λ(K2 ∨G) 6 3.

P r o o f. If G contains an isolated vertex t, then by Corollary 4, Λ(K2 ∨

(G \ {t})) 6 3. Since the degree of t is 2 in K2 ∨ G, it is not hard to see that

Λ(K2∨G) 6 3. Thus we can assume that G has no isolated vertex. We claim that if

H is a graph and Λ(K1∨H) 6 3, then Λ(K2∨H) 6 3. Let V (K2) = {x, y}. Assume

that f is a Z3-NZF for {x}∨H . Now, we define a Z3-NZF, say g, forK2∨H as follows:
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For every v ∈ V (H) orient the edge yv, in the same way as the edge xv, and keep

the orientation of all edges of H and define g(xv) = g(yv) = f(xv), g(e) = 2f(e), for

every e ∈ E(H). It is straightforward to see that g is a Z3-NZF for K2 ∨H and so

Λ(K2 ∨H) 6 3 and the claim is proved.

Let G1, . . . , Gr be the connected components of G, for some positive integer r. If

Gi is not a bracelet graph, then by Theorem 5, Λ(K1 ∨Gi) 6 3. So by the claim, we

conclude that Λ(K2 ∨ Gi) 6 3. Now, if Gi is a bracelet graph, then Λ(Gi) = 2. On

the other hand by [5], Λ(K2,|V (Gi)|) 6 3. Therefore Λ(K2 ∨G) 6 3. �

Remark 2. If G is a union of an isolated vertex and a 1-regular graph and

|V (G)| > 2, then Λ(K2 ∨ G) = 4, since if t is an isolated vertex, the existence of

a λ-NZF for K2 ∨ G is equivalent to the existence of a λ-NZF for K2 ∨ (G \ {t}).

Now, by Remark 1, Λ(K2 ∨G) = 4.

In the next result we obtain the minimum flow number of the join of Kr, (r > 3)

and an arbitrary graph.

Theorem 7. Let r > 3 be a positive integer. Then Λ(Kr ∨ G) 6 3, unless

G ∈ {K1, D}.

P r o o f. If n = |V (G)| = 2, then by Corollary 4 and [5], the assertion holds.

Thus assume that n > 3. Let V (Kr) = {v1, . . . , vr}. Suppose there is no positive

integer s such that G = K1 ∪ sK2. By Theorem 6, Λ(K2 ∨G) 6 3. First, let r = 4.

By [5], Λ(K2,n) 6 3 and so Λ(K4 ∨ G) 6 3. Now, assume that r = 3. Consider

a Z3-NZF, say f1, for {v1, v2} ∨G and a Z3-NZF, say f2, for {v2, v3} ∨G such that

the orientation and the value of all edges of G and all edges incident with v2 in f1

and f2 are the same. Clearly, f1 + f2 is a Z3-NZF for {v1, v2, v3} ∨G ∼= K3 ∨G.

Now, let r ∈ {3, 4} and G = K1 ∪ sK2, for some positive integer s > 1. By

induction on s, we show that Λ(Kr ∨ G) 6 3. For s = 2, the result follows from

Figure 4 (the value of each edge is 1):

Figure 4. A Z3-NZF for Kr ∨ (K1 ∪ 2K2), r = 3, 4.

Now, assume that s > 3. By induction hypothesis, Λ(Kr ∨ (K1 ∪ (s− 1)K2)) 6 3.

On the other hand, by Corollary 4, Λ(Kr∨K2) 6 3. These, yield that Λ(Kr∨G) 6 3.
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Finally, let r > 5. We know that Λ(K3 ∨ G) 6 3. On the other hand facts by [5],

Λ(Kr−3,n) 6 3 and so Λ(Kr ∨G) 6 3. �

Remark 3. For every positive integer r > 2, Λ(Kr ∨ D) = 4. To see this by

Theorem 4, it suffices to prove thatKr∨D does not admit a Z3-NZF. By contradiction

assume that Kr ∨ D admits a Z3-NZF, f , in which the value of each edge is 1. In

such a Z3-NZF of Kr ∨D, 3 edges incident with each vertex of Kr are incoming or

outgoing edges. This yields that 0 = ∂f(z) = ∂f(x) − f(xy), where V (K1) = {z}

and V (K2) = {x, y}. Thus f(xy) = 0, a contradiction. So Λ(Kr ∨D) = 4.

3. Minimum NZF for join of two graphs

In this section, we show that except a few cases, the join of two arbitrary graphs

has minimum flow number at most 3.

Theorem 8. Let G and H be two graphs such that G has no isolated vertex.

