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Abstract. We prove that the problem of finding all Mfm-natural operators C : Q QT r∗

lifting classical linear connections ∇ on m-manifolds M into classical linear connections
CM (∇) on the r-th order cotangent bundle T r∗M = Jr(M,R)0 of M can be reduced to the
well known one of describing all Mfm-natural operators D : Q 

⊗p
T ⊗

⊗q
T ∗ sending

classical linear connections ∇ on m-manifolds M into tensor fields DM (∇) of type (p, q)
on M .

Keywords: classical linear connection; natural operator

MSC 2010 : 58A20, 58A32

All manifolds are assumed to be smooth, Hausdorff, finite dimensional and without

boundaries. Maps are assumed to be smooth (of class C∞). The category of m-

dimensional manifolds and their embeddings is denoted byMfm.

A linear connection on a vector bundle E over a manifold M is a bilinear map

D : X (M) × ΓE → ΓE such that DfXσ = fDXσ and DXfσ = Xfσ + fDXσ for

any smooth map f : M → R, any vector field X ∈ X (M) on M and any smooth

section σ ∈ ΓE of E →M . In particular, a linear connection ∇ in the tangent space

TM of M is called a classical linear connection on M .

In [6], M.Kureš described completely allMfm-natural operators B : Qτ  QT ∗

lifting torsion free classical linear connections ∇ on m-manifolds M into classical

linear connections BM (∇) on the cotangent bundle T ∗M of M .

In [5], the authors studied the similar problem of describing allMfm-natural oper-

ators B : Q Q(
⊗k

T ∗) transforming classical linear connections∇ onm-manifolds

M into classical linear connections BM (∇) on the k-th tensor power
⊗k T ∗M of the

cotangent bundle T ∗M of M . They proved that this problem can be reduced to the

well known one of describing all Mfm-natural operators D : Q  
⊗p T ⊗

⊗q T ∗
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sending classical linear connections ∇ on m-manifolds M into tensor fields DM (∇)

of type (p, q) on M .

In the present note we study the similar problem of describing all Mfm-natural

operators C : Q  QT r∗ lifting classical linear connections ∇ on m-manifolds M

into classical linear connections CM (∇) on the r-th order cotangent bundle T r∗M =

Jr(M,R)0 of M . We prove that this problem can be reduced to the well known one

of describing all D : Q 
⊗p

T ⊗
⊗q

T ∗, too.

The r-th order cotangent bundle is a functor T r∗ : Mfm → VB sending any

m-manifold M into T r∗M := Jr(M,R)0 (the vector bundle of r-jets M → R with

target 0) and any embedding ϕ : M1 →M2 of twom-manifolds into T
r∗ϕ : T r∗M1 →

T r∗M2 given by T
r∗ϕ(jrxγ) = jr

ϕ(x)(γ ◦ ϕ−1), jrxγ ∈ T r∗M . If r = 1, then T 1∗M ∼=

T ∗M (the usual cotangent bundle) by j1xγ
∼= dxγ.

A general definition of natural operators can be found in [4]. In particular,

an Mfm-natural operator C : Q  QT r∗ is an Mfm-invariant system C =

{CM}M∈obj(Mfm) of regular operators (functions)

CM : Q(M) → Q(T r∗M)

for any m-manifold M , where Q(M) is the set of all classical linear connections

on M . More precisely, the Mfm-invariance of C means that if ∇1 ∈ Q(M1) and

∇2 ∈ Q(M2) are ϕ-related by an embedding ϕ : M1 → M2 of m-manifolds (i.e.

ϕ is (∇1,∇2)-affine), then CM1
(∇1) and CM2

(∇2) are T
r∗ϕ-related. The regular-

ity means that CM transforms smoothly parametrized families of connections into

smoothly parametrized ones.

Similarly, anMfm-natural operator (natural tensor) D : Q  
⊗p

T ⊗
⊗q

T ∗ is

anMfm-invariant system D = {DM}M∈obj(Mfm) of regular operators

DM : Q(M) → T p,q(M)

for any M ∈ Mfm, where T p,q(M) is the set of tensor fields of type (p, q) on M .

Because of the general result in [7], since T r∗ : Mf → VB is a vector natural

bundle, there exists anMfm-natural operator C : Q  QT r∗. An explicit example

of a natural operator C : Q QT r∗ it will be presented in Example 1, too.

