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Abstract

In this work we describe two schemes for solving level set equation
in 3D with a method based on finite volumes. These schemes use the
so-called dual volumes as in [3, 7], where they are used for the nonlinear
elliptic equations. We describe these schemes theoretically and also com-
pare results of the numerical experiments based on exact solution using
proposed schemes.
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1 Introduction

The level set equation (1) can be used in many different applications—motion of
interfaces, in thermomechanics, computational fluid dynamics, smoothing and
segmentation of images.
The unknown function u(t, x) in

ut − |∇u|∇.

(
∇u

|∇u|

)
= 0, (1)
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is defined in QT = I × Ω, Ω ⊂ R
3 is a bounded Lipschitz domain, I = [0, T ],

T > 0 is a time interval. We will consider the equation accompanied with the
zero Neumann boundary conditions and by an initial condition:

∂νu = 0 on I × ∂Ω, (2)

u(0, x) = u0(x). (3)

2 DDFV schemes in 3D

In this paper we will consider Ω as a prism Ω = 〈a1, b1〉× 〈a2, b2〉× 〈a3, b3〉. Let
us describe creating of the mesh. We will divide each edge in the following way:
x0 = a1, xi = a1 + i · h, i = 1, . . . , N1; y0 = a2, yi = a2 + i · h, i = 1, . . . , N2;
z0 = a3, zi = a3 + i · h, i = 1, . . . , N3. We can denote then xijk as the center of
the original finite volume Vijk.
The numerical schemes we will describe in this work are based on the dual

finite volumes. Hermeline and also Coudiére with Hubert used these methods for
the elliptic partial differential equations. Their schemes were inspiring for us and
in this work we will use both of these schemes for the nonlinear parabolic PDE.
For the better orientation we will name our schemes after the above mentioned
authors.
The basic construction of the numerical scheme will be similar in both cases.

We will choose a uniform discrete time step τ = T
N and replace the time deriva-

tive in (1) by the backward difference as in [6]. If we denote the approximated
solution at time n · τ by un, we will get

1

|∇un−1|
un − un−1

τ
= ∇.

(
∇un

|∇un−1|

)
. (4)

Both presented schemes differ in a space discretization and computation of
the gradient.
We will divide our domain into finite volumes and let us denote one of them

by V . The edges (in our case is by edge understood the square face) of this finite
volume will be denoted by e. As it is typical in the finite volume methodology
(see [5]), we will integrate (4) over a finite volume V , and using the divergence
theorem we get an integral formulation of (4).∫

V

1

|∇un−1|
un − un−1

τ
dx =

∑
e∈∂V

∫
e

1

|∇un−1|
∂un

∂ν
ds (5)

where ν is a unit outer normal to the boundary of V and e are the edges of the
∂V . Now the exact “fluxes” on the right-hand side and the ”capacity function”

1
|∇un−1| on the left-hand side will be approximated numerically.
Because of the gradients in the denominator in this equation, we define,

according to the Evans–Spruck regularization [4], Qe, Qe =
√
|∇ue|+ ε2, ε > 0,

as a regularized norm of the gradient on voxel edges Qe (right-hand side of (5)),
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and, the regularized averaged gradient inside the finite volume AQV (left-hand
side of (5)), computed from the solution known from the previous (n−1)st time
step

AQV =
1

6

∑
e∈∂V

Qe

For the approximation of the left-hand side of (5) we get

∫
V

1

|∇un−1|
un − un−1

τ
dx ≈ m(V )

AQV

un
V − un−1

V

τ
, (6)

where m(V ) is the measure of a finite volume V and un
V is the approximated

value in the center of the finite volume V in the time step n. The approximation
of the right-hand side, is given by:

∑
e∈∂V

∫
e

1

|∇un−1|
∂un

∂ν
ds ≈

∑
e∈∂V

m(e)

Qe

un
V − un

V

dvv
, (7)

where uV and uV represent the values in the time step n in the center of the
finite volume V and in the center of the neighboring finite volume, respectively,
m(e) is the measure of the edge of the finite volume, and dvv denotes the distance
between two neighboring volume centers.