Then Λ(G ∨H) 6 3, with the following two exceptions:

(i) One of the graphs G and H is K2 and the other is 1-regular.

(ii) H = K1 and G is a broken bracelet graph.

P r o o f. Let n1 = |V (G)| and n2 = |V (H)|. We use induction on |V (G)| +

|V (H)|+ |E(G)|+ |E(H)|. We divide the proof into three cases:

Case 1. First assume that H has at least two isolated vertices. If H = K2, then

since G has no isolated vertex by Theorem 6, Λ(G ∨ H) 6 3. Thus assume that

H 6= K2. Remove two isolated vertices of H and call the resultant graph by H ′.

If none of the above exceptions holds for two graphs G and H ′, then by induction

hypothesis, Λ(G ∨ H ′) 6 3. Moreover, by [5], Λ(K2,n1) 6 3. So, Λ(G ∨ H) 6 3.

Now, suppose that one of the exceptions holds for G or H ′. So we have the following

subcases:

Case 1.1. Let G = K2 and H ′ = rK2, for some positive integer r. We have

H = K2 ∪H ′. Now, by Corollary 4, Λ(G ∨H) 6 3.

Case 1.2. Let H ′ = K2 and G = rK2, for some positive integer r. By Theorem 6,

Λ(K2 ∨G) 6 3. Also by Corollary 4, Λ(K2 ∨K2r) 6 3 and so Λ(G ∨H) 6 3.

Case 1.3. G is a broken bracelet graph and H ′ = K1. In this case H = K3 and

by Theorem 7 we are done.

Case 2. Now, assume that H has exactly one isolated vertex. If H = K1, then

by Corollary 3, we are done. Thus let n2 > 2. If G is not connected and G1 is

a component of G, then by induction hypothesis, Λ((G \ V (G1)) ∨ H) 6 3 and

Λ(G1 ∨ Kn2) 6 3. These facts imply that Λ(G ∨ H) 6 3. Now, assume that G is
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connected. If G is not a bracelet graph, then by Theorem 5, Λ(G∨K1) 6 3. On the

other hand, by induction hypothesis Λ(Kn1∨(H \V (K1))) 6 3. Hence Λ(G∨H) 6 3.

Now, let G be a bracelet graph. Call the isolated vertex of H by v. First, assume

that G = C2k+1 and V (C2k+1) = {v1, . . . , v2k+1}, for some positive integer k. Let

P : v1v2v3 be a 3-path on the cycle C2k+1. We have Λ({v} ∨ P ) 6 3. Also, the

union of triangles vv4v5, vv6v7, . . . , vv2kv2k+1 has a 2-NZF. On the other hand, since

H\{v} has no isolated vertex, by induction hypothesis Λ((K1∪kK2)∨(H\{v})) 6 3.

Thus in this case Λ(G∨H) 6 3. Now, assume that G is not an odd cycle. Therefore

G is in Figure 5:

Cku

G

Figure 5. A bracelet graph with a leaf block isomorphic to Ck.

Let G′ = G \ (V (Ck) \ {u}). By induction hypothesis Λ(G′ ∨H) 6 3. Moreover,

Λ(Ck) = 2. Now, by [5], Λ(Kk−1,n2) 6 3. Thus Λ(G ∨H) 6 3.

Case 3. Now, assume that H has no isolated vertex. If one of the graphs G and H

is a broken bracelet graph, then by removing the edges of a leaf block of a bracelet

component and using induction we obtain a 3-NZF for G ∨ H . Thus assume that

neither of the graphs G and H is a broken bracelet graph. If n1 = 2 or n2 = 2,

then by Corollary 4, we are done. So let n1, n2 > 3. Now, let x ∈ V (G) and

y ∈ V (H). By Corollary 3, Λ({x} ∨H) 6 3 and Λ({y} ∨ G) 6 3. Moreover, by [5],

Λ(Kn1−1,n2−1) 6 3. Now, using Lemma 2, it is not hard to see that Λ(G ∨H) 6 3

and the proof is complete. �

The next result proves that the minimum flow number of the join of any two

graphs of order at least 4 does not exceed 3.

Theorem 9. Let G and H be two graphs of order at least 4. Then Λ(G∨H) 6 3.

P r o o f. Let n1 = |V (G)| and n2 = |V (H)|. We prove the theorem by induction

on |E(G)|+ |E(H)|. First, let one of the graphs G and H , say G, have at least two

isolated vertices. If H has no isolated vertex, then by Theorem 8, Λ(G ∨ H) 6 3.
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Thus we can assume that H has at least one isolated vertex. If G = Kn1 , then

by Theorem 7, we are done. Thus assume that G has at least one edge. Let G =

G1 ∪Kr, for some positive integer r(r > 2), where δ(G1) > 1. Now, by Theorem 8,

Λ(G1 ∨H) 6 3. By [5], Λ(Kr,n2) 6 3 and so Λ(G ∨H) 6 3.