A full description of allMfm-natural operatorsQτ  
⊗p

T ∗⊗
⊗q

T transforming

torsion free classical connections on m-manifolds into tensor fields of types (p, q)

can be found in Lemma in Section 33.4 in [4]. This description is as follows. Each

covariant derivative of the curvatureR(∇) ∈ C∞
M (∧2T ∗M⊗T ∗M⊗TM) of a classical

linear connection∇ is an (Mfm-)natural tensor. Further, every tensor multiplication

of two natural tensors and every contraction on one covariant and one contravariant
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entry of a natural tensor give a new natural tensor. Finally, we can tensor any

natural tensor with a connection independent natural tensor, we can permute any

number of entries in the tensor product and we can repeat these steps and take linear

combinations. In this way we can obtain any natural tensor of types (p, q) depending

on a torsion free classical linear connection. All natural tensors of a (not necessarily

torsion free) classical linear connection ∇ can be obtained provided we also include

the torsion tensor T (∇) and their covariant derivatives in the above procedure.

Affine natural liftings of classical linear connections to some other natural bundles

(for example to Weil bundles) have been studied by many authors, see e.g. [1].

1. We are going to present an example of anMfm-natural operator C
(r) : Q  

QT r∗. We start with some preparations.

It is well-known (see [3]) that if ∇ is a classical linear connection on a manifold

M and x ∈ M then there is a ∇-normal coordinate system ϕ : (M,x) → (Rm, 0)

with center x. If ψ : (M,x) → (Rm, 0) is another ∇-normal coordinate system with

center x then there is A ∈ GL(m) such that ψ = A ◦ ϕ near x.

We have the following important proposition.

Proposition 1. Let ∇ be a classical linear connection on M . Then there is

a (canonical in ∇) vector bundle isomorphism

I∇ : T r∗M →
r

⊕

k=1

SkT ∗M

covering the identity map of M .

P r o o f. Let v ∈ T r∗x M , x ∈ M . Let ϕ : (M,x) → (Rm, 0) be a ∇-normal

coordinate system with center x. We put

I∇(v) = Iϕ∇(v) :=

r
⊕

k=1

SkT ∗ϕ−1 ◦ I ◦ T r∗ϕ(v),

where I : T r∗0 R
m = Jr0 (R

m,R)0 →
r
⊕

k=1

SkT ∗
0R

m =
r
⊕

k=1

SkRm∗ is the obvious GL(m)-

invariant vector space isomorphism. If ψ : (M,x) → (Rm, 0) is another ∇-normal

coordinate system with center x, then ψ = A ◦ ϕ (near x) for some A ∈ GL(m).

Using the GL(m)-invariance of I we deduce that Iψ∇(v) = Iϕ∇(v). So, the definition

of I∇(v) is independent of the choice of ϕ. �

In [2], J.Gancarzewicz presented a canonical construction of a classical linear

connection on the total space of a vector bundle E over M from a linear connection
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D in E by means of a classical linear connection ∇ on M . More precisely, if X is

a vector field on M and σ is a section of E, then DXσ is a section of E. Further, let

XD denote the horizontal lift of a vector field X with respect to D. Moreover, using

the translations in the individual fibres of E, we derive from every section σ : M → E

a vertical vector field σV on E called the vertical lift of σ. In [2], J.Gancarzewicz

proved the following fact.

Proposition 2. For every linear connection D in a vector bundle E over M

and every classical linear connection ∇ on M there exists a unique classical linear

connection Θ = Θ(D,∇) on the total space E with the following properties:

ΘXDY D = (∇XY )D, ΘXDσV = (DXσ)
V ,

ΘσV XD = 0, ΘσV σV1 = 0

for all vector fields X,Y on M and all sections σ, σ1 of E.

It is well-known (see [3]) that every classical linear connection ∇ on an m-

manifold M can be extended to a linear connection D
(r)
∇ = ∇ in

r
⊕

k=1

SkT ∗M

by (∇XA)(X1, . . . , Xk) = XA(X1, . . . , Xk) −
k
∑

i=1

A(X1, . . . ,∇XXi, . . . , Xk), A ∈

Γ(SkT ∗M), X1, . . . , Xk ∈ X (M), k = 1, . . . , r.

Now, we are in position to present a natural operator C(r) : Q QT r∗.

Example 1. Given a classical linear connection ∇ onM , by Propositions 1 and 2

we have the classical linear connection ∇(r) on T r∗M given by

∇(r) := (I∇)−1
∗ Θ(D

(r)
∇ ,∇).