2.1 “Hermeline” scheme

Now we will describe our understanding of the finite volume mesh in more
details. In this scheme we will divide our domain into two meshes. Both meshes
will consist of the set of cubes (see Figure 1).

Figure 1: Original (solid lines cubes) and dual (dashed lines cubes) mesh
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We restrict our considerations to uniform cubic co-volumes with size length h.
Then, e.g.,

m(V ) = h3, m(e) = h2, dvv = h.

The original volume mesh will consist of the cells Vijk ∈ Th. Dual mesh will
be shifted to the north-east and will consist of the cells V ijk ∈ T h. Discrete
values of the unknown function uijk will be given in the centers of the original
volumes Vijk ∈ Th. The dual unknowns vijk will be given in the centers of
the dual volumes. Now we will describe notation for the original volume mesh,
for the dual mesh the notation will be the same, but barred and the unknown
function will be denoted by v. For each volume Vijk ∈ Th, let Nijk represent the
set of all neighboring volumes Vi+p,j+q,k+r, p, q, r ∈ {−1, 0, 1}, |p|+ |q|+ |r| = 1.
The face of the finite volume will be denoted by epqrijk .
We will use the notation for approximated piecewise constant functions

uh(x) = uijk and vh(x) = vijk, where xijk and xijk are the centers of the
volumes Vijk and V ijk, respectively. We will also use uh,τ (t, x) = un

ijk and

vh,τ (t, x) = vnijk, where x ∈ Vijk, x ∈ V ijk and t ∈ ((n− 1)τ, nτ ) and uh,τ (t, x)
and vh,τ (t, x) are the piecewise constant functions in space and time.
To estimate the value of the gradient in (7) on every edge epqrijk of the finite

volume Vijk we will use the diamond (see Figure 2). The face on which we want
to approximate the gradient, will be divided into 2 parts by the diagonal line
as in [7, 9] and the gradient will be approximated in both of these parts.

ui,j,k

vi,j,k

vi,j−1,k

u1+i,j,k

Figure 2: Diamond in the original mesh

The total value of the gradient will be then estimated by

|∇uD| =
∣∣∣1
2
(∇uD1

+∇uD2
)
∣∣∣.

For illustration we will show, how the gradient looks like for the right, the back
and the top edges of the original volume. How the gradient looks like in general,
can be seen in [9].
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Figure 3: The detail of the right (left), the back (middle) and the top (right)
face of the original mesh

Figure 4: Diamond in the dual mesh

To represent the approximated gradient on the right face, we will use the nota-
tion ∇100un

ijk.

∇100un
ijk =

(un
i+1,j,k − un

ijk

h
,
vnijk + vni,j,k−1 − vni,j−1,k − vni,j−1,k−1

2h
,

vni,j−1,k + vnijk − vni,j−1,k−1 − vni,j,k−1

2h

)
,

For representing the approximated gradient on the back face, we will use the
notation ∇010un

ijk.

∇010un
ijk =

(vni,j,k−1 + vnijk − vni−1,j,k−1 − vni−1,j,k

2h
,
un
i,j+1,k − un

ijk

h
,

vni−1,j,k + vnijk − vni−1,j,k−1 − vni,j,k−1

2h

)
.
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And for representing the approximated gradient on the top face, we will use the
notation ∇001un

ijk.

∇001un
ijk =

(vnijk + vni,j−1,k − vni−1,j,k − vni−1,j−1,k

2h
,

vni−1,j,k + vnijk − vni−1,j−1,k − vni,j−1,k

2h
,
un
i,j,k+1 − un

ijk

h

)
.

