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NONSYMMETRIC SOLUTIONS OF A NONLINEAR

BOUNDARY VALUE PROBLEM

Sámuel Peres, Bratislava
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Abstract. We study the existence and multiplicity of positive nonsymmetric and sign-
changing nonantisymmetric solutions of a nonlinear second order ordinary differential equa-
tion with symmetric nonlinear boundary conditions, where both of the nonlinearities are of
power type. The given problem has already been studied by other authors, but the number
of its positive nonsymmetric and sign-changing nonantisymmetric solutions has been deter-
mined only under some technical conditions. It was a long-standing open question whether
or not these conditions can be omitted. In this article we provide the answer. Our main
tool is the shooting method.
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1. Introduction

In this paper we deal with positive nonsymmetric (i.e. noneven) solutions of the

problem

(1.1)

{

u′′(x) = a|u(x)|p−1u(x), x ∈ (−l, l),

u′(±l) = ±|u(±l)|q−1u(±l)

for p > 1, q > (p + 1)/2, a, l > 0 and with its sign-changing nonantisymmetric

(i.e. nonodd) solutions for p > 1, 0 < q < (p+ 1)/2, a, l > 0. (The choice of these

conditions will be explained a few paragraphs later.)

This work was supported by the Slovak Research and Development Agency under the
contract No. APVV-0134-10 and by the VEGA 1/0711/12 grant.
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The first study of positive solutions of (1.1) was done by M.Chipot, M. Fila and

P.Quittner in [5]. They also studied the N -dimensional version of (1.1), but they

were interested mainly in global existence and boundedness or blow-up of positive

solutions of the corresponding N -dimensional parabolic problem

(1.2)







ut = ∆u− a|u|p−1u in Ω× (0,∞),

∂u

∂n
= |u|q−1u in ∂Ω× (0,∞),

u(·, 0) = u0 in Ω,

where Ω ⊂ R
N is a bounded domain, n is the unit outer normal vector to ∂Ω, u0 :

Ω → [0,∞), considering p, q > 1 and a > 0. The same problem was independently

studied in [12] for N = 1.

The results from [5] have been generalized in many directions: In [15] the behaviour

of positive solutions of (1.2) was examined for all p, q > 1, while sign-changing

solutions were considered in [6] for p > 1, q > 1. Positive solutions of the elliptic

problem with −λu+up on the right-hand side of the equation were dealt with in [13]

for λ ∈ R, p, q > 1, and later in [10] for λ ∈ R, p, q > 0, (p, q) /∈ (0, 1)2. In [11]

and [16], positive and sign-changing solutions of the parabolic problem with more

general nonlinearities f(u), g(u) instead of a|u|p−1u, |u|q−1u have been studied, while

f(x, u), g(x, u) were considered in [2]. Many results concerning elliptic problems with

nonlinear boundary conditions were summarised in [17]. In the recent paper [14],

(1.1) was studied for p, q ∈ R, and its solvability was examined for p > −1, 0 6 q 6

(p+ 1)/2 and p > −1, q > (p+ 1)/2, but only symmetric solutions were dealt with

in the latter case. Further extensions of the results from [5] can be found in [1], [3],

[4], [7], [8], [9].

It was shown in [5], Theorems 3.1 and 3.2, that assuming p, q > 1, (1.1) pos-

sesses positive nonsymmetric solutions only for q > (p+ 1)/2. (In general for

q > max{0, (p+ 1)/2}, if we consider p, q ∈ R (see [14], Theorem 2.6 (i)).) The

existence of at most one pair of nonsymmetric solutions was proved under the con-

dition

(1.3) p 6 4 or p > 4, q > p− 1− 1

p− 2
,

(see [5], Theorem 3.4). The first result of this paper—stated in Theorem 2.10—is

that condition (1.3) is superfluous.

On the other hand, sign-changing nonantisymmetric solutions of (1.1) for p > 1,

q > 1 exist only in the case of q < (p+ 1)/2 (see [6], Theorem 1.3 (i)). According to

[6], Theorem 1.3 (iii), if

(1.4) (p− q)(2q + 1− p)(p+ 1) > 2q(p− 1),
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then either four or no sign-changing nonantisymmetric solutions exist. As our second

result, we prove this property in Theorem 3.10 without assuming (1.4), including also

some q 6 1.

2. Positive nonsymmetric solutions

We start this section with recalling the shooting method as it was used in [5].