Clearly, the family C(r) : Q QT r∗ of operators

C
(r)
M : Q(M) → Q(T r∗M), C

(r)
M (∇) := ∇(r),

where M ∈ obj(Mfm) and ∇ ∈ Q(M), is anMfm-natural operator.

2. The set of allMfm-natural operators C : Q QT r∗ is an affine space with the

corresponding vector space of all Mfm-natural operators ∆: Q  (⊗2T ∗ ⊗ T )T r∗

lifting classical linear connections ∇ on m-manifolds M into tensor fields ∆M (∇) of

type (1, 2) on T r∗M (the definition is quite similar to the one of natural operators

Q  QT r∗). Actually, givenMfm-natural operators C : Q  QT r∗ and ∆: Q  

(
⊗2

T ∗ ⊗ T )T r∗ we have anMfm-natural operator C +∆: Q QT r∗ given by

(C +∆)M (∇) := CM (∇) + ∆M (∇), ∇ ∈ Q(M), M ∈ Mfm.
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So, to describe allMfm-natural operators C : Q QT r∗ it is sufficient to describe

all Mfm-natural operators ∆: Q  (
⊗2

T ∗ ⊗ T )T r∗. Further, because of Propo-

sition 2, we can put
r
⊕

k=1

SkT ∗ instead of T r∗, and our problem of describing all

Mfm-natural operators C : Q  QT r∗ is reduced to the one of finding all Mfm-

natural operators

∆: Q 
(

2
⊗

T ∗ ⊗ T
)

r
⊕

k=1

SkT ∗

lifting classical linear connections ∇ on m-manifolds into tensor fields ∆M (∇) of

type (1, 2) on
r
⊕

k=1

SkT ∗M .

Given a classical linear connection ∇ on M we have

Tv

( r
⊕

k=1

SkT ∗M

)

= Vv

( r
⊕

k=1

SkT ∗M

)

⊕H∇
v

∼=

r
⊕

k=1

SkT ∗
xM ⊕ TxM

for any v ∈
r
⊕

k=1

SkT ∗
xM , x ∈ M , where H∇

v is the ∇-horizontal subspace and the

identification ∼= is the standard one. Then, by linear algebra,

(

Tv

( r
⊕

k=1

SkT ∗M

))∗

⊗

(

Tv

( r
⊕

k=1

SkT ∗M

))∗

⊗ Tv

( r
⊕

k=1

SkT ∗M

)

= (T ∗
xM ⊗ T ∗

xM ⊗ TxM)⊕
r

⊕

l=1

(T ∗
xM ⊗ T ∗

xM ⊗ SlT ∗
xM)

⊕
r

⊕

l=1

(T ∗
xM ⊗ SlTxM ⊗ TxM)⊕

r
⊕

l,l1=1

(T ∗
xM ⊗ SlTxM ⊗ Sl1T ∗

xM)

⊕
r

⊕

l=1

(SlTxM ⊗ T ∗
xM ⊗ TxM)⊕

r
⊕

l,l1=1

(SlTxM ⊗ T ∗
xM ⊗ Sl1T ∗

xM)

⊕
r

⊕

l,l1=1

(SlTxM ⊗ Sl1TxM ⊗ TxM)⊕
r

⊕

l,l1,l2=1

(SlTxM ⊗ Sl1TxM ⊗ Sl2T ∗
xM).

Consequently, our problem of finding all Mfm-natural operators C : Q  QT r∗

is reduced to the one of finding all systems ∆C = ((∆1), . . . , (∆8
l,l1,l2

)) of systems
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(∆1), . . . , (∆8
l,l1,l2

) ofMfm-natural operators

∆1 : Q 

( r
⊕

k=1

SkT ∗, T ∗ ⊗ T ∗ ⊗ T

)

,

∆2
l : Q 

( r
⊕

k=1

SkT ∗, T ∗ ⊗ T ∗ ⊗ SlT ∗

)

,

∆3
l : Q 

( r
⊕

k=1

SkT ∗, T ∗ ⊗ SlT ⊗ T

)

,

∆4
l,l1

: Q 

( r
⊕

k=1

SkT ∗, T ∗ ⊗ SlT ⊗ Sl1T ∗

)

,

∆5
l : Q 

( r
⊕

k=1

SkT ∗, SlT ⊗ T ∗ ⊗ T

)