To approximate the gradient in the dual mesh we will use the same pro-
cedure. The gradient will be estimated in the similar way as in the original
mesh. The diamond will be understood in the same way as before, but it will
be situated in the dual volume (see Figure 4).
The approximated values of the gradient on the particular faces of the dual

volume could be again seen in [9].
At the end, after putting together all the above mentioned considerations and

using the finite volume procedure described before, we obtain the linear system
of equations we have to solve in every discrete time step n, n = 1, . . . , N , where
N is the total number of time steps.

un
ijk h3

τ AQn−1
ijk

+
∑

|p|+|q|+|r|=1

(un
ijk − un

i+p,j+q,k+r) h
2

Qpqr;n−1
ijk h

=
h3 un−1

ijk

τ AQn−1
ijk

, (8)

vnijk h3

τ AQn−1
ijk

+
∑

|p|+|q|+|r|=1

(vnijk − vni+p,j+q,k+r) h
2

Q
pqr;n−1

ijk h
=

h3 vn−1
ijk

τ AQn−1
ijk

. (9)

2.2 “Coudiére–Hubert” scheme

In this case we will consider three meshes. First two meshes will consist of the
set of cubes (see Figure 1) as in the previous scheme. The original and dual
unknowns will be again given, as before, in the centers of the original and dual
volumes and denoted by u and v, respectively.
The third mesh will consist of the face and edge volumes (see Figure 5).
The face unknowns wx, wy and wz will be given in the centers of the right,

the back and the top faces of the original finite volume. The edge unknowns zx,
zy and zz will be given in the middle of the edges of the original finite volume
(as plotted in Figure 7).
We will consider 4 diamonds (see the diamond in Figure 6) on every face of

the original finite volume as in [3, 10]. These diamonds will be denoted as D1,
D2, D3 and D4. To define these diamonds on every face of the original finite
volume, we will use the following notation.



Comparison of the 3D numerical schemes for solving curvature. . . 77

Figure 5: Face volume (dashed lines) and edge volume (solid lines) in the original
mesh

Figure 6: Diamond D1 in the right face of the original volume

Figure 7: Values of the wx (blue), wy (red), wz (green), zx (black), zy (gray)
and zz (pink) variables on the original finite volume
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The diamonds on the right face of the original volume Vijk will be denoted
as D1Xijk, D2Xijk, D3Xijk and D4Xijk. The diamonds on the back face of
the original volume Vijk will be denoted as D1Yijk, D2Yijk, D3Yijk and D4Yijk.
The diamonds on the top face of the original volume Vijk will be denoted as
D1Zijk, D2Zijk, D3Zijk and D4Zijk.
Let us show how the gradients look like on the right, on the back and on the

top faces, respectively.

right face:

∇D1Xijk =

(
un
i+1,j,k − un

ijk

h
,
vnijk − vni,j−1,k

h
,
zynijk − wxn

ijk

h
2

)

∇D2Xijk =

(
un
i+1,j,k − un

ijk

h
,
wxn

ijk − zzni,j−1,k

h
2

,
vni,j−1,k − vni,j−1,k−1

h

)

∇D3Xijk =

(
un
i+1,j,k − un

ijk

h
,
vni,j,k−1 − vni,j−1,k−1

h
,
wxn

ijk − zyni,j,k−1

h
2

)

∇D4Xijk =

(
un
i+1,j,k − un

ijk

h
,
zznijk − wxn

ijk

h
2

,
vnijk − vni,j,k−1

h

)

back face:

∇D1Yijk =

(
vnijk − vni−1,j,k

h
,
un
i,j+1,k − un

ijk

h
,
zxn

ijk − wynijk
h
2

)

∇D2Yijk =

(
wynijk − zzni−1,j,k

h
2

,
un
i,j+1,k − un

ijk

h
,
vni−1,j,k − vni−1,j,k−1

h

)

∇D3Yijk =

(
vni,j,k−1 − vni−1,j,k−1

h
,
un
i,j+1,k − un

ijk

h
,
wynijk − zxn

i,j,k−1

h
2

)