Let p, q ∈ R, a, l > 0. If u is a positive solution of (1.1), then u′(−l) < 0 < u′(l),

therefore u has a stationary point x0 ∈ (−l, l). So the function u(·+ x0) solves

(2.1)







u′′ = aup,

u(0) = m,

u′(0) = 0

for some m > 0. Since u 7→ aup is locally Lipschitz continuous on (0,∞), (2.1) has

a unique maximal solution, which is apparently even and strictly convex. We will

denote it by um,p,a and its domain by (−Λm,p,a,Λm,p,a).

Let us also introduce the notation N+(l) = N+(l; p, q, a) for the set of all positive

nonsymmetric (i.e. noneven) solutions of (1.1). Obviously, N+(l) consists of all such

functions um,p,a(· − (l1 − l2)/2)|[−l,l] that l1 + l2 = 2l, l1 6= l2 and 0 < li < Λm,p,a,

u′
m,p,a(li) = uq

m,p,a(li) for i = 1, 2.

Lemma 2.1 ([5], pages 53–55, for p, q > 1, or [14], Lemma 2.4, for p, q ∈ R). Let

p 6= −1, q ∈ R, a > 0. Then the following statements are equivalent for arbitrary

m, l > 0:

(i) l < Λm,p,a and u′
m,p,a(l) = uq

m,p,a(l),

(ii) the equation

0 = F(m,x) := Fp,q,a(m,x) :=
x2q

2a
− xp+1

p+ 1
+

mp+1

p+ 1

with the unknown x > 0 has a solution R > m, and

l =
m(1−p)/2

√
2a

Ip

(R

m

)

,

where

Ip(y) :=

∫ y

1

√

p+ 1

V p+1 − 1
dV, y > 1.
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Let us remark that an assertion analogous to Lemma 2.1 holds for p = −1, in

which Fp,q,a and Ip are replaced by their limits for p → −1.

One can see that F(m, ·) has different behaviour for p > −1, p = −1 and p < −1

as well as for q > 0, q = 0 and q < 0. It also matters which of the exponents 2q,

p + 1 is greater. However, from now on we will consider only the case of p > −1,

q > (p+ 1)/2.

Lemma 2.2 ([5], pages 57–58, for p > 1, or [14], Lemma 2.5 (iv), for p > −1).

Let p > −1, q > (p+ 1)/2, a,m > 0 and let us introduce

M := Mp,q,a :=
(2q − p− 1

2q

)1/(p+1)(a

q

)1/(2q−p−1)

.

If m > M , then F(m, ·) has no zero. If m = M , then the only zero of F(m, ·) is
(a

q

)1/(2q−p−1)

=: Rp,q,a(M) =: R(M) > M.

If m < M , then F(m, ·) has two zeros, which will be denoted by Ri;p,q,a(m) =:

Ri(m), i = 1, 2, satisfying

(2.2) m < R1(m) < R(M) < R2(m).

Definition 2.3. Let p > −1, q > (p+ 1)/2, a > 0 and put

Li(m) := Li;p,q,a(m) :=
m(1−p)/2

√
2a

Ip

(Ri;p,q,a(m)

m

)

for i = 1, 2 and m ∈ (0,M). We introduce Lp,q,a(M) =: L(M) analogously. Func-

tions L, L1 and L2 will be called time maps (associated with (2.1)).

Using Lemmata 2.1 and 2.2, we can describe N+(l) by means of the time maps:

Lemma 2.4. For all p > −1, q > (p+ 1)/2 and a, l > 0:

N+(l) =
{

um,p,a

(

· ±L2(m)− L1(m)

2

)∣
∣
∣
[−l,l]

: L1(m) + L2(m) = 2l
}

.

Thus, to determine the number of positive nonsymmetric solutions of (1.1) for

given p, q, a, l, we need to calculate the limits of L1+L2 at 0 andM , to examine its

monotonicity and to estimate its possible relative extrema. Therefore, the following

two lemmata will be needed.
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Lemma 2.5 ([5], Lemmata 3.1 and 3.3, for p, q > 1, or [14], Lemmata 8.3 and

8.4, for p > −1). Let p > −1, q > (p+ 1)/2 and a > 0. Then

lim
m→M

Li(m) = L(M), i = 1, 2

and if, in addition, p > 1, then

lim
m→0

L2(m) = ∞.