,

∆6
l,l1

: Q 

( r
⊕

k=1

SkT ∗, SlT ⊗ T ∗ ⊗ Sl1T ∗

)

,

∆7
l,l1

: Q 

( r
⊕

k=1

SkT ∗, SlT ⊗ Sl1T ⊗ T

)

,

∆8
l,l1,l2

: Q 

( r
⊕

k=1

SkT ∗, SlT ⊗ Sl1T ⊗ Sl2T ∗

)

transforming classical linear connections ∇ on m-manifolds M into fibred maps

∆1
M (∇) :

r
⊕

k=1

SkT ∗M → T ∗M ⊗ T ∗M ⊗ TM, . . . ,∆8
l,l1,l2M

(∇) :
r
⊕

k=1

SkT ∗M →

SlTM ⊗Sl1TM ⊗Sl2T ∗M covering the identity map of M , where l, l1, l2 = 1, . . . , r.

3. To obtain a more extensive reduction than the above one, we need a prepara-

tion.

A tensor natural subbundle (of type (p, q)) is a natural vector bundle F : Mfm →

VB such that (modulo a natural vector bundle isomorphism) FM ⊂
⊗p

TM ⊗
⊗q

T ∗M and Fϕ =
⊗p

Tϕ ⊗
⊗q

T ∗ϕ|FM for any m-manifold M and any Mfm-

map ϕ : M →M1.

Proposition 3. Let F : Mfm → VB be a tensor natural subbundle of type (p, q).

The Mfm-natural operators B : Q  
( r
⊕

k=1

SkT ∗, F
)

transforming classical linear

connections ∇ on m-manifolds M into fibred maps BM (∇) :
r
⊕

k=1

SkT ∗M → FM

covering idM are in bijection with the systems E = (E(k1,...,kj)) of Mfm-natural
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operatorsE(k1,...,kj) : Q (Sk1T⊙. . .⊙SkjT )⊗F for systems (k1, . . . , kj) of integers

k1, . . . , kj with 1 6 k1 6 . . . 6 kj 6 r, k1 + . . .+ kj 6 q− p, j = 0, 1, 2, . . . . If j = 0,

then (k1, . . . , kj) = ∅, and E∅ : Q  F . If q − p < 0, any B is the zero operator.

(For ⊙, see Remark 1.)

More precisely, the natural operator BE : Q  
( r
⊕

k=1

SkT ∗, F
)

corresponding to

a system E = (E(k1,...,kj)) (as above) is defined by

BEM (∇)x(v) =
∑

〈E
(k1,...,kj)
M (∇)x, vk1 ⊗ . . .⊗ vkj 〉,

∇ ∈ Q(M), M ∈ obj(Mfm), x ∈ M , v = (v1, . . . , vr) ∈
r
⊕

k=1

SkT ∗
xM , where the

(finite) sum
∑

is over all systems (k1, . . . , kj) of integers with 1 6 k1 6 . . . 6 kj 6 r,

k1 + . . .+ kj 6 q − p, j = 0, 1, 2, . . ..

Conversely, the system EB = (EB;(k1,...,kj)) corresponding to a natural operator

B  
( r
⊕

k=1

SkT ∗, F
)

is well-defined by

〈E
B;(k1,...,kj)
M (∇)x, vk1 ⊗ . . .⊗ vkj 〉 =

1

α!

∂

∂tk1
. . .

∂

∂tkj
BM (∇)x(t

1v1, . . . , t
rvr)|

t1,...,tr=0

where v = (v1, . . . , vr) =
r
⊕

k=1

SkT ∗
xM , x ∈M , α = 1k1 + . . .+ 1kj ∈ N

r.

Remark 1. In Proposition 3, we used the following notation. Given a sequence

V1, . . . , Vr of different vector spaces and a system (k1, . . . , kj) of integers with 1 6

k1 6 . . . 6 kj 6 r, Vk1 ⊙ . . .⊙Vkj denotes the factor space Vk1 ⊗ . . .⊗Vkj/ ∼, where

for any u,w ∈ Vk1 ⊗ . . .⊗Vkj , u ∼ w iff 〈u, ϕk1 ⊗ . . .⊗ϕkj 〉 = 〈w,ϕk1 ⊗ . . . ϕkj 〉 (the

usual pairing (contraction)) for any (ϕ1, . . . , ϕr) ∈
r
⊕

k=1

V ∗
k .