Therefore, by Theorem 8, we can assume that both G and H have exactly one

isolated vertex. Let G = G1 ∪ {u} and H = H1 ∪ {v}, where u and v are isolated

vertices of G and H , respectively. If G contains a cycle, then remove all edges of this

cycle and apply the induction to obtain a 3-NZF for G∨H . Thus one can assume that

G1 is not a broken bracelet graph. Similarly, H1 is not a broken bracelet graph. Let

x ∈ V (G1) and y ∈ V (H1). By Corollary 3, Λ({x} ∨H1) 6 3 and Λ({y} ∨G1) 6 3.

LetM = {xp, yq ; p ∈ V (H1), q ∈ V (G1)}. Now, by Lemma 2, the induced subgraph

of G1∨H1 on E(G1)∪E(H1)∪M , L, has a 3-NZF. Let T = (G∨H)\({x, y}∪E(L)).

Clearly, T ∼= Kn1−1,n2−1. Consider the 4-cycle with vertex set {x, y, u, v} and call it

by C. We know that Λ(C) = 2. We have E((G∨H)\ (E(L)\{xy})) = E(T )∪E(C).

Now, by Lemma 2 and [5], Λ((G ∨H) \ (E(L) \ {xy})) 6 3. Again, using Lemma 2,

Λ(G ∨H) 6 3. The proof is complete. �

We close the paper with the following result.

Theorem 10. Let G be a graph. Then Λ(D ∨ G) = 3, unless G = Kr for some

positive integer r.

P r o o f. First, notice that since D ∨G has at least one vertex of odd degree, by

Theorem 2, Λ(D ∨ G) > 3. We use induction on |V (G)| + |E(G)|. Assume that G

has at least one edge and G1, . . . , Gt are all components of G of order at least 2 and

G has s isolated vertices (s > 0). Suppose that G 6= K1 ∪ 2K2. If t > 2, then there

exists a component of G, say G1, such that G \ V (G1) 6= D. Hence by induction

hypothesis, Λ(D ∨G1) = 3 and by Theorem 7, Λ(K3 ∨ (G \ V (G1))) 6 3. Therefore

Λ(D ∨ G) = 3. Now, if G = K1 ∪ 2K2, then Figure 6 as well as Theorem 1, show

that Λ(D ∨G) = 3.

Figure 6. A Z3-flow for D ∨ (K1 ∪ 2K2).

Now, suppose that t = 1. If s > 2, then using induction hypothesis and [5], we

have Λ(D ∨ G1) = 3 and Λ(K3,s) 6 3, and we are done. Hence, let s 6 1. If s = 0,
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then the result follows from Theorem 8. Now, let s = 1. If G1 is a bracelet graph

and G1 is not an odd cycle, then by removing all edges of a block of G1 and using

induction hypothesis the assertion holds. Thus assume that G1 = C2k+1, for some

positive integer k. Now, by induction on k, we show that Λ(D ∨ (C2k+1 ∪K1)) = 3.

Figure 7 shows that the assertion holds for k = 1:

Figure 7. A Z3-flow for D ∨ (C3 ∪K1).

Assume that Λ(D∨(C2k−1∪K1)) = 3. Let V (C2k−1) = {v1, . . . , v2k−1}. Take a 3-

NZF for D∨ (C2k−1∪K1). Replace the edge v1v2 by a path P of order 4, P : v1pqv2.

Orient and label all edges of P in the same way as v1v2. Now, since Λ(K2,3) 6 3, we

find that Λ(D ∨ (C2k+1 ∪K1)) = 3.

Now, suppose that G1 is not a bracelet graph. If G1 = K2, since Λ(D ∨D) = 3,

the assertion holds. Hence, let G1 6= K2. Thus, D ∨G is shown in Figure 8:

x y z

tu

GI

Figure 8. D ∨ (G1 ∪ {t}).

Now, let L = (D ∨ {u, t}) \ {xu}. Obviously, L admits a 3-NZF. On the other

hand, {y, z} ∨ (G1 \ (E(G1) ∪ {u})) ∼= K2,n−2, where n = |V (G)|. By Theorem 5,

Λ({x} ∨G1) 6 3. Therefore, Λ(D ∨G) = 3 and the proof is complete. �
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