Lemma 2.6 ([5], Proof of Theorem 3.1, for p > 1, or [14], Lemma 2.9, for p > −1).

If p > −1, q > (p+ 1)/2, a > 0, i ∈ {1, 2}, then Li is differentiable on (0,M),

fulfilling

L′

i(m) =
1− p

2m
Li(m) +

2q − p− 1

2am

Rq−p
i (m)

1− qa−1R2q−p−1
i (m)

.

The next lemma will be used in the proof of Lemma 2.8.

Lemma 2.7. If p > −1, q > (p+ 1)/2 and a > 0, then R1R2 < R2(M).

P r o o f. Choose p > −1, q > (p+ 1)/2, a > 0, m ∈ (0,M), and set α :=

R2(m)/R(M). Evidently, α > 1 (see (2.2)). Our aim is to prove that

(2.3) R1(m) <
R(M)

α
.

Since F(m, ·) is decreasing on (0, R(M)], (2.3) is equivalent to

F(m,R1(m)) > F
(

m,
R(M)

α

)

,

which can be rewritten in the form

F(m,αR(M))−F
(

m,
R(M)

α

)

> 0,

using the definition of R1(m) and R2(m). One can derive that

F(m,αR(M))−F
(

m,
R(M)

α

)

= Rp+1(M)
︸ ︷︷ ︸

>0

(Fα(2q)− Fα(p+ 1)),

where

(2.4) Fα(x) :=
αx − α−x

x
, x > 0,
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therefore, the verification of the increase of Fα on (0,∞) will make the proof com-

plete. Defining

G(z) := (z2 + 1) ln z − z2 + 1, z > 1,

we have that

F ′

α(x) =
G(αx)

x2αx
.

Thus, it suffices to prove that G(z) > 0 for z > 1. And this holds indeed because

G(1) = 0, G′(1) = 0 and

G′′(z) = 2 ln z +
z2 − 1

z2
> 0, z > 1.

�

Lemma 2.8. If p > 1, q > (p+ 1)/2 and a > 0, then (L1 + L2)
′ < 0.

P r o o f. Let p > 1, q > (p+ 1)/2, a > 0 and m ∈ (0,M).

1. For arbitrary y > 1 we have

Ip(y) >

∫ y

1

√

p+ 1

V p+1 − 1

(V

y

)p

dV =
2

yp

√

yp+1 − 1

p+ 1
.

Consequently,

Li(m) >

√
2√

aRp
i (m)

√

Rp+1
i (m)−mp+1

p+ 1
=

Rq−p
i (m)

a
, i = 1, 2.

(Recall that F(m,Ri(m)) = 0.) Using Lemma 2.6 and the last inequality, we obtain

that

(L1 + L2)
′(m) 6

Rq−p(M)

2am

(

F
(R1(m)

R(M)

)

+ F
(R2(m)

R(M)

))

,

where

F (x) := Fp,q(x) := (1− p)xq−p +
(2q − p− 1)xq−p

1− x2q−p−1
, x ∈ (0, 1) ∪ (1,∞).

Thus,

(2.5) F
(R1(m)

R(M)

)

+ F
(R2(m)

R(M)

)

< 0

is a sufficient condition for (L1 + L2)
′(m) < 0.

2. Let us prove that F is increasing on (0, 1) for all p > 1, q > (p+ 1)/2.
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For this purpose, it is useful to introduce parameters

α := p− 1, β := 2(p− q).

Thus, we consider α > 0, β < α. One can derive that

F (x) = −αx−β/2 +
(α− β)x−β/2

1− xα−β
,

F ′(x) =
x−β/2−1

2(1− xα−β)2
︸ ︷︷ ︸

>0

g(xα−β),

where

g(z) := gα,β(z) := αβz2 + (2α2 − 5αβ + β2)z + β2.

So it suffices to prove that g > 0 on (0, 1).

If β 6 0, then the statement follows from the facts that g(0) = β2 > 0, g(1) =

2(α− β)2 > 0, and g is concave. Therefore, assume β > 0. In that case, g is strictly

convex, attaining its minimum at

−2α2 + 5αβ − β2

2αβ
=: z0;α,β =: z0.

If z0 6 0, then g(z) > g(0) > 0 for z ∈ (0, 1). If z0 > 0, then

g(z0) =
(α − β)2(−4α2 + 12αβ − β2)

4αβ
= (α− β)2

(

z0 +
1

2
+

β

4α

)

> 0,

yielding again that g > 0 on (0, 1).