∇D4Yijk =

(
zznijk − wynijk

h
2

,
un
i,j+1,k − un

ijk

h
,
vnijk − vni,j,k−1

h

)

top face:

∇D1Zijk =

(
vnijk − vni−1,j,k

h
,
zxn

ijk − wznijk
h
2

,
un
i,j,k+1 − un

ijk

h

)

∇D2Zijk =

(
wznijk − zyni−1,j,k

h
2

,
vni−1,j,k − vni−1,j−1,k

h
,
un
i,j,k+1 − un

ijk

h

)

∇D3Zijk =

(
vni,j−1,k − vni−1,j−1,k

h
,
wznijk − zxn

i,j−1,k

h
2

,
un
i,j,k+1 − un

ijk

h

)

∇D4Zijk =

(
zynijk − wznijk

h
2

,
vnijk − vni,j−1,k

h
,
un
i,j,k+1 − un

ijk

h

)
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To see how the approximated values of the gradients look like at the particu-
lar faces and for the particular unknowns, see [10]. Because the original and the
dual volumes have the same shape, let us consider m(Vijk) = m(V ijk) = m(V )
to be the measure of the finite volume and m(epqrijk ) = m(epqrijk ) = m(e) to be the
measure of the faces of the original and dual volumes.
Let us denote by m(F ) the measure of the face volume (the green and also

the gray volume in Figure 5) and by m(E) the measure of the four edges of the
face-edge mesh.

Figure 8: The detail of the right (left), the back (middle) and the top (right)
face of the original mesh

The distance between two neighboring volume centers will be denoted as d.
After applying finite volume procedure, we obtain the linear system of the

equations we have to solve in every discrete time step n, n = 1, . . . , N , where
N is the total number of time steps.

un
ijk m(V )

AQPn−1
ijk

+ τ
∑

|p|+|q|+|r|=1

(un
ijk − un

i+p,j+q,k+r) m(e)

QP pqr;n−1
ijk d

=
m(V ) un−1

ijk

AQPn−1
ijk

,

vnijk m(V )

AQDn−1
ijk

+ τ
∑

|p|+|q|+|r|=1

(vnijk − vni+p,j+q,k+r) m(e)

QDpqr;n−1
ijk d

=
m(V ) vn−1

ijk

AQDn−1
ijk

,

(wxn
ijk − wxn−1

ijk ) m(F )

τ AQFn−1
ijk

+
(wxn

ijk − zynijk) m(E)

QF 00−1;n−1
ijk d

+
(wxn

ijk − zzni,j−1,k) m(E)

QF 0−10;n−1
ijk d

+
(wxn

ijk − zyni,j,k−1) m(E)

QF 00−1;n−1
ijk d

+
(wxn

ijk − zznijk) m(E)

QF 010;n−1
ijk d

= 0,

(wynijk − wyn−1
ijk ) m(F )

τ AQFn−1
ijk

+
(wynijk − zxn

ijk) m(E)

QF 001;n−1
ijk d

+
(wynijk − zzni−1,j,k) m(E)

QF−100;n−1
ijk d

+
(wynijk − zxn

i,j,k−1) m(E)

QF 00−1;n−1
ijk d

+
(wynijk − zznijk) m(E)

QF 100;n−1
ijk d

= 0,
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(wznijk − wzn−1
ijk ) m(F )

τ AQFn−1
ijk

+
(wznijk − zxn

ijk) m(E)

QF 010;n−1
ijk d

+
(wznijk − zyni−1,j,k) m(E)

QF−100;n−1
ijk d

+
(wznijk − zxn

ijk) m(E)

QF 0−10;n−1
ijk d

+
(wznijk − zynijk) m(E)

QF 100;n−1
ijk d

= 0,

(zxn
ijk − zxn−1

ijk ) m(F )

τ AQEn−1
ijk

+
(zxn

ijk − wyni,j,k+1) m(E)