P r o o f. By the nonlinear Petree theorem (see [4]) B is of finite order. Further,

by the invariance with respect to manifold charts, B is determined by the values

(BRm(∇))0(v) ∈ F0R
m

for all classical linear connections ∇ on R
m and all points v = (v1, . . . , vr) ∈

r
⊕

k=1

SkT ∗
0R

m. We can assume that the coordinates (symbols) of ∇ are polynomi-

als of degree being the finite order of B. Next, by the invariance of B with respect

to the homotheties we have

BRm((tidRm)∗∇)0

( r
⊕

k=1

SkT ∗(tidRm)(v)

)

= tp−qBRm(∇)0(v)

for t > 0. So, the homogeneous function theorem and the Taylor’s theorem complete

the proof. �
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4. Clearly, Proposition 3 is applicable to natural operators ∆1, . . . ,∆8
l,l1,l2

from

item 2. In particular, we have the following corollaries.

Corollary 1. Given l = 1, . . . , r, any Mfm-natural operator ∆3
l : Q  

( r
⊕

k=1

SkT ∗M , T ∗ ⊕ SlT ⊗ T
)

is the zero one.

Corollary 2. Given l = 1, . . . , r, any Mfm-natural operator ∆5
l : Q  

( r
⊕

k=1

SkT ∗, SlT ⊗ T ∗ ⊗ T
)

is the zero one.

Corollary 3. Given l, l1 = 1, . . . , r, any Mfm-natural operator ∆
7
l,l1

: Q  
( r
⊕

k=1

SkT ∗, SlT ⊗ Sl1T ⊗ T
)

is the zero one.

Corollary 4. TheMfm-natural operators∆
1 : Q 

( r
⊕

k=1

SkT ∗, T ∗⊗T ∗⊗T
)

are

in (the) bijection with the systems E∆1

= (E∆1;∅, E∆1;(1)) ofMfm-natural operators

E∆1;∅ : Q T ∗ ⊗ T ∗ ⊗ T and E∆1;(1) : Q T ⊗ T ∗ ⊗ T ∗ ⊗ T .

Corollary 5. Given a natural number l = 1, . . . , r, the Mfm-natural operators

∆2
l : Q 

( r
⊕

k=1

SkT ∗, T ∗⊗T ∗⊗SlT ∗
)

are in (the) bijection with the systems E∆2

l =

(E∆2

l ;(k1,...,kj)) ofMfm-natural operators E
∆2

l ;(k1,...,kj) : Q (Sk1T ⊙ . . .⊙SkjT )⊗

T ∗ ⊗ T ∗ ⊗ SlT ∗ for systems (k1, . . . , kj) of integers with 1 6 k1 6 . . . 6 kj 6 r,

k1 + . . .+ kj 6 l + 2, j = 0, 1, 2, . . ..

Corollary 6. Given natural numbers l, l1 = 1, . . . , r, the Mfm-natural oper-

ators ∆4
l,l1

: Q  
( r
⊕

k=1

SkT ∗, T ∗ ⊗ SlT ⊗ Sl1T ∗
)

are in (the) bijection with the

systems E∆4

l,l1 = (E∆4

l,l1
;(k1,...,kj)) of Mfm-natural operators E

∆4

l,l1
;(k1,...,kj) : Q  

(Sk1T ⊙ . . . ⊙ SkjT ) ⊗ T ∗ ⊗ SlT ⊗ Sl1T ∗ for systems (k1, . . . , kj) of integers with

1 6 k1 6 . . . 6 kj 6 r, k1 + . . .+ kj 6 l1 + 1− l, j = 0, 1, . . ..

Corollary 7. Given natural numbers l, l1 = 1, . . . , r, the Mfm-natural oper-

ators ∆6
l,l1

: Q  
( r
⊕

k=1

SkT ∗, SlT ⊗ T ∗ ⊗ Sl1T ∗
)

are in (the) bijection with the

systems E∆6

l,l1 = (E∆6

l,l1
;(k1,...,kj)) of Mfm-natural operators E

∆6

l,l1
;(k1,...,kj) : Q  

(Sk1T ⊙ . . . ⊙ SkjT ) ⊗ SlT ⊗ T ∗ ⊗ Sl1T ∗ for systems (k1, . . . , kj) of integers with