So F is indeed increasing on (0, 1).

3. Lemmata 2.7 and 2.2 imply that

0 <
R1(m)

R(M)
<

R(M)

R2(m)
< 1.

Thus, due to 2.,

F
( R(M)

R2(m)

)

+ F
(R2(m)

R(M)

)

6 0

is a sufficient condition for (2.5). And since the range of R2/R(M) is a subset of

(1,∞) (actually, it equals (1, R2(0)/R(M)), see [14], Lemma 8.1), the verification of

(2.6) ∀ p > 1, q >
p+ 1

2
, x > 1: F

(1

x

)

+ F (x) 6 0

will complete the proof.
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Let us reformulate (2.6) by means of α and β, and let us multiply the inequality

in it by xβ/2(1− xα−β), to obtain the equivalent assertion

∀α > 0, β < α, x > 1: uα,β(x) := βxα + αxα−β − αxβ − β > 0.

Trivially, u0,β ≡ 0, so we will consider only α > 0. Since uα,β(1) = 0, it suffices to

prove that uα,β is nondecreasing on [1,∞). However,

u′

α,β(x) = αxβ−1
︸ ︷︷ ︸

>0

(βxα−β + (α − β)xα−2β − β
︸ ︷︷ ︸

=:vα,β(x)

)

with vα,β(1) = α − β > 0, so it suffices to verity the nondecrease of vα,β on [1,∞).

And that is guaranteed by the equality

v′α,β(x) = (α− β)xα−2β−1

︸ ︷︷ ︸

>0

(βxβ + α− 2β
︸ ︷︷ ︸

=:wα,β(x)

),

wα,β(1) = α− β > 0 and the nondecrease of wα,β . �

Remark 2.9. The proof of Lemma 2.8 was motivated by [6], Remark 5.3, where

a sufficient condition of (L1 + L2)
′ < 0 (L1 and L2 being the time maps associated

with (3.1), see Definition 3.3), looking similar to (2.5), had been derived. That

condition is based on a different integral estimate, and will be verified in the proof

of Lemma 3.8.

The properties of L1+L2 stated in Lemmata 2.5 and 2.8, together with Lemma 2.4,

lead to the main result of this section:

Theorem 2.10. Let p > 1, q > (p+ 1)/2 and a, l > 0. There exists such

a number L(M) > 0 (see Lemma 2.2 and Definition 2.3) that (1.1) has two positive

nonsymmetric solutions for l > L(M) and none for l 6 L(M). (See Figure 1.)

0−l lx0−x0

m

um,p,a(·+ x0)um,p,a(· − x0)

Figure 1. The two positive nonsymmetric solutions of (1.1) in the case dealt with in Theo-
rem 2.10. (Here x0 = (L2(m)− L1(m))/2, see Lemma 2.4).
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3. Sign-changing nonantisymmetric solutions

This section will be again started with recalling the shooting method from [6].

Lemmata 3.1, 3.2, 3.5 and 3.6 will be stated under weaker assumptions on q than

the corresponding assertions cited from [6], but we do not provide the proofs because

they are unchanged.

Let p > 1, q ∈ R, a, l > 0. If u is a sign-changing solution of (1.1) and x0 is its

zero, then u(·+ x0) solves

(3.1)







u′′ = a|u|p−1u,

u(0) = 0,

u′(0) = θ

for some θ ∈ R. Since u 7→ a|u|p−1u is locally Lipschitz continuous on R, (3.1) has

a unique maximal solution, which is obviously odd. It will be denoted by uθ,p,a and its

domain by (−Λθ,p,a,Λθ,p,a). Clearly, u0,p,a ≡ 0 on R and thus, x0 ∈ (−l, l) and θ 6= 0.

One can also see that u is strictly convex on the intervals where it has positive values,

and strictly concave on the intervals where it has negative values. As a consequence,

u′
θ,p,a > 0 if θ > 0, and u′

θ,p,a < 0 if θ < 0. In addition, u−θ,p,a = −uθ,p,a, therefore

we will restrict our further considerations to θ > 0.

Let us also introduce the notation N±(l) = N±(l; p, q, a) for the set of all sign-

changing nonantisymmetric (i.e. nonodd) solutions of (1.1). Obviously, N±(l) con-

sists of all such functions ±uθ,p,a(· − (l1 − l2)/2)|[−l,l] that θ > 0, l1 + l2 = 2l, l1 6= l2
and 0 < li < Λθ,p,a, u

′
θ,p,a(li) = uq

θ,p,a(li) for i = 1, 2.