QE001;n−1
ijk d

+
(zxn

ijk − wznijk) m(E)

QE0−10;n−1
ijk d

+
(zxn

ijk − wynijk) m(E)

QE00−1;n−1
ijk d

+
(zxn

ijk − wzni,j+1,k) m(E)

QE010;n−1
ijk d

= 0,

(zynijk − zyn−1
ijk ) m(F )

τ AQEn−1
ijk

+
(zynijk − wxn

i,j,k+1) m(E)

QE001;n−1
ijk d

+
(zynijk − wznijk) m(E)

QE−100;n−1
ijk d

+
(zynijk − wxn

ijk) m(E)

QE00−1;n−1
ijk d

+
(zynijk − wzni+1,j,k) m(E)

QE100;n−1
ijk d

= 0,

(zznijk − zzn−1
ijk ) m(F )

τ AQEn−1
ijk

+
(zznijk − wxn

i,j,k+1) m(E)

QE010;n−1
ijk d

+
(zznijk − wynijk) m(E)

QE−100;n−1
ijk d

+
(zznijk − wxn

ijk) m(E)

QE0−10;n−1
ijk d

+
(zznijk − wyni+1,j,k) m(E)

QE100;n−1
ijk d

= 0. (10)

3 Numerical experiments

In this section we will present the results obtained by the above mentioned
schemes.

Example 1 In this example the exact solution is given by

u(x, y, z, t) = min

{
1

2

(
x2 + y2 + z2 − 1

)
+ 2t; 0

}
.

The numerical results obtained by using “Hermeline” scheme are plotted in
Figures 9 and 10. In the Table 1 we present the results obtained by this scheme.
The numerical results obtained by using “Coudiére–Hubert” scheme are plot-

ted in Figures 11 and 12. In the Table 2 we present the results obtained by this
scheme.
In both cases we set τ = h2, z = 0.00390625, N1 = N2 = N3 = 40.
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Figure 9: Exact (left) and numerical (right) solution after 10 time steps using
“Hermeline” scheme, N1 = N2 = N3 = 40

Figure 10: Exact (left) and numerical (right) solution after 40 time steps using
“Hermeline” scheme, N1 = N2 = N3 = 40

Figure 11: Exact (left) and numerical (right) solution after 10 time steps using
“Coudiére–Hubert” scheme, N1 = N2 = N3 = 40

Figure 12: Exact (left) and numerical (right) solution after 40 time steps using
“Coudiére–Hubert” scheme, N1 = N2 = N3 = 40
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N L2 error EOC L2 error L2 gradient error EOC L2 gradi-
ent error

10 6.9985e-2 – 2.7369e-1 –
20 3.7869e-2 0.9084 2.2711e-1 0.2691
40 1.9153e-2 0.9611 1.7367e-1 0.3871
80 9.7404e-3 0.9755 1.3319e-1 0.3829

Table 1: EOC and errors obtained by DDFV “Hermeline” scheme

N L2 error EOC L2 error L2 gradient error EOC L2 gradi-
ent error

10 6.5323e-2 – 2.6010e-1 –
20 3.4497e-2 0.9435 2.1560e-1 0.2707
40 1.7832e-2 0.9507 1.7224e-1 0.3239
80 1.0902e-2 0.7097 1.3932e-1 0.3060

Table 2: EOC and errors obtained by DDFV “Coudiére–Hubert” scheme

4 Conclusion

In this work we have compared two new schemes for solving curvature driven
level set equation in 3D based on dual volumes. Concerning the numerical
experiment we can say, that our expectations were fulfilled by obtaining EOC
of the L2 error tending to 1 in both cases. Because of the non-smooth function of
the exact solution better results could not have been expected. Concerning EOC
of the L2 gradient error, it is tending to be 1

3 , what was also expected. Coudiére–
Hubert scheme has some advantages, the biggest one will appear thanks to the
expression of the gradients in proving stability and convergence of the given
scheme.
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