1 6 k1 6 . . . 6 kj 6 r, k1 + . . .+ kj 6 l1 + 1− l, j = 0, 1, . . ..
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Corollary 8. Given natural numbers l, l1, l2 = 1, . . . , r, the Mfm-natural oper-

ators ∆8
l,l1,l2

: Q 
( r
⊕

k=1

SkT ∗, SlT ⊗ Sl1T ⊗ Sl2T ∗
)

are in (the) bijection with the

systems E∆8

l,l1,l2 = (E∆8

l,l1,l2
;(k1,...,kj)) of Mfm-natural operators E

∆8

l,l1,l2
;(k1,...,kj) :

Q (Sk1T ⊙ . . .⊙ SkjT )⊗ SlT ⊗ Sl1T ⊗ Sl2T ∗ for systems (k1, . . . , kj) of integers

with 1 6 k1 6 . . . 6 kj 6 r, k1 + . . .+ kj 6 l2 − l1 − l, j = 0, 1, . . ..

5. Summing up, we have proved the following (roughly written) theorem.

Theorem 1. The Mfm-natural operators C : Q  QT r∗ are in (the) bijec-

tion with the systems ∆C = ((∆1), (∆2
l ), (∆

4
l,l1

), (∆6
l,l1

), (∆8
l,l1,l2

)) of systems (∆1),

(∆2
l ), . . . , (∆

8
l,l1,l2

) of Mfm-natural operators corresponding to systems of Mfm-

natural operators (of the form (almost) Q  
⊗p T ⊗

⊗q T ∗) as wrote in Corollar-

ies 4–8.

Let us explain our result for r = 1 (i.e., in the case of the cotangent bundle).

Now, l, l1, l2 = 1, only. Consequently, we have E∆1

= (E∆1;∅, E∆1;(1)),

E∆2

1 = (E∆2

1
;∅, E∆2

1
;(1), E∆2

1
;(1,1), E∆2

1
;(1,1,1)), E∆4

1,1 = (E∆4

1,1;∅, E∆4

1,1,(1)), E∆6

1,1 =

(E∆6

1,1;∅, E∆6

1,1;(1)), E∆8

1,1,1 = (0). Thus Theorem 1 for r = 1 can be read as follows.

The Mfm-natural operators C : Q  QT ∗ are in the bijection with the systems

of Mfm-natural operators

E∆1;∅ : Q T ∗ ⊗ T ∗ ⊗ T,

E∆1;(1) : Q T ⊗ T ∗ ⊗ T ∗ ⊗ T,

E∆2

1
;∅ : Q T ∗ ⊗ T ∗ ⊗ T ∗,

E∆2

1
;(1) : Q T ⊗ T ∗ ⊗ T ∗ ⊗ T ∗,

E∆2

1
;(1,1) : Q (T ⊙ T )⊗ T ∗ ⊗ T ∗ ⊗ T ∗,

E∆2

1
;(1,1,1) : Q (T ⊙ T ⊙ T )⊗ T ∗ ⊗ T ∗ ⊗ T ∗,

E∆4

1,1;∅ : Q T ∗ ⊗ T ⊗ T ∗,

E∆4

1,1;(1) : Q T ⊗ T ∗ ⊗ T ⊗ T ∗,

E∆6

1,1;∅ : Q T ∗ ⊗ T ⊗ T ∗,

E∆6

1,1;(1) : Q T ⊗ T ∗ ⊗ T ⊗ T ∗.

Further, by the general description of natural tensors (item 0) we could describe

explicitly the above 10 types of operators. (For example, any natural operator E∆1;∅ :

Q T ∗ ⊗T ∗ ⊗T ∼= T ∗ ⊗T ⊗T ∗ is the linear combination (with real coefficients) of

three natural operators (the connection torsion operator T∇, the operator δM⊗C1
1T∇

(the tensor multiplication of the identity tensor field δM : TM → TM and the
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contraction of the connection torsion) and the operator C1
1T∇ ⊗ δ∗M . In the case

of torsion free connection any such operator is the zero one. Similarly, any natural

operator E∆1;(1) : Q T ⊗T ∗⊗T ∗⊗T ∼= T ∗⊗T ∗⊗T ⊗T is a linear combination of

two connection independent natural tensors (from the identity tensor TM ⊗ TM →

TM ⊗ TM by means of permutations of indices). In this way we could reobtain (in

another form) the result of M.Kureš [6] (in the case of natural operators Qτ  QT ∗)

and could obtain a new result in the case of not necessarily torsion free connections.

The explanation of our result in the case r = 2 is more complicated but (it seems)

possible.
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