Lemma 3.1 (for q > 1 see [6], pages 114–116). Let p > 1, q ∈ R, a > 0, and set

b := 2a/(p+ 1). Then the following statements are equivalent for arbitrary θ, l > 0:

(i) l < Λθ,p,a and u′

θ,p,a(l) = uq
θ,p,a(l),

(ii) the equation

0 = F(θ, x) := Fp,q,a(θ, x) := x2q − bxp+1 − θ2

with the unknown x > 0 has some solution R, and

l = θ−(p−1)/(p+1)Ip,b(θ
−2/(p+1)R),

where

Ip,b(y) :=

∫ y

0

ds√
bsp+1 + 1

, y > 0.
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Clearly, F(θ, ·) has different behaviour for q ∈ (−∞, 0), {0}, (0, (p+ 1)/2),

{(p+ 1)/2}, ((p+ 1)/2,∞). In the rest of this article, we will deal only with the

third case.

Lemma 3.2 (for q > 1 see [6], page 115). Let p > 1, 0 < q < (p+ 1)/2, a, θ > 0,

and let us introduce

Θ := Θp,q,a :=

√
p+ 1− 2q

p+ 1

( q

a

)q/(p+1−2q)

.

If θ > Θ, then F(θ, ·) has no zero. If θ = Θ, then the only zero of F(θ, ·) is

( q

a

)1/(p+1−2q)

=: Rp,q,a(Θ) =: R(Θ).

If θ < Θ, then F(θ, ·) has two zeros, which will be denoted by Ri;p,q,a(θ) =: Ri(θ),

i = 1, 2, being

R1(θ) < R(Θ) < R2(θ).

Definition 3.3. Let p > 1, 0 < q < (p+ 1)/2, a > 0, b := 2a/(p+ 1), and put

Li(θ) := Li;p,q,a(θ) := θ−(p−1)/(p+1)Ip,b(θ
−2/(p+1)Rp,q,a(θ))

for i = 1, 2 and θ ∈ (0,Θ). We introduce Lp,q,a(Θ) =: L(Θ) analogously. Functions

L, L1 and L2 will be called time maps (associated with (3.1)).

Using Lemmata 3.1 and 3.2, we can describe N±(l) by means of the time maps:

Lemma 3.4. For all p > 1, q ∈ (0, (p+ 1)/2) and a, l > 0:

N±(l) =
{

± uθ,p,a

(

· ±L2(θ)− L1(θ)

2

)∣
∣
∣
[−l,l]

: L1(θ) + L2(θ) = 2l
}

,

where the two ± symbols on the right-hand side are independent (i.e., there are
four sign-changing nonantisymmetric solutions corresponding to any θ > 0 satisfying

L1(θ) + L2(θ) = 2l).

We need to know the limits of L1 + L2 at 0 and Θ, and whether L1 + L2 is

monotone. Therefore, we now cite the following two lemmata and afterwards state

the new results.
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Lemma 3.5 (for q > 1 see [6], Lemma 5.2). If p > 1, 0 < q < (p+ 1)/2 and

a > 0, then
lim
θ→Θ

Li(θ) = L(Θ), i = 1, 2,

lim
θ→0

L2(θ) = ∞.

Lemma 3.6 (for q > 1 see [6], Proof of Lemma 5.1). If p > 1, 0 < q < (p+ 1)/2,

a > 0, i ∈ {1, 2}, then Li is differentiable on (0,Θ), fulfilling

L
′

i(θ) = − p− 1

(p+ 1)θ
Li(θ) +

p+ 1− 2q

(p+ 1)qθ

R
1−q

i (θ)

1− a
qR

p+1−2q

i (θ)
.

Lemma 3.7. If p > 1, 0 < q < (p+ 1)/2 and a > 0, then R1R2 < R
2
(Θ).

P r o o f. It is much the same as the proof of Lemma 2.7. So let p > 1, 0 < q <

(p+ 1)/2, a > 0, θ ∈ (0,Θ), and set α := R2(θ)/R(Θ) > 1. Using the increase of

F(θ, ·) on (0, R(Θ)) and the definition of R1(θ) and R2(θ), one can see that it suffices

to prove that

0 > F(θ, αR(Θ))−F
(

θ,
R(Θ)

α

)

= 2qR
2q
(Θ)(Fα(2q)− Fα(p+ 1))

(see (2.4) for the definition of Fα), which is a true inequality, due to the increase

of Fα. �

Lemma 3.8. If a > 0 and either p = 1, q ∈ (0, 1) or p > 1, q ∈ [1/2, (p+ 1)/2),

then (L1 + L2)
′ < 0.

P r o o f. Consider p > 1, 0 < q < (p+ 1)/2, a > 0, θ ∈ (0,Θ), and put b :=

2a/(p+ 1). We will proceed similarly to the proof of Lemma 2.8.

1. We start with the estimate suggested in [6], Remark 5.3:

Ip,b(y) >
y

√

byp+1 − 1
, y > 0,

which results in

Li(θ) > R
1−q

i (θ), i = 1, 2.

Applying this inequality to the formula included in Lemma 3.6, one can derive a suf-

ficient condition for (L1 + L2)
′(θ) < 0 in the form of

F
(R1(θ)

R(Θ)

)

+ F
(R2(θ)

R(Θ)

)

< 0,
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where

F (x) := F p,q(x) := (1− p)qx1−q +
(p+ 1− 2q)x1−q

1− xp+1−2q
, x ∈ (0, 1) ∪ (1,∞).

2. Now we prove the increase of F on (0, 1). Setting

α := p− 1 > 0, β := 2(q − 1) ∈ (−2, α),

we obtain that

F (x) = −α
(β

2
+ 1

)

x−β/2 +
(α− β)x−β/2

1− xα−β
= F (x)− αβ

2
x−β/2.

Since F increases on (0, 1) due to Step 2. of the proof of Lemma 2.8, F increases on

(0, 1) as well.

3. Using the same ideas as in Step 3. of the proof of Lemma 2.8, we can see that

it suffices to verify the inequality

uα,β(x) := β(α + 2)xα + α(β + 2)xα−β − α(β + 2)xβ − β(α + 2) > 0

for all x > 1 and α, β fulfilling either α = 0, β ∈ (−2, 0) or α > 0, β ∈ [−1, α). The

former case is clear. In the latter one we have that uα,β(1) = 0 and

u′

α,β(x) = αxβ−1
︸ ︷︷ ︸

>0

(β(α + 2)xα−β + (α − β)(β + 2)xα−2β − β(β + 2)
︸ ︷︷ ︸

=:vα,β(x)

),

so the verification ot the nonnegativity of vα,β on (1,∞) will complete the proof.

And since vα,β(1) = 2(α− β)(β + 1) > 0 and

v′α,β(x) = (α − β)xα−2β−1

︸ ︷︷ ︸

>0

(β(α+ 2)xβ + (β + 2)(α− 2β)
︸ ︷︷ ︸

=:wα,β(x)

),

we just need to observe that wα,β > 0 on (1,∞) because wα,β(1) = 2(α−β)(β+1) > 0

and wα,β is nondecreasing. �

Remark 3.9. The proof of Lemma 3.8 does not work for p > 1, q ∈ (0, 1/2), a > 0,

i.e., for α > 0, β ∈ (−2,−1), because in that case we have u′

α,β(1) = αvα,β(1) < 0,

implying that uα,β < 0 in the right neighbourhood of 1. In addition, numerical

calculations suggest that if p > 1 is big enough and q ∈ (0, 1/2) is small enough,

then L1 + L2 has a stationary point where a minimum is attained.

Joining the results of Lemmata 3.4, 3.5 and 3.8, we immediately obtain the fol-

lowing assertion:
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Theorem 3.10. Assume a, l > 0 and either p = 1, q ∈ (0, 1) or p > 1,

q ∈ [1/2, (p+ 1)/2). There exists such a number L(Θ) > 0 (see Lemma 3.2 and Defi-

nition 3.3) that (1.1) has four sign-changing nonantisymmetric solutions for l > L(Θ)

and none for l 6 L(Θ). (See Figure 2.)

−l lx0−x0

uθ,p,a(·+ x0)

−uθ,p,a(·+ x0)

uθ,p,a(· − x0)

−uθ,p,a(· − x0)

Figure 2. The four sign-changing nonantisymmetric solutions of (1.1) in the case dealt with
in Theorem 3.10. (Here x0 = (L2(θ)− L1(θ))/2, see Lemma 3.4.)
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